首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Translocation is the movement of a group of individuals from one site to another. Conservationists and wildlife managers around the world use translocation to new and/or newly safe habitats as a tool for preserving and propagating threatened species whose populations are surviving at only few and vulnerable localities. The success of translocations is typically defined as the establishment of a self-sustaining population. However, this definition overlooks the genetic consequences of translocations at the metapopulation scale, especially when maintaining genetic diversity is one of the specific aims of immediate and/or long-term management goals for the translocated population. We evaluated the potential effects of translocation on the total genetic diversity of a metapopulation in an increasingly common scenario: a small island as the source site, and a nearby predator-proofed, large island as the target site. Specifically, we tested the counterintuitive hypothesis that translocation and subsequent migration between an expanding, recently established population and the original population might actually result in the suppression of genetic diversity in the metapopulation relative to the temporal course of genetic drift in the small island population without translocation (control). Our simulations confirm that the directional genetic consequences of translocations are complex and depend on the combination of parameter estimates used for the modelling. Critically, however, under a lower rate of migration, lower rate of growth and higher carrying capacity on the translocation site, and smaller initial size of the translocated population, the total genetic diversity of the metapopulation may become suppressed following a translocation, relative to the control. At the same time, when translocations are carried out under a broader set of conditions, the metapopulation genetic diversity will typically exceed that of the control. Our approach is also informative about the genetic consequences of natural re-/colonisation events between small source and nearby large target sites and the resulting metapopulation. Overall, these results confirm the importance of translocation as a potentially effective and successful conservation genetic tool.  相似文献   

2.
Abstract.— Partial self-fertilization is common in higher plants. Mating system variation is known to have important consequences for how genetic variation is distributed within and among populations. Selfing is known to reduce effective population size, and inbreeding species are therefore expected to have lower levels of genetic variation than comparable out crossing taxa. However, several recent empirical studies have shown that reductions in genetic diversity within populations of inbreeding species are far greater than the expected reductions based on the reduced effective population size. Two different processes have been argued to cause these patterns, selective sweeps (or hitchhiking) and background selection. Both are expected to be most effective in reducing genetic variation in regions of low recombination rates. Selfing is known to reduce the effective recombination rate, and inbreeding taxa are thus thought to be particularly vulnerable to the effects of hitchhiking or background selection. Here I propose a third explanation for the lower-than-expected levels of genetic diversity within populations of selfing species; recurrent extinctions and recolonizations of local populations, also known as metapopulation dynamics. I show that selfing in a metapopulation setting can result in large reductions in genetic diversity within populations, far greater than expected based the lower effective population size inbreeding species is expected to have. The reason for this depends on an interaction between selfing and pollen migration.  相似文献   

3.
Many studies use genetic markers to explore population structure and variability within species. However, only a minority use more than one type of marker and, despite increasing evidence of a link between heterozygosity and individual fitness, few ask whether diversity correlates with population trajectory. To address these issues, we analysed data from the Steller's sea lion, Eumetiopias jubatus , where three stocks are distributed over a vast geographical range and where both genetic samples and detailed demographic data have been collected from many diverse breeding colonies. To previously published mitochondrial DNA (mtDNA) and microsatellite data sets, we have added new data for amplified fragment length polymorphism (AFLP) markers, comprising 238 loci scored in 285 sea lions sampled from 23 natal rookeries. Genotypic diversity was low relative to most vertebrates, with only 37 loci (15.5%) being polymorphic. Moreover, contrasting geographical patterns of genetic diversity were found at the three markers, with Nei's gene diversity tending to be higher for AFLPs and microsatellites in rookeries of the western and Asian stocks, while the highest mtDNA values were found in the eastern stock. Overall, and despite strongly contrasting demographic histories, after applying phylogenetic correction we found little correlation between genetic diversity and either colony size or demography. In contrast, we were able to show a highly significant positive relationship between AFLP diversity and current population size across a range of pinniped species, even though equivalent analyses did not reveal significant trends for either microsatellites or mtDNA.  相似文献   

4.
闫路娜  张德兴 《动物学报》2004,50(2):279-290
我们以中国飞蝗种群的微卫星遗传分析数据为例 ,评估了取样对种群遗传多样性指标的影响 ,结果显示 :样本大小与所观测到的每位点等位基因数、平均等位基因数及基因丰富度指数均呈显著正相关 ,而与期望杂合度无显著相关 ;微卫星位点多态性的高低直接影响所观测到的种群基因丰富度及其检测所需的样本量 ;对大多数种群遗传和分子生态学研究而言 ,30 - 5 0个个体是微卫星DNA分析所需要的最小样本量。基因丰富度经过稀疏法或多次随机抽样法校正后 ,可适用于瓶颈效应等种群历史数量变动的检测。另外 ,在研究中 ,还应避免采集时间的不同及样本的性比构成所可能造成的对种群遗传结构的影响  相似文献   

