首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Rieger  R. Hampp 《Planta》1991,184(3):415-421
The activities of enzymes which catalyze one step in each of the five major carbon pathways in green plants were measured in secondary pulvini and other tissues of Phaseolus coccineus L. leaves. We were able to detect activities of fumarase (EC 4.2.1.2; tricarboxylic-acid pathway), NAD-glyceraldehyde-phosphate dehydrogenase (NAD-GAPDH, EC 1.2.1.12; glycolysis), 6-phosphogluconate dehydrogenase (6-PGDH, EC 1.1.1.44; oxidative pentose-phosphate pathway), ribulose-1, 5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39; photosynthetic carbon-reduction pathway), and of hydroxypyruvate reductase (HP-R, EC 1.1.1.81; photosynthetic carbon-oxidation pathway). On a protein basis the activities of Rubisco and HP-R in pulvinar regions were very low (below 1 and 2 mol · (kg protein) –-1 · h–-1, respectively), but the activities of fumarase and NAD-GAPDH were between 10- and 5-fold higher compared with the laminar tissue (up to 7 and 50 mol · (kg protein)–-1 · h–-1, respectively). Similarly, the protein specific activities of 6-PGDH were increased in the pulvinus (3–4 compared with approx. 1 mol · (kg protein)–-1 · h–-1 in the leaf blade). No differences in specific activities were detected between day and night positions of the leaves. By applying quantitative histochemical techniques we determined the longitudinal and transversal compartmentation of the activities of fumarase, NAD-GAPDH, and 6-PGDH in pulvinar tissues. Levels of activity of all three enzymes increased towards the middle part of the pulvinus. Here, expressed on a dry-weight (DW) basis, the analysis of cross sections showed highest activities in the outer parts of the extensor in the order given, approx. 0.6, 5, and 0.25 mol · (kg DW)–-1 · h–-1 for fumarase, NAD-GAPDH and 6-PGDH. When related to protein, levels of activity were comparably high within the inner parts of extensor and flexor, and partly also in the abaxial part of the bundle (fumarase, 6-PGDH). The tissue-specific compartmentation of the respective activities is discussed in relation to leaf movement and shows parallels with guard-cell function.Abbreviations Chl chlorophyll - DW dry weight - GAPDH glyceraldehyde-phosphate dehydrogenase - HP-R hydroxypyruvate reductase - Rubisco ribulose-1,5-bisphosphate carboxylase - 6-PGDH 6-phosphogluconate dehydrogenase This investigation was supported by a grant from the Deutsche Forschungsgemeinschaft.  相似文献   

2.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

3.
Guard cell and mesophyll cell protoplasts of Commelina communisL., were isolated and used to investigate their various biochemicalcharacteristics. Contamination of the samples by other celltypes was very low and viability of the protoplasts, assessedby the use of neutral red, Evans blue and fluorescein diacetate,was high (89–98%). Mesophyll cell protoplasts containedmore chlorophyll (x 47), more soluble protein (x 10), more totalN (x 36) and more DNA (x 9) than guard cell protoplasts. Theabsorption spectra of protoplast extracts were similar for bothcell types except that below 400 nm there was a large increasein absorption by the guard cell protoplast extract. In guardcell protoplast extracts, high levels of activity of phosphoenolpyruvatecarboxylase (E.C. 4.1.1.31 [EC] ), NAD malate dehydrogenase (E.C.1.1,1.37), NADP malic enzyme (E.C. 1.1.1.40 [EC] ) and carbonic anhydrase(E.C. 4.2.1.1 [EC] ) were detected while only low levels of pyruvate-orthophosphatedikinase (E.C. 2.7.9.1 [EC] ) activity were detected. Glycollate oxidase(E.C. 1.1.3.1 [EC] ), ribulose-l,5-bisphosphate carboxylase (E.C 4.1.1.39 [EC] ),NADP malate dehydrogenase (E.C. 1.1.1.82 [EC] ) and NAD malic enzyme(E.C. 1.1.1.39 [EC] ) were not detected in guard cell protoplast extracts.High levels of ribulose-1, 5-bisphosphate carboxylase, glycollateoxidase, NAD malate dehydrogenase and carbonic anhydrase weredetected in mesophyll cell protoplast extracts which is typicalof C3 plants. A pathway of carbon flow during stomatal openingand closing is proposed. Key words: Carbon metabolism, Commelina communis, guard cell protoplasts, mesophyll cell protoplasts, stomata  相似文献   

