首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The receptor for activated C-kinase (RACK1), a conserved protein implicated in numerous signaling pathways, is a stoichiometric component of eukaryotic ribosomes located on the head of the 40S ribosomal subunit. To test the hypothesis that ribosome association is central to the function of RACK1 in vivo, we determined the 2.1-Å crystal structure of RACK1 from Saccharomyces cerevisiae (Asc1p) and used it to design eight mutant versions of RACK1 to assess roles in ribosome binding and in vivo function. Conserved charged amino acids on one side of the β-propeller structure were found to confer most of the 40S subunit binding affinity, whereas an adjacent conserved and structured loop had little effect on RACK1-ribosome association. Yeast mutations that confer moderate to strong defects in ribosome binding mimic some phenotypes of a RACK1 deletion strain, including increased sensitivity to drugs affecting cell wall biosynthesis and translation elongation. Furthermore, disruption of RACK1''s position at the 40S ribosomal subunit results in the failure of the mRNA binding protein Scp160 to associate with actively translating ribosomes. These results provide the first direct evidence that RACK1 functions from the ribosome, implying a physical link between the eukaryotic ribosome and cell signaling pathways in vivo.Cells alter protein synthesis in response to stimuli whose effects are transmitted through established cell signaling pathways. Although the mechanisms of signal transduction to ribosomes remain unclear, the receptor for activated C-kinase (RACK1) has emerged as a possible molecular link that connects the signaling and translation machinery. RACK1, a highly conserved homologue of the β-subunit of heterotrimeric G proteins, was first identified over a decade ago as an anchoring protein for protein kinase C (33). Implicated as a scaffold in PDE4D5- and Src kinase-based signaling pathways (28), it functions in diverse developmental processes, such as sexual differentiation in Schizosaccharomyces pombe (29) and the control of cell proliferation in Drosophila melanogaster (26). The more recent discovery that RACK1 is a core component of the eukaryotic 40S ribosomal subunit (20, 24, 32) suggested that its signaling functions might directly influence the efficiency and specificity of translation.In support of this possibility, cryo-electron microscopy (cryo-EM) studies showed that RACK1 binds the 40S subunit near the mRNA exit tunnel in a location that is conserved from yeast to humans (35). The cryo-EM data verified RACK1''s architecture as a seven-bladed β-propeller and positioned the protein on the ribosome in such a way that much of its surface is exposed and available for interaction with other proteins and ligands. These structural data are consistent with the hypothesis that RACK1 might assemble signaling or other regulatory complexes directly on the ribosome (31). Indeed, various functions for RACK1 at the ribosome have been proposed, including roles in 40S and 60S subunit joining (8), the regulated translation of specific mRNAs (6, 36), and the localization of ribosomes for translation at specific sites within the cell (9, 10). Despite this abundance of hypothetical roles, the functional significance of RACK1 localization on the ribosome remains speculative.Here, we provide the first experimental evidence that RACK1''s position at the ribosome has biological importance in vivo. We determined the crystal structure of the full-length Saccharomyces cerevisiae RACK1 ortholog, Asc1p (henceforth RACK1), at 2.1-Å resolution. Using this structure and the cryo-EM model of the protein on the 40S ribosomal subunit, we analyzed the putative RACK1-40S subunit interface and generated eight RACK1 variants that have differing effects on ribosome binding in vivo. We show that yeast strains harboring even the most severely binding-defective RACK1 mutant fail to exhibit all of the phenotypes associated with RACK1 deletion. However, the efficiency of RACK1 binding to ribosomes correlates with a subset of growth behaviors observed for RACK1 deletion strains. These results indicate that although not required for all RACK1 activities, localization at ribosomes is integral to some aspects of RACK1 function.  相似文献   

2.
We have conducted a proteomic analysis of the 80S cytosolic ribosome from the eukaryotic green alga Chlamydomonas reinhardtii, and accompany this with a cryo-electron microscopy structure of the ribosome. Proteins homologous to all but one rat 40S subunit protein, including a homolog of RACK1, and all but three rat 60S subunit proteins were identified as components of the C. reinhardtii ribosome. Expressed Sequence Tag (EST) evidence and annotation of the completed C. reinhardtii genome identified genes for each of the four proteins not identified by proteomic analysis, showing that algae potentially have a complete set of orthologs to mammalian 80S ribosomal proteins. Presented at 25A, the algal 80S ribosome is very similar in structure to the yeast 80S ribosome, with only minor distinguishable differences. These data show that, although separated by billions of years of evolution, cytosolic ribosomes from photosynthetic organisms are highly conserved with their yeast and animal counterparts.  相似文献   

