首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Zhang L  Sun L  Zhao Y 《Cell research》2007,17(1):50-55
The thymus provides the essential microenvironment for T-cell development and maturation. Thymic epithelial cells (TECs), which are composed of thymic cortical epithelial cells (cTECs) and thymic medullary epithelial cells (mTECs), have been well documented to be critical for these tightly regulated processes. It has long been controversial whether the common progenitor cells of TECs could give rise to both cTECs and mTECs. Great progress has been made to characterize the common TEC progenitor cells in recent years. We herein discuss the sole origin paradigm with regard to TEC differentiation as well as these progenitor cells in thymus regeneration.  相似文献   

2.
Mammalian central nervous system neurons show asymmetry during early brain development that defines the elaborate function of neural circuitry (Kriegstein and Noctor, 2004). Many intracellular signaling pathways, which are important for the transition to the polarized state and the development of axons and dendrites, have been identified (Barnes and Polleux, 2009). How these pathways are initiated during neuronal development in vivo remained elusive until Yi et al.  相似文献   

3.
Immunological tolerance to self is essential for maintaining the integrity of the organ systems, and its breakdown may lead to the development of autoimmune diseases. Tolerance to self is maintained through several mechanisms, which include negative selection, functional inactivation (anergy) and suppression of autoreactive lymphocytes. However, only negative selection permanently removes autoreactive cells through apoptosis. While it has long been known that negative selection requires a T cell receptor (TCR) signal, it is unclear whether a death ligand signal is also involved. TRAIL, the tumor necrosis factor (TNF)-related apoptosis-inducing ligand, is a newly described member of the TNF family. Unlike other death ligands of  相似文献   

4.
Clinical trials have demonstrated the capacity for dopamine neurons, transplanted ectopicaUy into the striatum, to structurally inte- grate, restore dopamine transmission, and induce long-term functional benefits for Parkinson's disease (PD) patients. Despite this proof of principle, a number of limitations have hindered the development of cell replacement therapy over the past 20 years, particu- larly tissue availability, graft survival, and adequate reinnervation of the host brain. With a greater understanding of failure in prior clinical trials, increased knowledge of midbrain dopamine development (now including Wnts), and the development of pluripotent stem cell technologies, we are better equipped than ever to re-address a number of these challenges. This review summarizes the trials, tribulations, and progress in cell replacement therapy for PD. We discuss the prospects of modulating canonical and non-canon- ical Wnt signalingto improve cell therapy based upon their roles in dopamine neural development and the adult brain. This will include the potential of Wnts to (i) expand fetaUy derived tissue in vitro and foUowing transplantation, (ii) promote the differentiation of pluripotent stem cells, (iii) increase graft integration and restoration of neural circuitry, and finally (iv) enhance graft survival.  相似文献   

5.
Neurotransmitter gamma-aminobutiric acid (GABA) through ionotropic GABAA and metabotropic GABAB receptors plays key roles in modulating the development, plasticity and function of neuronal networks. GABA is inhibitory in mature neurons but excitatory in immature neurons, neuroblasts and neural stem/progenitor cells (NSCs/ NPCs). The switch from excitatory to inhibitory occurs following the development of glutamatergic synaptic input and results from the dynamic changes in the expression of Na+/K+/2CF co-transporter NKCC1 driving CF influx and neuron-specific K+/Cl co-transporter KCC2 driving Cl efflux. The developmental transition of KCC2 expression is regulated by Disrupted-in-Schizophrenia 1 (DISC1) and brain-derived neurotrophic factor (BDNF) signaling. The excitatory GABA signaling during early neurogenesis is important to the activity/experience-induced regulation of NSC quiescence, NPC proliferation, neuroblast migration and new-born neuronal maturation/functional integration. The inhibitory GABA signaling allows for the sparse and static functional networking essential for learning/memory development and maintenance.  相似文献   

6.
This paper presents our experience in developing and implementing Internet telerobotics system. Internet telerobotics system refers to a robot system controlled and monitored remotely through the Internet. A robot manipulator with five degrees of freedom, called Mentor, is employed. Client-server architecture is chosen as a platform for our Internet telerobotics system. Three generations of telerobotics systems have evolved in this research. The first generation was based on CGI and two tiered architectures, where a client presents a Graphical User Interface to the user, and utilizes the user's data entry and actions to perform requests to robot server running on a different machine. The second generation was developed using Java. We also employ Java 3D for creating and manipulating 3D geometry of manipulator links, and for constructing the structures used in rendering that geometry, resulting in 3D robot movement simulation presented to the users (clients) through their web browser. Recent development in our Internet telerobotics includes object recognition through image captured by a camera, which poses challenging problem, giving the undeterministic latency of the Internet. The third generation is centered around the use of CORBA for development platform of distributed internet telerobotics system, aimed at distributing task of telerobotics system.  相似文献   