4.
The thermoacidophilic iron-oxidizing chemolithotroph Sulfobacillus sibiricus N1T is characterized by steady growth and amplified cell yield when grown in vigorously aerated medium containing Fe2+, glucose, and yeast extract as energy sources. In this case, carbon dioxide, glucose, and yeast extract are used as carbon sources. Glucose is assimilated through the fructose-bisphosphate pathway and the pentose-phosphate pathway. The glyoxylate bypass does not function in S. sibiricus, and the tricarboxylic acid cycle is disrupted at the level of 2-oxoglutarate dehydrogenase. The presence of ribulose-bisphosphate carboxylase indicates that carbon dioxide fixation proceeds through the Calvin cycle. The activity of ribulose-bisphosphate carboxylase is highest in autotrophically grown cells. The cells also contain pyruvate carboxylase, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxytransphosphorylase.  相似文献   

5.
Coenzyme specificity of mammalian liver D-glycerate dehydrogenase   总被引:1,自引:0,他引:1  
D-Glycerate dehydrogenase (glyoxylate reductase) was partially purified from rat liver by anion- and cation-exchange chromatography. When assayed in the direction of D-glycerate or glycolate formation, the enzyme was inhibited by high (greater than or equal to 0.5 mM), unphysiological concentrations of hydroxypyruvate or glyoxylate much more potently in the presence of NADPH than in the presence of NADH. However, the dehydrogenase displayed a much greater affinity for NADPH (Km less than 1 microM) than for NADH (Km = 48-153 microM). Furthermore, NADP was over 1000-fold more potent than NAD in inhibiting the enzyme competitively with respect to NADH. NADP also inhibited the reaction competitively with respect to NADPH whereas NAD, at concentrations of up to 10 mM had no inhibitory effect. When measured by the formation of hydroxypyruvate from D-glycerate, the enzyme also displayed a much greater affinity for NADP than for NAD. These properties indicate that liver D-glycerate dehydrogenase functions physiologically as an NADPH-specific reductase. In agreement with this conclusion, the addition of hydroxypyruvate or glyoxylate to suspensions of rat hepatocytes stimulated the pentose-phosphate pathway. The coenzyme specificity of D-glycerate dehydrogenase is discussed in relation to the biochemical findings made in D-glyceric aciduria and in primary hyperoxaluria type II (L-glyceric aciduria).  相似文献   

6.
The effects of Fe deficiency on different metabolic processes were characterized in roots, xylem sap and leaves of tomato. The total organic acid pool increased significantly with Fe deficiency in xylem sap and leaves of tomato plants, whereas it did not change in roots. However, the composition of the pool changed with Fe deficiency, with major increases in citrate concentrations in roots (20-fold), leaves (2-fold) and xylem sap (17-fold). The activity of phosphoenolpyruvate carboxylase, an enzyme leading to anaplerotic C fixation, increased 10-fold in root tip extracts with Fe deficiency, whereas no change was observed in leaf extracts. The activities of the organic acid synthesis-related enzymes malate dehydrogenase, citrate synthase, isocitrate dehydrogenase, fumarase and aconitase, as well as those of the enzymes lactate dehydrogenase and pyruvate carboxylase, increased with Fe deficiency in root extracts, whereas only citrate synthase increased significantly with Fe deficiency in leaf extracts. These results suggest that the enhanced C fixation capacity in Fe-deficient tomato roots may result in producing citrate that could be used for Fe xylem transport. Total pyridine nucleotide pools did not change significantly with Fe deficiency in roots or leaves, although NAD(P)H/NAD(P) ratios were lower in Fe-deficient roots than in controls. Rates of O(2) consumption were similar in Fe-deficient and Fe-sufficient roots, but the capacity of the alternative oxidase pathway was decreased by Fe deficiency. Also, increases in Fe reductase activity with Fe deficiency were only 2-fold higher when measured in tomato root tips. These values are significantly lower than those found in other plant species, where Fe deficiency leads to larger increases in organic acid synthesis-related enzyme activities and flavin accumulation. These data support the hypothesis that the extent of activation of different metabolic pathways, including carbon fixation via PEPC, organic acid synthesis-related enzymes and oxygen consumption is different among species, and this could modulate the different levels of efficiency in Strategy I plants.  相似文献   