3.
RACK1 serves as a scaffold protein for a wide range of kinases and membrane-bound receptors. It is a WD-repeat family protein and is predicted to have a beta-propeller architecture with seven blades like a Gbeta protein. Mass spectrometry studies have identified its association with the small subunit of eukaryotic ribosomes and, most recently, it has been shown to regulate initiation by recruiting protein kinase C to the 40S subunit. Here we present the results of a cryo-EM study of the 80S ribosome that positively locate RACK1 on the head region of the 40S subunit, in the immediate vicinity of the mRNA exit channel. One face of RACK1 exposes the WD-repeats as a platform for interactions with kinases and receptors. Using this platform, RACK1 can recruit other proteins to the ribosome.  相似文献   

4.
5.
Nilsson J  Sengupta J  Frank J  Nissen P 《EMBO reports》2004,5(12):1137-1141
The receptor for activated C-kinase (RACK1) is a scaffold protein that is able to interact simultaneously with several signalling molecules. It binds to protein kinases and membrane-bound receptors in a regulated fashion. Interestingly, RACK1 is also a constituent of the eukaryotic ribosome, and a recent cryo-electron microscopy study localized it to the head region of the 40S subunit in the vicinity of the messenger RNA (mRNA) exit channel. RACK1 recruits activated protein kinase C to the ribosome, which leads to the stimulation of translation through the phosphorylation of initiation factor 6 and, potentially, of mRNA-associated proteins. RACK1 therefore links signal-transduction pathways directly to the ribosome, which allows translation to be regulated in response to cell stimuli. In addition, the fact that RACK1 associates with membrane-bound receptors indicates that it promotes the docking of ribosomes at sites where local translation is required, such as focal adhesions.  相似文献   

6.
Functional ribosomes synthesize proteins in all living cells and are composed of two labile associated subunits, which are made of rRNA and ribosomal proteins. The rRNA of the small 40S subunit (SSU) of the functional eukaryotic 80S ribosome decodes the mRNA molecule and the large 60S subunit (LSU) rRNA catalyzes protein synthesis. Recent fine structure determinations of the ribosome renewed interest in the role of ribosomal proteins in modulation of the core ribosomal functions. RpL10/Grc5p is a component of the LSU and is a multifunctional translational regulator, operating in 60S subunit biogenesis, 60S subunit export and 60S subunit joining with the 40S subunit. Here, we report that rpL10/Grc5p functionally interacts with the nuclear export factor Nmd3p in modulation of the cellular polysome complement and with the small subunit protein rpS6 in subunit joining and differential protein expression.  相似文献   

7.
《FEMS yeast research》2005,5(3):271-280
Functional ribosomes synthesize proteins in all living cells and are composed of two labile associated subunits, which are made of rRNA and ribosomal proteins. The rRNA of the small 40S subunit (SSU) of the functional eukaryotic 80S ribosome decodes the mRNA molecule and the large 60S subunit (LSU) rRNA catalyzes protein synthesis. Recent fine structure determinations of the ribosome renewed interest in the role of ribosomal proteins in modulation of the core ribosomal functions. RpL10/Grc5p is a component of the LSU and is a multifunctional translational regulator, operating in 60S subunit biogenesis, 60S subunit export and 60S subunit joining with the 40S subunit. Here, we report that rpL10/Grc5p functionally interacts with the nuclear export factor Nmd3p in modulation of the cellular polysome complement and with the small subunit protein rpS6 in subunit joining and differential protein expression.  相似文献   