5.
When newly created habitats are initially colonized by genotypes with rapid population growth rates, later arriving colonists may be prevented from establishing. Although these priority effects have been documented in multiple systems, their duration may be influenced by the diversity of the founding population. We conducted a large‐scale field manipulation to investigate how initial clonal diversity influences temporal and landscape patterns of genetic structure in a developing metapopulation. Six genotypes of obligately asexual Daphnia pulex were stocked alone (no clonal diversity) or in combination (‘high’ clonal diversity) into newly created experimental woodland ponds. We also measured the population growth rate of all clones in the laboratory when raised on higher‐quality and lower‐quality resources. Our predictions were that in the 3 years following stocking, clonally diverse populations would be more likely to persist than nonclonally diverse populations and exhibit evidence for persistent founder effects. We expected that faster growing clones would be found in more pools and comprise a greater proportion of individuals genotyped from the landscape. Genetic composition, both locally and regionally, changed significantly following stocking. Six of 27 populations exhibited evidence for persistent founder effects, and populations stocked with ‘high’ clonal diversity were more likely to exhibit these effects than nonclonally diverse populations. Performance in the laboratory was not predictive of clonal persistence or overall dominance in the field. Hence, we conclude that although laboratory estimates of fitness did not fully explain metapopulation genetic structure, initial clonal diversity did enhance D. pulex population establishment and persistence in this system.  相似文献   

6.
Tree species are striking for their high within-population diversity and low among-population differentiation for nuclear genes. In contrast, annual plants show much more differentiation for nuclear genes but much less diversity than trees. The usual explanation for this difference is that pollen flow, and therefore gene flow, is much higher for trees. This explanation is problematic because it relies on equilibrium hypotheses. Because trees have very recently recolonized temperate areas, they have experienced many foundation events, which usually reduce within-population diversity and increase differentiation. Only extremely high levels of gene flow could counterbalance these successive founder effects. We develop a model to study the impact of life cycle of forest trees, in particular of the length of their juvenile phase, on genetic diversity and differentiation during the glacial period and the following colonization period. We show that both a reasonably high level of pollen flow and the life-cycle characteristics of trees are needed to explain the observed structure of genetic diversity. We also show that gene flow and life cycle both have an impact on maternally inherited cytoplasmic genes, which are characterized both in trees and annual species by much less diversity and much more differentiation than nuclear genes.  相似文献   

7.
8.
There are two main types of metapopulation models. Spatially implicit models are analytically tractable but neglect spatial heterogeneities. Spatially explicit models are more realistic but too complex. In this paper, I build a bridge between both approximations. I derive a new metapopulation model using a well-known technique in population genetics. Spatial heterogeneities are captured by an aggregate statistical measure of spatial correlation. When this correlation is zero, i.e., space is homogeneous, the model becomes the well-known Levins' model. As spatial correlation increases, equilibrium patch occupancy decreases from what would be expected under the spatially homogeneous assumption. I proceed by testing how well spatial complexities from a spatially explicit simulation can be encapsulated by such an aggregate statistical measure.  相似文献   

9.
Species diversity and genetic diversity may be correlated as a result of processes acting in parallel at the two levels. However, no theories predict the conditions under which different relationships between species diversity and genetic diversity might arise and therefore when one level of diversity may be predicted using the other. I used simulation models to investigate the parallel influence of locality area, immigration rate, and environmental heterogeneity on species diversity and genetic diversity. The most common pattern was moderate to strong positive species-genetic diversity correlations (SGDCs). Such correlations may be driven by any one of the three locality characteristics examined, but important exceptions and patterns emerged. Genetic diversity and species diversity were more weakly correlated when genetic diversity was measured for rare versus common species. Environmental heterogeneity not only imposes spatially varying selection on populations and communities but also causes changes in species' population sizes and therefore genetic diversity; these interacting processes can create positive, negative, or unimodal relationships of genetic diversity with species diversity. When species are considered as part of multispecies communities, predictions from single-species models of genetic diversity apply in some instances (effects of area and immigration) but often not in others (effects of environmental heterogeneity).  相似文献   

10.
Journal of Mathematical Biology - The homozygosity and the frequency of the most frequent allele at a polymorphic genetic locus have a close mathematical relationship, so that each quantity places...  相似文献   

11.