7.
Progressively loss of neural and glial cells is the key event that leads to nervous system dysfunctions and diseases. Several neurodegenerative diseases, for instance Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, are associated to aging and suggested to be a consequence of deficiency of neural stem cell pool in the affected brain regions. Endogenous neural stem cells exist throughout life and are found inspecific niches of human brain. These neural stem cells are responsible for the regeneration of new neurons to restore, in the normal circumstance, the functions of the brain. Endogenous neural stem cells can be isolated, propagated, and, notably, differentiated to most cell types of the brain. On the other hand, other types of stem cells, such as mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells can also serve as a source for neural stem cell production, that hold a great promise for regeneration of the brain. The replacement of neural stem cells, either endogenous or stem cell-derived neural stem cells, into impaired brain is highly expected as a possible therapeutic mean for neurodegenerative diseases. In this review, clinical features and current routinely treatments of agerelated neurodegenerative diseases are documented. Noteworthy, we presented the promising evidence of neural stem cells and their derivatives in curing such diseases, together with the remaining challenges to achieve the best outcome for patients.  相似文献   

8.
9.
In this study, a controlled experiment of winter wheat under water stress at the seedling stage was conducted in soil columns in greenhouse. Based on the data gotten from the experiment, a model to estimate root length density distribution was developed through optimizing the weights of neural network by genetic algorithm. The neural network model was constructed by using forward neural network framework, by applying the strategy of the roulette wheel selection and reserving the most optimizing series of weights, which were composed by real codes.This model was applied to predict the root length density distribution of winter wheat, and the predicted root length density had good agreement with experiment data. The way could save a lot of manpower and material resources for determining the root length density distribution of winter wheat.  相似文献   

10.
11.
It is a well‐known fact, that there is a close interconnection between vascular and neural structures in both embryonic development and postnatal life. Different models have been employed to dissect the mechanisms of these interactions, ranging from in vitro systems (e.g., co‐culture of neural and endothelial cells) to in vivo imaging of central neural system recovery in laboratory animals after artificially induced trauma. Nevertheless, most of these models have serious limitations. Here, we describe an ex vivo model, representing an organotypic co‐culture of aortic fragments (AF) with longitudinal slices of mouse neonatal spinal cord (SC) or dorsal root ganglia (DRG). The samples were co‐cultured in a medium adapted for SC tissue and lacking any pro‐angiogenic or neurotrophic growth factors. It was found, that cultivation of AFs in the SC injury zone (transversal dissection of a SC slice) resulted in the initiation of active aortic sprouting. Remarkably, the endothelial cells exiting the AFs never invaded the SC tissue, concentrating in a nearby area (negative taxis). In contrast, the DRGs, while also promoting the sprouting, were a target of active endothelial CD31+ cell invasion (positive taxis). Thus, the tissues of both central and peripheral nervous systems have a prominent positive effect on aortic sprouting, while the vector of endothelial cell expansion is strictly nervous‐tissue‐type dependent. The ex vivo AF co‐culture with SC or DRG appeared to be a useful and promising model for a further endeavor into the mechanisms driving the complex interactions between neural and endothelial tissues.  相似文献   

12.
Endothelial dysfunction has been associated with the development of atherosclerosis and cardiovascular diseases. Adult endothelial progenitor cells(EPCs) are derived from hematopoietic stem cells and are capable of forming new blood vessels through a process of vas-culogenesis. There are studies which report correlations between circulating EPCs and cardiovascular risk fac-tors. There are also studies on how pharmacotherapies may influence levels of circulating EPCs. In this review, we discuss the potential role of endothelial progenitor cells as both diagnostic and prognostic biomarkers. In addition, we look at the interaction between cardio-vascular pharmacotherapies and endothelial progenitor cells. We also discuss how EPCs can be used directly and indirectly as a therapeutic agent. Finally, we evalu-ate the challenges facing EPC research and how these may be overcome.  相似文献   