8.
Earlier studies have shown that RACK1 functions as a negative regulator of abscisic acid (ABA) responses in Arabidopsis (Arabidopsis thaliana), but the molecular mechanism of the action of RACK1 in these processes remains elusive. Global gene expression profiling revealed that approximately 40% of the genes affected by ABA treatment were affected in a similar manner by the rack1 mutation, supporting the view that RACK1 is an important regulator of ABA responses. On the other hand, coexpression analysis revealed that more than 80% of the genes coexpressed with RACK1 encode ribosome proteins, implying a close relationship between RACK1's function and the ribosome complex. These results implied that the regulatory role for RACK1 in ABA responses may be partially due to its putative function in protein translation, which is one of the major cellular processes that mammalian and Saccharomyces cerevisiae RACK1 is involved in. Consistently, all three Arabidopsis RACK1 homologous genes, namely RACK1A, RACK1B, and RACK1C, complemented the growth defects of the S. cerevisiae cross pathway control2/rack1 mutant. In addition, RACK1 physically interacts with Arabidopsis Eukaryotic Initiation Factor6 (eIF6), whose mammalian homolog is a key regulator of 80S ribosome assembly. Moreover, rack1 mutants displayed hypersensitivity to anisomycin, an inhibitor of protein translation, and displayed characteristics of impaired 80S functional ribosome assembly and 60S ribosomal subunit biogenesis in a ribosome profiling assay. Gene expression analysis revealed that ABA inhibits the expression of both RACK1 and eIF6. Taken together, these results suggest that RACK1 may be required for normal production of 60S and 80S ribosomes and that its action in these processes may be regulated by ABA.  相似文献   

9.
RACK1 is a WD-repeat protein that forms signal complexes at appropriate locations in the cell. RACK1 homologues are core components of ribosomes from yeast, plants and mammals. In contrast, a cryo-EM analysis of trypanosome ribosomes failed to detect RACK1, thus eliminating an important translational regulatory mechanism. Here we report that TbRACK1 from Trypanosoma brucei associates with eukaryotic translation elongation factor-1a (eEF1A) as determined by tandem MS of TAP-TbRACK1 affinity eluates, co-sedimentation in a sucrose gradient, and co-precipitation assays. Consistent with these observations, sucrose gradient purified 80S monosomes and translating polysomes each contained TbRACK1. When RNAi was used to deplete cells of TbRACK1, a shift in the polysome profile was observed, while the phosphorylation of a ribosomal protein increased. Under these conditions, cell growth became hypersensitive to the translational inhibitor anisomycin. The kinetoplasts and nuclei were misaligned in the postmitotic cells, resulting in partial cleavage furrow ingression during cytokinesis. Overall, these findings identify eEF1A as a novel TbRACK1 binding partner and establish TbRACK1 as a component of the trypanosome translational apparatus. The synergy between anisomycin and TbRACK1 RNAi suggests that continued translation is required for complete ingression of the cleavage furrow.  相似文献   

10.
Folding of newly synthesized polypeptides (NSPs) into functional proteins is a highly regulated process. Rigorous quality control ensures that NSPs attain their native fold during or shortly after completion of translation. Nonetheless, signaling pathways that govern the degradation of NSPs in mammals remain elusive. We demonstrate that the stress-induced c-Jun N-terminal kinase (JNK) is recruited to ribosomes by the receptor for activated protein C kinase 1 (RACK1). RACK1 is an integral component of the 40S ribosome and an adaptor for protein kinases. Ribosome-associated JNK phosphorylates the eukaryotic translation elongation factor 1A isoform 2 (eEF1A2) on serines 205 and 358 to promote degradation of NSPs by the proteasome. These findings establish a role for a RACK1/JNK/eEF1A2 complex in the quality control of NSPs in response to stress.  相似文献   

11.
Quality control systems monitor and stop translation at some ribosomal stalls, but it is unknown if halting translation at such stalls actually prevents synthesis of abnormal polypeptides. In yeast, ribosome stalling occurs at Arg CGA codon repeats, with even two consecutive CGA codons able to reduce translation by up to 50%. The conserved eukaryotic Asc1 protein limits translation through internal Arg CGA codon repeats. We show that, in the absence of Asc1 protein, ribosomes continue translating at CGA codons, but undergo substantial frameshifting with dramatically higher levels of frameshifting occurring with additional repeats of CGA codons. Frameshifting depends upon the slow or inefficient decoding of these codons, since frameshifting is suppressed by increased expression of the native tRNAArg(ICG) that decodes CGA codons by wobble decoding. Moreover, the extent of frameshifting is modulated by the position of the CGA codon repeat relative to the translation start site. Thus, translation fidelity depends upon Asc1-mediated quality control.  相似文献   

