首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian target of rapamycin (mTOR) is the central element of a signaling pathway involved in the control of mRNA translation and cell growth. The actions of mTOR are mediated in part through the phosphorylation of the eukaryotic initiation factor 4E-binding protein, PHAS-I. In vitro mTOR phosphorylates PHAS-I in sites that control PHAS-I binding to eukaryotic initiation factor 4E; however, whether mTOR directly phosphorylates PHAS-I in cells has been a point of debate. The Arg-Ala-Ile-Pro (RAIP motif) and Phe-Glu-Met-Asp-Ile (tor signaling motif) sequences found in the NH2- and COOH-terminal regions of PHAS-I, respectively, are required for the efficient phosphorylation of PHAS-I in cells. Here we show that mutations in either motif markedly decreased the phosphorylation of recombinant PHAS-I by mTOR in vitro. Wild-type PHAS-I, but none of the mutant proteins, was coimmunoprecipitated with hemagglutinin-tagged raptor, an mTOR-associated protein, after extracts of cells overexpressing raptor had been supplemented with recombinant PHAS-I proteins. Moreover, raptor overexpression enhanced the phosphorylation of wild-type PHAS-I by mTOR but not the phosphorylation of the mutant proteins. The results not only provide direct evidence that both the RAIP and tor signaling motifs are important for the phosphorylation by mTOR, possibly by allowing PHAS-I binding to raptor, but also support the view that mTOR phosphorylates PHAS-I in cells.  相似文献   

2.
Hwang SK  Kim HH 《BMB reports》2011,44(8):506-511
Mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase and that forms two multiprotein complexes known as the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTOR regulates cell growth, proliferation and survival. mTORC1 is composed of the mTOR catalytic subunit and three associated proteins: raptor, mLST8/GβL and PRAS40. mTORC2 contains mTOR, rictor, mLST8/GβL, mSin1, and protor. Here, we discuss mTOR as a promising anti-ischemic agent. It is believed that mTORC2 lies down-stream of Akt and acts as a direct activator of Akt. The different functions of mTOR can be explained by the existence of two distinct mTOR complexes containing unique interacting proteins. The loss of TSC2, which is upstream of mTOR, activates S6K1, promotes cell growth and survival, activates mTOR kinase activities, inhibits mTORC1 and mTORC2 via mTOR inhibitors, and suppresses S6K1 and Akt. Although mTOR signaling pathways are often activated in human diseases, such as cancer, mTOR signaling pathways are deactivated in ischemic diseases. From Drosophila to humans, mTOR is necessary for Ser473 phosphorylation of Akt, and the regulation of Akt-mTOR signaling pathways may have a potential role in ischemic disease. This review evaluates the potential functions of mTOR in ischemic diseases. A novel mTOR-interacting protein deregulates over-expression in ischemic disease, representing a new mechanism for controlling mTOR signaling pathways and potential therapeutic strategies for ischemic diseases.  相似文献   

3.
In metazoans, TOR is an essential protein that functions as a master regulator of cellular growth and proliferation. Over the past decade, there has been an explosion of information about this critical master kinase, ranging from the composition of the TOR protein complex to its ability to act as an integrator of numerous extracellular signals. Unfortunately, this plethora of information has also raised numerous questions regarding TOR function. Currently, the prevailing view is that mammalian TOR (mTOR) exists in at least two molecular complexes, mTORC1 and mTORC2, which are largely defined by the presence of either RAPTOR or RICTOR. However, additional co-factors have been identified for each complex, and their importance in mediating mTOR signals has been incompletely elucidated. Similarly, there are differences in mTOR function that reflect the tissue of origin. In this review, we present an alternative view to mTOR complex formation and function, which envisions mTOR regulation and signal propagation as a reflection of cell type- and basal state-dependent conditions. The re-interpretation of mTOR biology in this framework may facilitate the design of therapies most likely to effectively inhibit this central regulator of cell behavior.  相似文献   