7.
We have studied the effects of ozone, carbon dioxide and ozone combined with carbon dioxide fumigations on catabolic and detoxification pathways in spruce ( Picea abies [L.] Karst.) needles. The results obtained showed an increase in the activities of three enzymes involved in the detoxification pathway, superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (AscPOD, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) when trees were exposed to ozone and to ozone‐carbon dioxide treatments. In these two treatments, the fraction of SOD activity due to the chloroplastic isoform was increased (1.5‐fold). In the needles of trees exposed to ozone and to ozone‐carbon dioxide fumigation, an increase in the activities of glucose‐6‐phosphate dehydrogenase (G‐6‐PDH, EC 1.1.1.49) showed that the cell had the capacity to produce more NADPH necessary for the detoxification. Stimulation of other enzymes of catabolic pathways (fumarase [EC 4.2.1.2], phosphofructokinase [PFK, EC 2.7.1.1] and phosphoenolpyruvate carboxylase [PEPC, EC 4.1.1.31]), was also observed making it possible for the cell to provide the reducing power necessary for detoxification as well as energy and carbon skeletons involved in the repair processes.
When carbon dioxide alone was applied, no effects could be detected on these enzyme activities. However, when carbon dioxide was combined with ozone, the effect of ozone on trees was less than that induced by ozone alone, suggesting that elevated atmospheric carbon dioxide concentrations may to some extent protect plants from ozone injury.  相似文献   

8.
Carboxylase activity of the key enzyme of carbon metabolism, ribulose-bisphosphate carboxylase/oxygenase (RuBisCO; EC 4.1.1.39), and phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31), as well as the intensity of carbon dioxide photosynthetic assimilation in young seedlings and adult leaves of the wheat Triticum aestivum L. cultivars Mironovskaya 808 (a more tolerant) and Lyutestsens758 (a less tolerant), were compared under conditions of progressive water deficiency. The water stress had more pronounced negative effects on all the studied characteristics of the photosynthetic apparatus of the cultivar Lyutestsens758. Its seedlings were more sensitive to water stress. Compounds with a cytokinin activity (6-benzylaminopurine, thidiazuron, kartolin 2, and kartolin 4) played a protective role, increasing the stability of the photosynthetic apparatus under conditions of water deficiency. Preparations of kartolins displayed the maximum protective effect.  相似文献   