13.
The blood-brain barrier (BBB) is a multifunctional endothelial interface separating the bloodstream from the brain interior. Although the mature BBB is well characterized, the embryonic development of this complex system remains poorly understood. Embryonic neural progenitor cells (NPC) are a potential inductive cell type populating the developing brain, and their ability to influence BBB properties was therefore examined. When puromycin-purified brain microvascular endothelial cells (BMEC) were co-cultured with embryonic NPC in a two-compartment Transwell system, the BMEC exhibited enhanced barrier properties in the form of increased transendothelial electrical resistance (TEER) and decreased permeability to the small molecule tracer, sodium fluorescein. These changes required the presence of NPC in the early stages of differentiation and were accompanied by alterations in the fidelity of BMEC tight junctions as indicated by occludin, claudin 5, and zonula occluden-1 redistribution at cell-cell borders. In contrast to the findings with NPC, post-natal astrocytes elicited a delayed, but longer duration response in BMEC TEER. BMEC co-culture also suppressed neuronal differentiation of NPC indicating a reciprocal signaling between the two cell populations. This study demonstrates that NPC-BMEC interactions are prevalent and for the first time demonstrates that NPC are capable of inducing BBB properties.  相似文献   

14.
Endothelial progenitor cells (EPCs) have been recently found to exist circulating in peripheral blood of adults, and home to sites of neovascularization in peripheral tissues. They can also be differentiated from peripheral blood mononuclear cells (PBMNCs). In tumor tissues, EPCs are found in highly vascularized lesions. Few reports exist in the literature concerning the characteristics of EPCs, especially related to their surface antigen expressions, except for endothelial markers. Here, we aimed to investigate the surface expression of differentiation markers, and the functional activities of early-outgrowth of EPCs (EO-EPCs), especially focusing on their antigen-presenting ability. EO-EPCs were generated from PBMNCs, by culture in the presence of angiogenic factors. These EO-EPCs had the morphological and functional features of endothelial cells and, additionally, they shared antigen-presenting ability. They induced the proliferation of allogeneic lymphocytes in a mixed-lymphocyte reaction, and could generate cytotoxic lymphocytes, with the ability to lyze tumor cells in an antigen-specific manner. The antigen-presenting ability of EO-EPCs, however, was weaker than that of monocyte-derived dendritic cells, but stronger than peripheral blood monocytes. Since EO-EPCs play an important role in the development of tumor angiogenesis, targeting EPCs would be an effective anti-angiogenic strategy. Alternatively, due to their antigen-presenting ability, EO-EPCs can be used as the effectors of anti-tumor immunotherapy. Since they share endothelial antigens, the activation of a cellular immunity against angiogenic vessels can be expected. In conclusion, EO-EPCs should be an interesting alternative for the development of new therapeutic strategies to combat cancer, either as the effectors or as the targets of cancer immunotherapy.  相似文献   

15.
Steroid hormones alter several aspects of microvascular function within the CNS. Both microvessel formation and blood-brain barrier expression appear to be influenced by interactions between astrocytes and endothelial cells. To determine if steroids alter astrocyte-endothelial interactions, we studied their effects on astroglial-induced microvessel morphogenesis in vitro. C6 astroglial cells induce bovine retinal microvascular endothelial cells to differentiate into capillary-like structures. Dexamethasone, hydrocortisone, and progesterone at 10 nM inhibited C6-induced microvessel morphogenesis by 75, 35, and 30%, respectively. Inhibition by dexamethasone was both time and concentration dependent, reaching 80-100% at 1 microM. Tetrahydrocortisone and 17 alpha-hydroxyprogesterone had only marginal inhibitory effects. Cortexolone, a glucocorticoid receptor antagonist, blocked inhibition by dexamethasone. Progesterone receptors were expressed in C6 but not bovine retinal microvascular endothelial cells, identifying the astroglial cell as the likely effector of progesterone-mediated inhibition. Astroglial cells were further implicated as the effectors of steroid-mediated inhibition because none of the steroids inhibited astroglial-independent capillary-like structure formation in response to a reconstituted extracellular matrix, Matrigel. These findings are evidence that steroids modulate neural microvascular endothelial cell functions indirectly through perivascular astrocytes via a receptor-mediated mechanism.  相似文献   

