首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Son A  Nakamura H  Kondo N  Matsuo Y  Liu W  Oka S  Ishii Y  Yodoi J 《Cell research》2006,16(2):230-239
Thioredoxin-1 (TRX) is a stress-inducible redox-regulatory protein with antioxidative and anti-inflammatory effects. Here we show that the release of histamine from mast cells elicited by cross-linking of high-affinity receptor for IgE (FcεRI) was significantly suppressed in TRX transgenic (TRX-tg) mice compared to wild type (WT) mice. Intracellular reactive oxygen species (ROS) of mast cells stimulated by IgE and antigen was also reduced in TRX-tg mice compared to WT mice. Whereas there was no difference in the production ofcytokines (IL-6 and TNF-α) from mast cells in response to 2,4-dinitrophenylated bovine serum albumin (DNP-BSA) stimulation in TRX-tg and WT mice. Immunological status of TRX-tg mice inclined to T helper (Th) 2 dominant in primary immune response, although there was no difference in the population of dendritic cells (DCs) and regulatory T cells. We conclude that the histamine release from mast cells in TRX-tg mice is suppressed by inhibition of ROS generation. As ROS are involved in mast cell activation and facilitate mediator release, TRX may be a key signaling molecule regulating the early events in the IgE signaling in mast cells and the allergic inflammation.  相似文献   

2.
Multipotent mesenchymal stromal cells (MSC) can be isolated and efficiently expanded from almost every single body tissue and have the ability of self-renewal and differentiation into various mesodermal cell lineages. Moreover, these cells are considered immunologically privileged, related to a lack of surface expression of costimulatory molecules required for complete T cell activation. Recently, it has been observed that MSC are capable of suppressing the immune response by inhibiting the maturation of dendritic cells and suppressing the function of T lymphocytes, B lymphocytes and natural killer cells in autoimmune and inflammatory diseases as a new strategy for immunosuppression. The understanding of immune regulation mechanisms by MSC is necessary for their use as immunotherapy in clinical applications for several diseases.  相似文献   

3.
G protein-coupled receptor kinase 2 (GRK2) is an important serine/threonine-kinase regulating different membrane receptors and intraceUular proteins. Attenuation of Drosophila Gprk2 in embryos or adult flies induced a defective differentiation of somatic muscles, loss of fibers, and a flightless phenotype. In vertebrates, GRK2 hemizygous mice contained less but more hypertrophied skeletal muscle fibers than wild-type littermates. In C2C12 myoblasts, overexpression of a GRK2 kinase-deficient mutant (K220R) caused precocious differentiation of ceUs into immature myotubes, which were wider in size and contained more fused nuclei, while GRK2 overexpression blunted differentiation. Moreover, p38MAPK and Akt pathways were activated at an earlier stage and to a greater extent in K220R-expressing cells or upon kinase downregulation, while the activation of both kinases was impaired in GRK2-overexpressing cells. The impaired differentiation and fewer fusion events promoted by enhanced GRK2 levels were recapitulated by a p38MAPK mutant, which was able to mimic the inhibitory phosphorylation of p38MAPK by GRK2, whereas the blunted differentiation observed in GRK2-expressing clones was rescued in the presence of a constitutively active upstream stimulator of the p38MAPK pathway. These results suggest that balanced GRK2 function is necessary for a timely and complete myogenic process.  相似文献   

4.
Cao Q  Wang L  Du F  Sheng H  Zhang Y  Wu J  Shen B  Shen T  Zhang J  Li D  Li N 《Cell research》2007,17(7):627-637
Regulatory T cells (Treg) play important roles in immune system homeostasis, and may also be involved in tumor immunotolerance by suppressing Th1 immune response which is involved in anti-tumor immunity. We have previously reported that immunization with attenuated activated autologous T cells leads to enhanced anti-tumor immunity and upregulated Thl responses in vivo. However, the underlying molecular mechanisms are not well understood. Here we show that Treg function was significantly downregulated in mice that received immunization of attenuated activated autologous T cells. We found that Foxp3 expression decreased in CD4+CD25+ T cells from the immunized mice. Moreover, CD4+CD25+Foxp3+ Treg obtained from immunized mice exhibited diminished immunosuppression ability compared to those from naive mice. Further analysis showed that the serum of immunized mice contains a high level ofanti-CD25 antibody (about 30 ng/ml, p〈0.01 vs controls). Consistent with a role ofanti-CD25 response in the downregulation of Treg, adoptive transfer of serum from immunized mice to naive mice led to a significant decrease in Treg population and function in recipient mice. The triggering of anti-CD25 response in immunized mice can be explained by the fact that CD25 was induced to a high level in the ConA activated autologous T cells used for immunization. Our results demonstrate for the first time that immunization with attenuated activated autologous T cells evokes anti-CD25 antibody production, which leads to impeded CD4+CD25+Foxp3+ Treg expansion and function in vivo. We suggest that dampened Treg function likely contributes to enhanced Thl response in immunized mice and is at least part of the mechanism underlying the boosted anti-tumor immunity.  相似文献   