9.
Mesophyll protoplasts and bundle sheath cells were prepared by enzymatic digestion of leaves of Alternanthera tenella, a C3-C4 intermediate species. The intercellular distribution of selected photosynthetic, photorespiratory and respiratory (mitochondrial) enzymes in these meso-phyll and bundle sheath cells was studied. The activity levels of photosynthetic enzymes such as PEP carboxylase (EC 4.1.1.31) or NAD-malic enzyme (EC 1.1.1.39) and photorespiratory enzymes such as glycolate oxidase (EC 1.1.3.1) or NADH-hydroxypyruvate reductase (EC 1.1.1.29) were similar in the two cell types. The activity levels of mitochondrial TCA cycle enzymes such as citrate synthase (EC 4.1.3.7) or fumarase (EC 4.2.1.2) were 2- to 3-fold higher in bundle sheath cells. On the other hand, the activity levels of mitochondrial photorespiratory enzymes, namely glycine decarboxylase (EC 2.1.2.10) and serine hydroxymethyltransferase (EC 2.1.2.1), were 6-9-fold higher in bundle sheath cells than in mesophyll protoplasts. Such preferential localization of mitochondria enriched with the glycine-decarboxylating system in the inner bundle sheath cells would result in efficient refixa-tion of CO2 from not only photorespiration but also dark respiration before its exit from the leaf. We propose that predominant localization of mitochondria specialized in glycine decarboxylation in bundle sheath cells may form the basis of reduced photorespiration in this C3-C4 intermediate species.  相似文献   

10.
The thermoacidophilic iron-oxidizing chemolithotroph Sulfobacillus sibiricus N1T is characterized by steady growth and amplified cell yield when grown in vigorously aerated medium containing Fe2+, glucose, and yeast extract as energy sources. In this case, carbon dioxide, glucose, and yeast extract are used as carbon sources. Glucose is assimilated through the fructose-bisphosphate pathway and the pentose-phosphate pathway. Glyoxylate bypass does not function in S. sibiricus, and the tricarboxylic acid cycle is disrupted at the level of 2-oxoglutarate dehydrogenase. The presence of ribulose-bisphosphate carboxylase indicates that carbon dioxide fixation proceeds through the Calvin cycle. The activity of ribulose-bisphosphate carboxylase is highest in autotrophically grown cells. The cells also contain pyruvate carboxylase, phosphoenolpyruvate carboxylase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxytransphosphorylase.  相似文献   

11.
Carboxylase activities of the key enzyme of carbon metabolism, ribulose-bisphosphate carboxylase/oxygenase (RuBisCO; EC 4.1.1.39), and phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31), as well as intensities of carbon dioxide photosynthetic assimilation in young seedlings and adult leaves of the wheat Triticum aestivum L. cultivars Mironovskaya 808 (a more tolerant) and Lyutestsens 758 (a less tolerant), were compared under conditions of progressive water deficiency. The water stress had more pronounced negative effects on all the studied characteristics of photosynthetic apparatus of cultivar Lyutestsens 758 photosynthetic machinery of the cultivar Lyutestsens 758. Its seedlings were more sensitive to water stress. Compounds with a cytokinin activity (6-benzylaminopurine, thidiazuron, cartolin 2, and cartolin 4) played a protective role, increasing the stability of the photosynthetic machinery under conditions of water deficiency. Preparations of cartolins displayed the maximum protective effect.  相似文献   