16.
Bone-marrow-derived, circulating endothelial precursor cells contribute to neoangiogenesis in various diseases. Rapamycin has recently been shown to have anti-angiogenic effects in an experimental tumor model. Our group has developed a culture system that allows expansion and endothelial differentiation of human CD133(+) precursor cells. We could show by PCR analysis that mTOR, the rapamycin-binding protein, was expressed in fresh CD133(+) cells, in expanded cells after 28 days, and in differentiated endothelial cells. Rapamycin inhibited proliferation of CD133(+) cells dose dependently at similar concentrations as hematopoietic Jurkat or HL-60 cells. Apoptosis was induced by rapamycin after 48 h of treatment, which could be reduced by preincubation with FK 506. Furthermore, the development of adherent endothelial cells from expanded CD133(+) cells was dose dependently inhibited. Expression of endothelial antigens CD144 and von Willebrand factor on differentiating endothelial precursors was reduced by rapamycin. In summary, rapamycin inhibits proliferation and differentiation of human endothelial precursor cells underlining its anti-angiogenic effects.  相似文献   

17.
Hepatic stellate cells (HSC) play an important role in the development of liver fibrosis. Here, we report that HSC express the stem/progenitor cell marker CD133 and exhibit properties of progenitor cells. CD133+ HSC of rats were selected by specific antibodies and magnetic cell sorting. Selected cells displayed typical markers of HSC, endothelial progenitor cells (EPC), and monocytes. In cell culture, CD133+ HSC transformed into alpha-smooth muscle actin positive myofibroblast-like cells, whereas application of cytokines known to facilitate EPC differentiation into endothelial cells led to the formation of branched tube-like structures and induced expression of the endothelial cell markers endothelial nitric oxide synthase and vascular-endothelial cadherin. Moreover, cytokines that guide stem cells to develop hepatocytes led to the appearance of rotund cells and expression of the hepatocyte markers alpha-fetoprotein and albumin. It is concluded that CD133+ HSC are a not yet recognized progenitor cell compartment with characteristics of early EPC. Their potential to differentiate into endothelial or hepatocyte lineages suggests important functions of CD133+ HSC during liver regeneration.  相似文献   

18.
Presenilin-1 (PS1) is a gene responsible for the development of early-onset familial Alzheimer's disease. Targeted disruption of the PS1 gene in mice suggested that PS1 might be involved in angiogenesis. We have used an in vitro embryonic stem (ES) cell culture system to prepare endothelial progenitor cells (EPC) lacking PS1 and investigated the roles of PS1 in endothelial cell lineage. With this system, Flk-1+ E-cadherin- EPC were generated from PS1-deficient ES cells, and the EPC lacking PS1 as well as wild-type EPC grew to form VE-cadherin+ endothelial colonies supported by a layer of OP9 stromal cells. Although the endothelial colonies from PS1-deficient EPC showed morphology similar to those from wild-type EPC, the PS1-deficient EPC formed a large number of the colonies compared to wild-type EPC. The enhanced colony-forming ability of PS1-deficient EPC was attenuated by the inductions of wild-type human PS1. To differentiate multiple activities of PS1 for colony-forming ability, we used two types of human PS1 mutants: one (hPS1D257A) with the aspartate to alanine mutation at residue 257 that impairs the proteolytic activity of PS1, and the other (hPS1Deltacat) deleting amino acids 340-371 of the cytosolic loop sequence essential for beta-catenin binding. hPS1D257A showed activity to regulate the colony-forming ability of PS1-deficient EPC, while hPS1Deltacat failed to exhibit this activity. These results suggest that PS1 regulates the growth and differentiation of endothelial progenitor cells through its beta-catenin-binding region and that the defect of PS1 function in endothelial cell lineage could contribute to the induction of vascular pathology.  相似文献   

19.
The subventricular zone is one of the 2 germinal niches of the adult brain where neural stem cells (NSC) generate new neurons and glia throughout life. NSC behavior is controlled by the integration of intrinsic signals and extrinsic cues provided by the surrounding microenvironment, or niche. Within the niche, the vasculature has emerged as a critical compartment, to which both neural stem cells and transit-amplifying progenitors are closely associated. A key function of the vasculature is to deliver blood-borne and secreted factors that promote proliferation and lineage progression of committed neural progenitors. We recently found that, in contrast to the established role of soluble cues, juxtacrine signals on vascular endothelial cells maintain neural stem cells in a quiescent and undifferentiated state through direct cell-cell interactions. In this perspective, we discuss how, through these apparently opposing signals, the vascular niche might coordinate stem cell decisions between maintenance and proliferation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号