4.
TOR (Target of Rapamycin) is a highly conserved protein kinase and a central controller of cell growth. TOR is found in two functionally and structurally distinct multiprotein complexes termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). In the present study, we developed a two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) based proteomic strategy to identify new mammalian TOR (mTOR) binding proteins. We report the identification of Proline-rich Akt substrate (PRAS40) and the hypothetical protein Q6MZQ0/FLJ14213/CAE45978 as new mTOR binding proteins. PRAS40 binds mTORC1 via Raptor, and is an mTOR phosphorylation substrate. PRAS40 inhibits mTORC1 autophosphorylation and mTORC1 kinase activity toward eIF-4E binding protein (4E-BP) and PRAS40 itself. HeLa cells in which PRAS40 was knocked down were protected against induction of apoptosis by TNFalpha and cycloheximide. Rapamycin failed to mimic the pro-apoptotic effect of PRAS40, suggesting that PRAS40 mediates apoptosis independently of its inhibitory effect on mTORC1. Q6MZQ0 is structurally similar to proline rich protein 5 (PRR5) and was therefore named PRR5-Like (PRR5L). PRR5L binds specifically to mTORC2, via Rictor and/or SIN1. Unlike other mTORC2 members, PRR5L is not required for mTORC2 integrity or kinase activity, but dissociates from mTORC2 upon knock down of tuberous sclerosis complex 1 (TSC1) and TSC2. Hyperactivation of mTOR by TSC1/2 knock down enhanced apoptosis whereas PRR5L knock down reduced apoptosis. PRR5L knock down reduced apoptosis also in mTORC2 deficient cells. The above suggests that mTORC2-dissociated PRR5L may promote apoptosis when mTOR is hyperactive. Thus, PRAS40 and PRR5L are novel mTOR-associated proteins that control the balance between cell growth and cell death.  相似文献   

5.
The mammalian target of rapamycin (mTOR) is a large Ser/Thr protein kinase that belongs to the phosphoinositide 3-kinase (PI3K) family and mediates various physiological and pathological processes, especially cell proliferation, protein synthesis, autophagy, and cancer development. The mTOR expression is transient and tightly regulated in normal cells, but it is overactivated in cancer cells. Recently, several studies have indicated that microRNAs (miRNAs) play a critical role in the regulation of mTOR and mTOR-associated processes, some acting as inhibitors and the others as activators. Although it is still in infancy, the strategy of combining both miRNAs and mTOR inhibitors might provide an approach to selectively sensitizing tumor cells to chemotherapy-induced DNA damage and subsequently attenuating the tumor cell growth and apoptosis.  相似文献   

6.
Protein synthesis is one of the most energy consuming processes in the cell. The mammalian/mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that integrates a multitude of extracellular signals and intracellular cues to drive growth and proliferation. mTOR activity is altered in numerous pathological conditions, including metabolic syndrome and cancer. In addition to its well-established role in regulating mRNA translation, emerging studies indicate that mTOR modulates mitochondrial functions. In mammals, mTOR coordinates energy consumption by the mRNA translation machinery and mitochondrial energy production by stimulating synthesis of nucleus-encoded mitochondria-related proteins including TFAM, mitochondrial ribosomal proteins and components of complexes I and V. In this review, we highlight findings that link mTOR, mRNA translation and mitochondrial functions.  相似文献   

7.
Protein synthesis is one of the most energy consuming processes in the cell. The mammalian/mechanistic target of rapamycin (mTOR) is a serine/threonine kinase that integrates a multitude of extracellular signals and intracellular cues to drive growth and proliferation. mTOR activity is altered in numerous pathological conditions, including metabolic syndrome and cancer. In addition to its well-established role in regulating mRNA translation, emerging studies indicate that mTOR modulates mitochondrial functions. In mammals, mTOR coordinates energy consumption by the mRNA translation machinery and mitochondrial energy production by stimulating synthesis of nucleus-encoded mitochondria-related proteins including TFAM, mitochondrial ribosomal proteins and components of complexes I and V. In this review, we highlight findings that link mTOR, mRNA translation and mitochondrial functions.  相似文献   