12.
Mesophyll cells and bundle sheath strands were isolated from Cyperus rotundus L. leaf sections infiltrated with a mixture of cellulase and pectinase followed by a gentle mortar and pestle grind. The leaf suspension was filtered through a filter assembly and mesophyll cells and bundle sheath strands were collected on 20-μm and 80-μm nylon nets, respectively. For the isolation of leaf epidermal strips longer leaf cross sections were incubated with the enzymes and gently ground as above. Loosely attached epidermal strips were peeled off with forceps. The upper epidermis, which lacks stomata, could be clearly distinguished from the lower epidermis which contains stomata. Microscopic evidence for identification and assessment of purity is provided for each isolated tissue.Enzymes related to the C4-dicarboxylic acid cycle such as phosphoenolpyruvate carboxylase, malate dehydrogenase (NADP+), pyruvate, Pi dikinase were found to be localized, ≥98%, in mesophyll cells. Enzymes related to operating the reductive pentose phosphate cycle such as RuDP carboxylase, phosphoribulose kinase, and malic enzyme are distributed, ≥99%, in bundle sheath strands. Other photosynthetic enzymes such as aspartate aminotransferase, pyrophosphatase, adenylate kinase, and glyceraldehyde 3-P dehydrogenase (NADP+) are quite active in both mesophyll and bundle sheath tissues.Enzymes involved in photorespiration such as RuDP oxygenase, catalase, glycolate oxidase, hydroxypyruvate reductase (NAD+), and phosphoglycolate phosphatase are preferentially localized, ≥84%, in bundle sheath strands.Nitrate and nitrite reductase can be found only in mesophyll cells, while glutamate dehydrogenase is present, ≥96%, in bundle sheath strands.Starch- and sucrose-synthesizing enzymes are about equally distributed between the mesophyll and bundle sheath tissues, except that the less active phosphorylase was found mainly in bundle sheath strands. Fructose-1,6-diP aldolase, which is a key enzyme in photosynthesis and glycolysis leading to sucrose and starch synthesis, is localized, ≥90%, in bundle sheath strands. The glycolytic enzymes, phosphoglyceromutase and enolase, have the highest activity in mesophyll cells, while the mitochondrial enzyme, cytochrome c oxidase, is more active in bundle sheath strands.The distribution of total nutsedge leaf chlorophyll, protein, and PEP carboxylase activity, using the resolved leaf components, is presented. 14CO2 Fixation experiments with the intact nutsedge leaves and isolated mesophyll and bundle sheath tissues show that complete C4 photosynthesis is compartmentalized into mesophyll CO2 fixation via PEP carboxylase and bundle sheath CO2 fixation via RuDP carboxylase. These results were used to support the proposed pathway of carbon assimilation in C4-dicarboxylic acid photosynthesis and to discuss the individual metabolic characteristics of intact mesophyll cells, bundle sheath cells, and epidermal tissues.  相似文献   

13.
Summary An albino seedling of Zea mays L. was investigated for its potential for CO2-assimilation. In the mesophyll the number, dimensions and fine structure of chloroplasts are drastically reduced but to a lesser extent in the bundle sheath. Chlorophyll concentration is zero and carotenoid concentration almost zero. Albinism also exerts a strong influence on the stroma of bundle sheath chloroplasts; ribulose-1.5-biphosphate carboxylase (EC 4.1.1.39) activity and glyceraldehyde-3-phosphate dehydrogenase (NADP) (EC 1.2.1.13) activity is not detectable. The C4-enzymes phosphoenolpyruvate carboxylase (EC 4.1.1.31) and malate dehydrogenase (decarboxylating) (EC 1.1.1.40) and the non-photosynthetic linked enzymes malate dehydrogenase (NAD) (EC 1.1.1.37), aspartate-2-oxoglutarate aminotransferase (EC 1.1.1.37), aspartate-2-oxoglutarate aminotransferase (EC 2.6.1.1.) and glyceraldehyde-3-phosphate dehydrogenase (NAD) (EC 1.2.1.1.) are present in the albino seedling with activities comparable to those in etiolated maize seedlings. The potential for CO2 fixation of the albino seedlings exceeds that of comparable dark seedlings considerably. The results are discussed with regard to enzyme localization of the C4 pathway of photosynthesis.Abbreviations Aspartate aminotransferase L-aspartate-2-oxoglutarate aminotransferase-EC 2.6.1.1. - GAPDH (NAD) glyceraldehyde-3-phosphate dehydrogenase (NAD dep.)-EC 1.2.1.12 - GAPDH (NADP) glyceraldehyde-3-phosphate dehydrogenase (NADP dep.)-EC 1.2.1.13 - malic enzyme malate dehydrogenase (NADP dep., decarboxylating)-EC 1.1.1.40 - MDH malate dehydrogenase (NAD dep.)-1.1.1.37 - PEP carboxylase phosphoenolpyruvate carboxylase-EC 4.1.1.31 - RuDP carboxylase ribulose-1.5-biphosphate carboxylase-EC 4.1.1.39  相似文献   