12.
Despite the importance of microRNAs (miRNAs) in gene regulation, it is unclear how the miRNA-Argonaute complex--or miRNA-induced silencing complex (miRISC)--can regulate the translation of their targets in such diverse ways. We demonstrate here a direct interaction between the miRISC and the ribosome by showing that a constituent of the eukaryotic 40S subunit, receptor for activated C-kinase (RACK1), is important for miRNA-mediated gene regulation in animals. In vivo studies demonstrate that RACK1 interacts with components of the miRISC in nematodes and mammals. In both systems, the alteration of RACK1 expression alters miRNA function and impairs the association of the miRNA complex with the translating ribosomes. Our data indicate that RACK1 can contribute to the recruitment of miRISC to the site of translation, and support a post-initiation mode of miRNA-mediated gene repression.  相似文献   

13.
In the fission yeast Schizosaccharomyces pombe, Wee1-dependent inhibitory phosphorylation of the highly conserved Cdc2/Cdk1 kinase determines the mitotic onset when cells have reached a defined size. The receptor of activated C kinase (RACK1) is a scaffolding protein strongly conserved among eukaryotes which binds to other proteins to regulate multiple processes in mammalian cells, including the modulation of cell cycle progression during G(1)/S transition. We have recently described that Cpc2, the fission yeast ortholog to RACK1, controls from the ribosome the activation of MAPK cascades and the cellular defense against oxidative stress by positively regulating the translation of specific genes whose products participate in the above processes. Intriguingly, mutants lacking Cpc2 display an increased cell size at division, suggesting the existence of a specific cell cycle defect at the G(2)/M transition. In this work we show that protein levels of Wee1 mitotic inhibitor are increased in cells devoid of Cpc2, whereas the levels of Cdr2, a Wee1 inhibitor, are down-regulated in the above mutant. On the contrary, the kinetics of G(1)/S transition was virtually identical both in control and Cpc2-less strains. Thus, our results suggest that in fission yeast Cpc2/RACK1 positively regulates from the ribosome the mitotic onset by modulating both the protein levels and the activity of Wee1. This novel mechanism of translational control of cell cycle progression might be conserved in higher eukaryotes.  相似文献   

14.
We describe a one-step affinity method for purifying ribosomes from the budding yeast Saccharomyces cerevisiae. Extracts from yeast strains expressing only C-terminally tagged Rpl25 protein or overexpressing this protein in the presence of endogenous Rpl25p were used as the starling materials. The purification was specific for tagged 60S subunits, and resulted in the copurification of 80S subunits and polysomes, as well as ribosome-associated proteins and mRNAs. Two of these associated proteins, Mpt4p and Asc1p, were nearly stoichiometrically bound to the ribosome. In addition, the degree of mRNA association with the purified ribosomes was found to reflect the mRNA's translational status within the cell. The one-step purification of ribosome and its associated components from a crude extract should provide an important tool for future structural and biochemical studies of the ribosome, as well as for expression profiling of translated mRNAs.  相似文献   

15.
16.
Receptor for activated C-kinase 1 (RACK1) serves as a scaffolding protein in numerous signaling pathways involving kinases and membrane-bound receptors from different cellular compartments. It exists simultaneously as a cytosolic free form and as a ribosome-bound protein. As part of the 40S ribosomal subunit, it triggers translational regulation by establishing a direct link between protein kinase C and the protein synthesis machinery. It has been suggested that RACK1 could recruit other signaling molecules onto the ribosome, providing a signal-specific modulation of the translational process. RACK1 is able to dimerize both in vitro and in vivo. This homodimer formation has been observed in several processes including the regulation of the N-methyl-d-aspartate receptor by the Fyn kinase in the brain and the oxygen-independent degradation of hypoxia-inducible factor 1. The functional relevance of this dimerization is, however, still unclear and the question of a possible dimerization of the ribosome-bound protein is still pending. Here, we report the first structure of a RACK1 homodimer, as determined from two independent crystal forms of the Saccharomyces cerevisiae RACK1 protein (also known as Asc1p) at 2.9 and 3.9 Å resolution. The structure reveals an atypical mode of dimerization where monomers intertwine on blade 4, thus exposing a novel surface of the protein to potential interacting partners. We discuss the significance of the dimer structure for RACK1 function.  相似文献   