8.
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a fundamental role in regulating cellular homeostasis and metabolism. In a two-part review, we examine the complex molecular events involved in the regulation and downstream effects of mTOR, as well as the pivotal role played by this kinase in many renal diseases, particularly acute kidney injury, diabetic nephropathy, and polycystic kidney diseases. Here, in the first part of the review, we provide an overview of the complex signaling events and pathways governing mTOR activity and action. mTOR is a key component of two multiprotein complexes, known as mTOR complex 1 (mTORC1) and 2 (mTORC2). Some proteins are found in both mTORC1 and mTORC2, while others are unique to one or the other complex. Activation of mTORC1 promotes cell growth (increased cellular mass or size) and cell proliferation (increased cell number). mTORC1 acts as a metabolic "sensor," ensuring that conditions are optimal for both cell growth and proliferation. Its activity is tightly regulated by the availability of amino acids, growth factors, energy stores, and oxygen. The effects of mTORC2 activation are distinct from those of mTORC1. Cellular processes modulated by mTORC2 include cell survival, cell polarity, cytoskeletal organization, and activity of the aldosterone-sensitive sodium channel. Upstream events controlling mTORC2 activity are less well understood than those controlling mTORC1, although growth factors appear to stimulate both complexes. Rapamycin and its analogs inhibit the activity of mTORC1 only, and not that of mTORC2, while the newer "catalytic" mTOR inhibitors affect both complexes.  相似文献   

9.
The mechanistic target of rapamycin (mTOR) plays a central role in cellular growth and metabolism. mTOR forms two distinct protein complexes, mTORC1 and mTORC2. Much is known about the regulation and functions of mTORC1 due to availability of a natural compound, rapamycin, that inhibits this complex. Studies that define mTORC2 cellular functions and signaling have lagged behind. The development of pharmacological inhibitors that block mTOR kinase activity, and thereby inhibit both mTOR complexes, along with availability of mice with genetic knockouts in mTOR complex components have now provided new insights on mTORC2 function and regulation. Since prolonged effects of rapamycin can also disrupt mTORC2, it is worth re-evaluating the contribution of this less-studied mTOR complex in cancer, metabolic disorders and aging. In this review, we focus on recent developments on mammalian mTORC2 signaling mechanisms and its cellular and tissue-specific functions.  相似文献   

10.
In metazoans, TOR is an essential protein that functions as a master regulator of cellular growth and proliferation. Over the past decade, there has been an explosion of information about this critical master kinase, ranging from the composition of the TOR protein complex to its ability to act as an integrator of numerous extracellular signals. Unfortunately, this plethora of information has also raised numerous questions regarding TOR function. Currently, the prevailing view is that mammalian TOR (mTOR) exists in at least two molecular complexes, mTORC1 and mTORC2, which are largely defined by the presence of either RAPTOR or RICTOR. However, additional co-factors have been identified for each complex, and their importance in mediating mTOR signals has been incompletely elucidated. Similarly, there are differences in mTOR function that reflect the tissue of origin. In this review, we present an alternative view to mTOR complex formation and function, which envisions mTOR regulation and signal propagation as a reflection of cell type- and basal state-dependent conditions. The re-interpretation of mTOR biology in this framework may facilitate the design of therapies most likely to effectively inhibit this central regulator of cell behavior.Key words: RAPTOR, RICTOR, neurofibromatosis, glioma, tuberous sclerosis complex  相似文献   