14.
Photorespiratory metabolism of the C3-C4 intermediate species Moricandia arvensis (L.) DC has been compared with that of the C3 species, Moricandia moricandioides (Boiss.) Heywood. Assays of glycollate oxidase (EC 1.1.3.1), glyoxylate aminotransferases (EC 2.6.1.4, EC 2.6.1.45) and hydroxypyruvate reductase (EC 1.1.1.29) indicate that the capacity for flux through the photorespiratory cycle is similar in both species. Immunogold labelling with monospecific antibodies was used to investigate the cellular locations of ribulose 1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), glycollate oxidase, and glycine decarboxylase (EC 2.1.2.10) in leaves of the two species. Ribulose 1,5-bisphosphate carboxylase/oxygenase was confined to the stroma of chloroplasts and glycollate oxidase to the peroxisomes of all photosynthetic cells in leaves of both species. However, whereas glycine decarboxylase was present in the mitochondria of all photosynthetic cells in M. moricandioides, it was only found in the mitochondria of bundle-sheath cells in M. arvensis. We suggest that localized decarboxylation of glycine in the leaves of M. arvensis will lead to improved recapture of photorespired CO2 and hence a lower rate of photorespiration.Abbreviations kDa kilodalton - RuBP ribulose-1,5-bisphosphate  相似文献   

15.
Guard cell pairs were dissected from freeze-dried leaves of plants representing 15 families, including monocots, dicots, and pteridophytes. All three major photosynthetic carbon pathways (C2, C4, and Crassulacean acid metabolism) were represented. These individual guard cell pairs were assayed quantitatively for ribulose-1,5-bisphosphate carboxylase specific activity. Assay sensitivity averaged 0.08 picomoles of ribulose-P2 dependent P-glycerate formation (i.e. 100-fold more sensitive than required to detect the activity present in a single Vicia faba mesophyll cell). The calculated specific activities for guard cells and mesophyll cells averaged 4 and 472 millimoles per kilogram dry weight per hour, respectively. For all species surveyed, (a) the enzyme activity calculated for guard cells was below the detection limit of the assay, or (b) the specific activity (weight or cell basis) calculated for guard cells was less than 1% of the specific activity calculated for adjacent mesophyll cells. Based on this survey, the generalization is made that the photosynthetic carbon reduction pathway is absent, or virtually so, in guard cell chloroplasts.  相似文献   

16.
Transfer of Euglena gracilis Klebs Z cells from phototrophic to organotrophic growth on acetate results in derepression of the key enzymes of the glyoxylate cycle, malate synthase and isocitrate lyase, which appear coordinately regulated. The derepression of malate synthase and isocitrate lyase was accompanied by increased specific activities of succinate dehydrogenase, fumarase, and malate dehydrogenase, but hydroxypyruvate reductase activity was unaltered.  相似文献   

17.
Enzymatic activities of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) (EC 4.1.1.39), phospho(enol)pyruvate carboxylase (EC 4.1.1.31), NAD malate dehydrogenase (EC 1.1.1.37), and NADP glyceraldehyde phosphate dehydrogenase complex including phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehyde phosphate dehydrogenase (EC 1.2.1.13) were comparatively assayed in wheat seedlings of the cultivar Lyutestsens 758 grown under normal conditions, water deficiency conditions, and subsequent rehydration. Water stress was found to decrease the activity of all enzymes tested, the effect being most pronounced in the case of Rubisco. The content of Rubisco in wheat plants exposed to water deficiency was reduced less significantly than the activity of the enzyme. Pretreatment of plant seeds with kartolin-4 (o-isopropyl-N-2-hydroxyethyl carbamate), a preparation with cytokinin activity, reduced the dehydration-induced inhibition of enzymatic activity. Upon a subsequent rehydration, kartolin-4 facilitated rapid recovery of the photosynthetic activity, the process being based on the kartolin-induced stimulation of reparation reactions. Under conditions of water stress, a partial decrease in the activity of carbon metabolism enzymes in vitrowas accompanied by complete inhibition of photosynthesis in vivo, perhaps, as a result of an abrupt increase in the stomatal resistance.  相似文献   