Cyclones have one of the greatest effects on the biodiversity of coral reefs and the associated species. But it is unknown how stochastic alterations in habitat structure influence metapopulation structure, connectivity and genetic diversity. From 1993 to 2018, the reefs of the Capricorn Bunker Reef group in the southern part of the Great Barrier Reef were impacted by three tropical cyclones including cyclone Hamish (2009, category 5). This resulted in substantial loss of live habitat-forming coral and coral reef fish communities. Within 6–8 years after cyclones had devastated, live hard corals recovered by 50–60%. We show the relationship between hard coral cover and the abundance of the neon damselfish (Pomacentrus coelestis), the first fish colonizing destroyed reefs. We present the first long-term (2008–2015 years corresponding to 16–24 generations of P. coelestis) population genetic study to understand the impact of cyclones on the meta-population structure, connectivity and genetic diversity of the neon damselfish. After the cyclone, we observed the largest change in the genetic structure at reef populations compared to other years. Simultaneously, allelic richness of genetic microsatellite markers dropped indicating a great loss of genetic diversity, which increased again in subsequent years. Over years, metapopulation dynamics were characterized by high connectivity among fish populations associated with the Capricorn Bunker reefs (2200 km2); however, despite high exchange, genetic patchiness was observed with annual strong genetic divergence between populations among reefs. Some broad similarities in the genetic structure in 2015 could be explained by dispersal from a source reef and the related expansion of local populations. This study has shown that alternating cyclone-driven changes and subsequent recovery phases of coral habitat can greatly influence patterns of reef fish connectivity. The frequency of disturbances determines abundance of fish and genetic diversity within species.

  相似文献   

12.
13.
Mating systems and population dynamics influence genetic diversity and structure. Species that experience inbreeding and limited gene flow are expected to evolve isolated, divergent genetic lineages. Metapopulation dynamics with frequent extinctions and colonizations may, on the other hand, deplete and homogenize genetic variation, if extinction rate is sufficiently high compared to the effect of drift in local demes. We investigated these theoretical predictions empirically in social spiders that are highly inbred. Social spiders show intranest mating, female‐biased sex ratio, and frequent extinction and colonization events, factors that deplete genetic diversity within nests and populations and limit gene flow. We characterized population genetic structure in Stegodyphus sarasinorum, a social spider distributed across the Indian subcontinent. Species‐wide genetic diversity was estimated over approximately 2800 km from Sri Lanka to Himalayas, by sequencing 16 protein‐coding nuclear loci. We found 13 SNPs in 6592 bp (π = 0.00045) indicating low species‐wide nucleotide diversity. Three genetic lineages were strongly differentiated; however, only one fixed difference among them suggests recent divergence. This is consistent with a scenario of metapopulation dynamics that homogenizes genetic diversity across the species' range. Ultimately, low standing genetic variation may hamper a species' ability to track environmental change and render social inbreeding spiders ‘evolutionary dead‐ends’.  相似文献   

14.
The genetic effective size of a metapopulation   总被引:8,自引:0,他引:8  
The structure of a population over time, space and categories of social and sexual role governs its ability to retain genetic variation in the face of drift. A metapopulation is an extreme form of spatial structure in which loosely coupled local populations 'turnover', that is, suffer extinction followed by recolonization from elsewhere within the metapopulation. These local populations turn over with a characteristic half-life. Based on a simulation model that incorporates both realistic features of population ecology and population genetics, the ability of such a metapopulation to retain genetic variation, which may be defined as proportional to its so-called effective population size, denoted Ne(meta), can be one to two orders of magnitude lower than the maximum total number of individuals in the system. Ne(meta) depends on the persistence time associated with longevity of local populations (the turnover half-life), the average number of local populations extant in the metapopulation and the gene flow between local populations. Habitat fragmentation, which can create a metapopulation from a formerly continuously distributed species, may have unappreciated large genetic consequences for species impacted by human development.  相似文献   

15.
Effects of inbreeding on the genetic diversity of populations   总被引:19,自引:0,他引:19  
The study of variability within species is important to all biologists who use genetic markers. Since the discovery of molecular variability among normal individuals, data have been collected from a wide range of organisms, and it is important to understand the major factors affecting diversity levels and patterns. Comparisons of inbreeding and outcrossing populations can contribute to this understanding, and therefore studying plant populations is important, because related species often have different breeding systems. DNA sequence data are now starting to become available from suitable plant and animal populations, to measure and compare variability levels and test predictions.  相似文献   