11.
The mechanistic target of rapamycin (mTOR) plays a central role in cellular growth and metabolism. mTOR forms two distinct protein complexes, mTORC1 and mTORC2. Much is known about the regulation and functions of mTORC1 due to availability of a natural compound, rapamycin, that inhibits this complex. Studies that define mTORC2 cellular functions and signaling have lagged behind. The development of pharmacological inhibitors that block mTOR kinase activity, and thereby inhibit both mTOR complexes, along with availability of mice with genetic knockouts in mTOR complex components have now provided new insights on mTORC2 function and regulation. Since prolonged effects of rapamycin can also disrupt mTORC2, it is worth re-evaluating the contribution of this less-studied mTOR complex in cancer, metabolic disorders and aging. In this review, we focus on recent developments on mammalian mTORC2 signaling mechanisms and its cellular and tissue-specific functions.Key words: mTOR, mTORC2, rictor, cancer, metabolism, ribosomes, protein synthesis, protein maturation, AGC kinases, growth factor signaling  相似文献   

12.
Polarized cell migration results from the transduction of extra-cellular cues promoting the activation of Rho GTPases with the intervention of multidomain proteins, including guanine exchange factors. P-Rex1 and P-Rex2 are Rac GEFs connecting Gbetagamma and phosphatidylinositol 3-kinase signaling to Rac activation. Their complex architecture suggests their regulation by protein-protein interactions. Novel mechanisms of activation of Rho GTPases are associated with mammalian target of rapamycin (mTOR), a serine/threonine kinase known as a central regulator of cell growth and proliferation. Recently, two independent multiprotein complexes containing mTOR have been described. mTORC1 links to the classical rapamycin-sensitive pathways relevant for protein synthesis; mTORC2 links to the activation of Rho GTPases and cytoskeletal events via undefined mechanisms. Here we demonstrate that P-Rex1 and P-Rex2 establish, through their tandem DEP domains, interactions with mTOR, suggesting their potential as effectors in the signaling of mTOR to Rac activation and cell migration. This possibility was consistent with the effect of dominant-negative constructs and short hairpin RNA-mediated knockdown of P-Rex1, which decreased mTOR-dependent leucine-induced activation of Rac and cell migration. Rapamycin, a widely used inhibitor of mTOR signaling, did not inhibit Rac activity and cell migration induced by leucine, indicating that P-Rex1, which we found associated to both mTOR complexes, is only active when in the mTORC2 complex. mTORC2 has been described as the catalytic complex that phosphorylates AKT/PKB at Ser-473 and elicits activation of Rho GTPases and cytoskeletal reorganization. Thus, P-Rex1 links mTOR signaling to Rac activation and cell migration.  相似文献   

13.
The mammalian target of rapamycin (mTOR) plays a pivotal role in the regulation of cell growth in response to a variety of signals such as nutrients and growth factors. mTOR forms two distinct complexes in vivo. mTORC1 (mTOR complex 1) is rapamycin-sensitive and regulates the rate of protein synthesis in part by phosphorylating two well established effectors, S6K1 (p70 ribosomal S6 kinase 1) and 4E-BP1 (eukaryotic initiation factor 4E-binding protein 1). mTORC2 is rapamycin-insensitive and likely regulates actin organization and activates Akt/protein kinase B. Here, we show that mTOR forms a multimer via its N-terminal HEAT repeat region in mammalian cells. mTOR multimerization is promoted by amino acid sufficiency, although the state of multimerization does not directly correlate with the phosphorylation state of S6K1. mTOR multimerization was insensitive to rapamycin treatment but hindered by butanol treatment, which inhibits phosphatidic acid production by phospholipase D. We also found that mTOR forms a multimer in both mTORC1 and mTORC2. In addition, Saccharomyces cerevisiae TOR proteins Tor1p and Tor2p also exist as homomultimers. These results suggest that TOR multimerization is a conserved mechanism for TOR functioning.  相似文献   