18.
Catalase, glycolate oxidase, and hydroxypyruvate reductase, enzymes which are located in the microbodies of leaves, show different developmental patterns in the shoots of wheat seedlings. Catalase and hydroxypyruvate reductase are already present in the shoots of ungerminated seeds. Glycolate oxidase appears later. All three enzymes develop in the dark, but glycolate oxidase and hydroxypyruvate reductase have only low activities. On exposure of the seedlings to continuous white light (14.8 × 103 ergs cm−2 sec−1), the activity of catalase is doubled, and glycolate oxidase and hydroxypyruvate reductase activities increase by 4- to 7-fold. Under a higher light intensity, the activities of all three enzymes are considerably further increased. The activities of other enzymes (cytochrome oxidase, fumarase, glucose-6-phosphate dehydrogenase) are unchanged or only slightly influenced by light. After transfer of etiolated seedlings to white light, the induced increase of total catalase activity shows a much longer lag-phase than that of glycolate oxidase and hydroxypyruvate reductase. It is concluded that the light-induced increases of the microbody enzymes are due to enzyme synthesis. The light effect on the microbody enzymes is independent of chlorophyll formation or the concomitant development of functional chloroplasts. Short repeated light exposures which do not lead to greening are very effective. High activities of glycolate oxidase and hydroxypyruvate reductase develop in the presence of 3-amino-1,2,4-triazole which blocks chloroplast development. The effect of light is not exerted through induced glycolate formation and appears instead to be photomorphogenetic in character.  相似文献   

19.
Regulation of enzyme activity in plants by reversible phosphorylation   总被引:2,自引:0,他引:2  
This paper reviews the seven specific plant enzymes which have been shown or suggested, to date, to undergo reversible covalent modification by regulatory phosphorylation, including mitochondrial pyruvate dehydrogenase (EC 1.2.4.1), chloroplastic pyruvate, orthophosphate dikinase (EC 2.7.9.1) and ribulose bisphosphate carboxylase/oxygenase (EC 4.1.1.39), cytoplasmic phosphoenolpyruvate carboxylase (EC 4.1.1.31) and 6-phosphofructo-2-kinase (EC 2.7.1.105), microsomal hydroxymethylglutaryl - CoA reductase (EC 1.1.1.34), and quinate: NAD+ oxidoreductase (EC 1.1.1.24).  相似文献   

20.
Barley (Hordeum vulgare L.) endosperm from developing seeds was found to contain relatively high activities of cytosolic NAD(P)H-dependent hydroxypyruvate reductase (HPR-2) and isocitrate dehydrogenase (ICDH). In contrast, activities of peroxisomal NADH-dependent hydroxypyruvate reductase (HPR-1) and glycolate oxidase as well as cytosolic NAD(P)H-dependent glyoxylate reductase were very low or absent in the endosperm both during maturation and seed germination, indicating the lack of a complete glycolate cycle in this tissue. In addition, activities of cytosolic glucose-6-phosphate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase were low or absent in the endosperm. The endosperm HPR-2 exhibited similar properties to those of an earlier described HPR-2 from green leaves, e.g. activities with both hydroxypyruvate and glyoxylate, utilization of both NADPH and NADH as cofactors, and a strong uncompetitive inhibition by oxalate (Ki in the order of micromolar). In etiolated leaves, both HPR-1 and HPR-2 were present with the same activity as in green leaves, indicating that the lack of HPR-1 in the endosperm is not a general feature of non-photosynthetic tissues. We conclude that the endosperm has considerable capacity for cytosolic NADP/NADPH cycling via HPR-2 and ICDH, the former being possibly involved in the utilization of a serine-derived carbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号