16.
17.
Effects of cognitive abilities on metapopulation connectivity   总被引:1,自引:0,他引:1  
Connectivity among demes in a metapopulation depends on both the landscape's and the focal organism's properties (including its mobility and cognitive abilities). Using individual‐based simulations, we contrast the consequences of three different cognitive strategies on several measures of metapopulation connectivity. Model animals search suitable habitat patches while dispersing through a model landscape made of cells varying in size, shape, attractiveness and friction. In the blind strategy, the next cell is chosen randomly among the adjacent ones. In the near‐sighted strategy, the choice depends on the relative attractiveness of these adjacent cells. In the far‐ sighted strategy, animals may additionally target suitable patches that appear within their perceptual range. Simulations show that the blind strategy provides the best overall connectivity, and results in balanced dispersal. The near‐sighted strategy traps animals into corridors that reduce the number of potential targets, thereby fragmenting metapopulations in several local clusters of demes, and inducing sink–source dynamics. This sort of local trapping is somewhat prevented in the far‐sighted strategy. The colonization success of strategies depends highly on initial energy reserves: blind does best when energy is high, near‐sighted wins at intermediate levels, and far‐sighted outcompetes its rivals at low energy reserves. We also expect strong effects in terms of metapopulation genetics: the blind strategy generates a migrant‐pool mode of dispersal that should erase local structures. By contrast, near‐ and far‐sighted strategies generate a propagule‐pool mode of dispersal and source–sink behavior that should boost structures (high genetic variance among‐ and low variance within local clusters of demes), particularly if metapopulation dynamics is also affected by extinction–colonization processes. Our results thus point to important effects of the cognitive ability of dispersers on the connectivity, dynamics and genetics of metapopulations.  相似文献   

18.
For neutral, additive quantitative characters, the amount of additive genetic variance within and among populations is predictable from Wright's FST, the effective population size and the mutational variance. The structure of quantitative genetic variance in a subdivided metapopulation can be predicted from results from coalescent theory, thereby allowing single-locus results to predict quantitative genetic processes. The expected total amount of additive genetic variance in a metapopulation of diploid individual is given by 2Ne sigma m2 (1 + FST), where FST is Wright's among-population fixation index, Ne is the eigenvalue effective size of the metapopulation, and sigma m2 is the mutational variance. The expected additive genetic variance within populations is given by 2Ne sigma e2(1-FST), and the variance among demes is given by 4FSTNe sigma m2. These results are general with respect to the types of population structure involved. Furthermore, the dimensionless measure of the quantitative genetic variance among populations, QST, is shown to be generally equal to FST for the neutral additive model. Thus, for all population structures, a value of QST greater than FST for neutral loci is evidence for spatially divergent evolution by natural selection.  相似文献   

19.
Ocean currents, prevailing winds, and the hierarchical structures of river networks are known to create asymmetries in re-colonization between habitat patches. The impacts of such asymmetries on metapopulation persistence are seldom considered, especially rarely in theoretical studies. Considering three classical models (the island, the stepping stone and the distance-dependent model), we explore how metapopulation persistence is affected by (i) asymmetry in dispersal strength, in which the colonization rate between two patches differs in direction, and (ii) asymmetry in connectivity, in which the overall colonization pattern displays asymmetry (circulating or dendritic networks). Viability can be drastically reduced when directional bias in dispersal strength is higher than 25%. Re-colonization patterns that allow for strong local connectivity provide the highest persistence compared to systems that allow circulation. Finally, asymmetry has relatively weak effects when metapopulations maintain strong general connectivity.  相似文献   

20.
The genetic consequences of small population size and isolation are of central concern in both population and conservation biology. Organisms with a metapopulation structure generally show effective population sizes that are much smaller than the number of mature individuals and this can reduce genetic diversity especially in small sized and isolated subpopulations. Here, we examine the association between heterozygosity and the size and spatial isolation of natal colonies in a metapopulation of lesser kestrels (Falco naumanni). For this purpose, we used capture-mark-recapture data to determine the patterns of immigration into the studied colonies, and 11 highly polymorphic microsatellite markers that allowed us to estimate genetic diversity of locally born individuals. We found that individuals born in smaller and more isolated colonies were genetically less diverse. These colonies received a lower number of immigrants, supporting the idea that both reduced gene flow and small population size are responsible for the genetic pattern observed. Our results are particularly intriguing because the lesser kestrel is a vagile and migratory species with great movement capacity and dispersal potential. Overall, this study provides evidence of the association between individual heterozygosity and the size and spatial isolation of natal colonies in a highly mobile vertebrate showing relatively frequent dispersal and low genetic differentiation among local subpopulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号