14.
Autophagy-promoting proteins and stimuli are often associated with inhibition of cell proliferation; in this context, we recently described a key role for the pro-autophagic protein AMBRA1. Indeed, AMBRA1, through its direct interaction with the protein phosphatase PP2A, tightly regulates the stability of the oncoprotein and pro-mitotic factor c-Myc. Moreover, the AMBRA1-mediated regulation of c-Myc affects both cell proliferation rate and tumorigenesis. Interestingly, AMBRA1/PP2A activity is under the control of the master regulator of autophagy and cell growth, the protein kinase mTOR. Besides the mechanistic details of this regulation pathway which we dissected previously, any possible interplay(s) between AMBRA1 and its interactor BECLIN 1 was not investigated in this scenario. Here we show that both AMBRA1 and BECLIN 1 affect c-Myc regulation, but through two different pathways. Nevertheless, these two pro-autophagic proteins are, together with PP2A, in the same macromolecular complex, whose functional significance of which will be addressed in future studies.  相似文献   

15.
The protein kinase mammalian target of rapamycin (mTOR) is a central regulator of cell proliferation and growth, with the ribosomal subunit S6 kinase 1 (S6K1) as one of the key downstream signaling effectors. A critical role of mTOR signaling in skeletal muscle differentiation has been identified recently, and an unusual regulatory mechanism independent of mTOR kinase activity and S6K1 is revealed. An mTOR pathway has also been reported to regulate skeletal muscle hypertrophy, but the regulatory mechanism is not completely understood. Here, we report the investigation of mTOR's function in insulin growth factor I (IGF-I)-induced C2C12 myotube hypertrophy. Added at a later stage when rapamycin no longer had any effect on normal myocyte differentiation, rapamycin completely blocked myocyte hypertrophy as measured by myotube diameter. Importantly, a concerted increase of average myonuclei per myotube was observed in IGF-I-stimulated myotubes, which was also inhibited by rapamycin added at a time when it no longer affected normal differentiation. The mTOR protein level, its catalytic activity, its phosphorylation on Ser2448, and the activity of S6K1 were all found increased in IGF-I-stimulated myotubes compared to unstimulated myotubes. Using C2C12 cells stably expressing rapamycin-resistant forms of mTOR and S6K1, we provide genetic evidence for the requirement of mTOR and its downstream effector S6K1 in the regulation of myotube hypertrophy. Our results suggest distinct mTOR signaling mechanisms in different stages of skeletal muscle development: While mTOR regulates the initial myoblast differentiation in a kinase-independent and S6K1-independent manner, the hypertrophic function of mTOR requires its kinase activity and employs S6K1 as a downstream effector.  相似文献   

16.
The TOR (target of rapamycin) proteins are found in all eukaryotes. TOR has a protein kinase domain, as well as other domains through which it interacts with partner proteins to form at least two types of multiprotein complex, TORC1 and TORC2 (TOR complexes 1 and 2). Rapamycin, an antibiotic and immunosuppressant, inhibits functions of TORC1. Use of this drug has revealed roles for TORC1 and its mammalian counterpart, mTORC1, in promoting many anabolic processes. mTORC1 signalling is activated by growth factors and nutrients. It is highly active in many cancers and plays a role in tumorigenesis and in other diseases. Much less is known so far about the functions and regulation of (m)TORC2. The goal of this meeting was to bring together researchers studying the roles of mTORC1/2 in normal cell and animal physiology in diverse systems, as well as scientists exploring the therapeutic value of inhibiting mTOR (mammalian TOR) signalling.  相似文献   

17.
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine protein kinase that regulates numerous cellular processes including cell growth, proliferation, cell cycle, and autophagy. mTOR forms two different multi-protein complexes referred to as mTOR complex 1 (mTORC1) and mTORC2, and each complex exerts distinct functions exclusively. mTORC1 activity is sensitive to the selective inhibitor rapamycin, whereas mTORC2 is resistant. mTORC1 is regulated by many intra- and extra-cellular cues such as growth factors, nutrients, and energy-sensing signals, while mTORC2 senses ribosome maturation and growth factor signaling. This review focuses on current understandings by which mTORC1 pathway senses cellular nutrient availability for its activation.  相似文献   