17.
The ribosome-associated protein LBP/p40, which was originally named after "laminin binding protein precursor p40," is distributed on the cell surface as laminin binding protein p67 (LBP/p67), in the nucleus, and on 40S ribosomes. In a broad range of eukaryotes, the localization of LBP/p40 on the 40S ribosome is well conserved. Two yeast homologs of LBP/p40 are believed to be essential for cell viability and each gene product probably corresponds to the assembly and/or stability of the 40S ribosomal subunit. The precise role of LBP/p40 in translation, however, remains to be elucidated, especially in higher eukaryotes. In this report, we used a yeast two-hybrid screening method to isolate molecules associated with human LBP/p40 protein on ribosomes. We found that the 40S ribosomal protein S21 was tightly bound with LBP/p40 in this yeast two-hybrid system and in in vitro analysis. Further, we discovered that the association required a broad region of the LBP/p40 amino acid sequence, which corresponds to the highly conserved region of LBP/p40 homologs among eukaryotes.  相似文献   

18.

Background

Although baker's yeast is a primary model organism for research on eukaryotic ribosome assembly and nucleoli, the list of its proteins that are functionally associated with nucleoli or ribosomes is still incomplete. We trained a naïve Bayesian classifier to predict novel proteins that are associated with yeast nucleoli or ribosomes based on parts lists of nucleoli in model organisms and large-scale protein interaction data sets. Phylogenetic profiling and gene expression analysis were carried out to shed light on evolutionary and regulatory aspects of nucleoli and ribosome assembly.

Results

We predict that, in addition to 439 known proteins, a further 62 yeast proteins are associated with components of the nucleolus or the ribosome. The complete set comprises a large core of archaeal-type proteins, several bacterial-type proteins, but mostly eukaryote-specific inventions. Expression of nucleolar and ribosomal genes tends to be strongly co-regulated compared to other yeast genes.

Conclusion

The number of proteins associated with nucleolar or ribosomal components in yeast is at least 14% higher than known before. The nucleolus probably evolved from an archaeal-type ribosome maturation machinery by recruitment of several bacterial-type and mostly eukaryote-specific factors. Not only expression of ribosomal protein genes, but also expression of genes encoding the 90S processosome, are strongly co-regulated and both regulatory programs are distinct from each other.  相似文献   

19.
RLI1 is an essential yeast protein closely related in sequence to two soluble members of the ATP-binding cassette family of proteins that interact with ribosomes and function in translation elongation (YEF3) or translational control (GCN20). We show that affinity-tagged RLI1 co-purifies with eukaryotic translation initiation factor 3 (eIF3), eIF5, and eIF2, but not with other translation initiation factors or with translation elongation or termination factors. RLI1 is associated with 40 S ribosomal subunits in vivo, but it can interact with eIF3 and -5 independently of ribosomes. Depletion of RLI1 in vivo leads to cessation of growth, a lower polysome content, and decreased average polysome size. There was also a marked reduction in 40 S-bound eIF2 and eIF1, consistent with an important role for RLI1 in assembly of 43 S preinitiation complexes in vivo. Mutations of conserved residues in RLI1 expected to function in ATP hydrolysis were lethal. A mutation in the second ATP-binding cassette domain of RLI1 had a dominant negative phenotype, decreasing the rate of translation initiation in vivo, and the mutant protein inhibited translation of a luciferase mRNA reporter in wild-type cell extracts. These findings are consistent with a direct role for the ATP-binding cassettes of RLI1 in translation initiation. RLI1-depleted cells exhibit a deficit in free 60 S ribosomal subunits, and RLI1-green fluorescent protein was found in both the nucleus and cytoplasm of living cells. Thus, RLI1 may have dual functions in translation initiation and ribosome biogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号