18.
The mammalian target of rapamycin (mTOR) functions in cells at least as two complexes, mTORC1 and mTORC2. Intensive studies have focused on the roles of mTOR in the regulation of cell proliferation, growth, and survival. Recently we found that rapamycin inhibits type I insulin-like growth factor (IGF-1)-stimulated lamellipodia formation and cell motility, indicating involvement of mTOR in regulating cell motility. This study was set to further elucidate the underlying mechanism. Here we show that rapamycin inhibited protein synthesis and activities of small GTPases (RhoA, Cdc42, and Rac1), crucial regulatory proteins for cell migration. Disruption of mTORC1 or mTORC2 by down-regulation of raptor or rictor, respectively, inhibited the activities of these proteins. However, only disruption of mTORC1 mimicked the effect of rapamycin, inhibiting their protein expression. Ectopic expression of rapamycin-resistant and constitutively active S6K1 partially prevented rapamycin inhibition of RhoA, Rac1, and Cdc42 expression, whereas expression of constitutively hypophosphorylated 4E-BP1 (4EBP1-5A) or down-regulation of S6K1 by RNA interference suppressed expression of the GTPases, suggesting that both mTORC1-mediated S6K1 and 4E-BP1 pathways are involved in protein synthesis of the GTPases. Expression of constitutively active RhoA, but not Cdc42 and Rac1, conferred resistance to rapamycin inhibition of IGF-1-stimulated lamellipodia formation and cell migration. The results suggest that rapamycin inhibits cell motility at least in part by down-regulation of RhoA protein expression and activity through mTORC1-mediated S6K1 and 4E-BP1-signaling pathways.  相似文献   

19.
Recent evidence suggests that an altered mammalian (mechanistic) target of rapamycin (mTOR) signaling pathway and its pharmacological modulation might be implicated in several neurological diseases including epileptogenesis. mTOR is a molecular sensor, which regulates protein synthesis, enhancing mRNA translation of genes involved in the regulation of cell proliferation and survival, working as part of two distinct multimeric complexes known as mTORC1 and mTORC2. mTOR is an evolutionarily highly conserved serine/threonine kinase belonging to the phosphoinositide 3-kinase-related kinase family and represents one of the most recently studied pathways in relation to epilepsy and epileptogenesis, due to its suggested pivotal role in many aspects of cellular proliferation and growth also including neurodegeneration, neurogenesis, and synaptic plasticity. In this review, we report the cellular and molecular features of mTOR and related pathways, analyze their function in the brain including all current related evidence of their role, and finally, discuss the possible involvement of mTOR signaling in epileptogenesis and epilepsy, giving further consideration to future developments in this area.  相似文献   

20.
Mechanistic target of rapamycin (mTOR), a highly conserved serine/threonine kinase, is involved in cellular metabolism, protein synthesis, and cell death. Programmed cell death (PCD) assists in eliminating aging, damaged, or neoplastic cells, and is indispensable for sustaining normal growth, fighting pathogenic microorganisms, and maintaining body homeostasis. mTOR has crucial functions in the intricate signaling pathway network of multiple forms of PCD. mTOR can inhibit autophagy, which is part of PCD regulation. Cell survival is affected by mTOR through autophagy to control reactive oxygen species production and the degradation of pertinent proteins. Additionally, mTOR can regulate PCD in an autophagy-independent manner by affecting the expression levels of related genes and phosphorylating proteins. Therefore, mTOR acts through both autophagy-dependent and -independent pathways to regulate PCD. It is conceivable that mTOR exerts bidirectional regulation of PCD, such as ferroptosis, according to the complexity of signaling pathway networks, but the underlying mechanisms have not been fully explained. This review summarizes the recent advances in understanding mTOR-mediated regulatory mechanisms in PCD. Rigorous investigations into PCD-related signaling pathways have provided prospective therapeutic targets that may be clinically beneficial for treating various diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号