5.
Wu  Ningbo  Chen  Dongping  Sun  Hongxiang  Tan  Jianmei  Zhang  Yao  Zhang  Tianyu  Han  Yuheng  Liu  Hongzhi  Ouyang  Xinxing  Yang  Xiao-Dong  Niu  Xiaoyin  Zhong  Jie  Wang  Zhengting  Su  Bing 《中国科学:生命科学英文版》2021,64(3):389-403
T cell-mediated immunity in the intestine is stringently controlled to ensure proper immunity against pathogenic microbes and to prevent autoimmunity, a known cause of inflammatory bowel disease. However, precisely how T cells regulate intestine immunity remains to be fully understood. In this study, we found that mitogen-activated protein kinase kinase kinase 2(MAP3K2) is required for the CD4~+T cell-mediated inflammation in the intestine. Using a T cell transfer colitis model, we found that MAP3K2-deficient na?ve CD4~+T cells had a dramatically reduced ability to induce colitis compared to wild type T cells. In addition, significantly fewer IFN-γ-but more IL-17A-producing CD4~+T cells in the intestines of mice receiving MAP3K2-deficient T cells than in those from mice receiving wild type T cells was observed. Interestingly, under well-defined in vitro differentiation conditions, MAP3K2-deficient na?ve T cells were not impaired in their ability to differentiate into Th1, Th17 and Treg. Furthermore, the MAP3K2-regulated colitis severity was mediated by Th1 but not Th17 cells in the intestine. At the molecular level, we showed that MAP3K2-mediated Th1 cell differentiation in the intestine was regulated by IL-18 and required specific JNK activation. Together, our study reveals a novel regulatory role of MAP3K2 in intestinal T cell immunity via the IL-18-MAP3K2-JNK axis and may provide a novel target for intervention in T cell-mediated colitis.  相似文献   

6.
Zhao RY  Elder RT 《Cell research》2005,15(3):143-149
Progression of cells from G2 phase of the cell cycle to mitosis is a tightly regulated cellular process that requires activation of the Cdc2 kinase, which determines onset of mitosis in all eukaryotic cells. In both human and fission yeast(Schizosaccharomyces pombe) cells, the activity of Cdc2 is regulated in part by the phosphorylation status of tyrosine 15 (Tyrl5) on Cdc2, which is phosphorylated by Weel kinase during late G2 and is rapidly dephosphorylated by the Cdc25 tyrosine phosphatase to trigger entry into mitosis. These Cdc2 regulators are the downstream targets of two wellcharacterized G2/M checkpoint pathways which prevent cells from entering mitosis when cellular DNA is damaged or when DNA replication is inhibited. Increasing evidence suggests that Cdc2 is also commonly targeted by viral proteins,which modulate host cell cycle machinery to benefit viral survival or replication. In this review, we describe the effect of viral protein R (Vpr) encoded by human immunodeficiency virus type 1 (HIV-Ⅰ) on cell cycle G2/M regulation. Based on our current knowledge about this viral effect, we hypothesize that Vpr induces cell cycle G2 arrest through a mechanism that is to some extent different from the classic G2/M checkpoints. One the unique features distinguishing Vpr-induced G2 arrest from the classic checkpoints is the role of phosphatase 2A (PP2A) in Vpr-induced G2 arrest.Interestingly, PP2A is targeted by a number of other viral proteins including SV40 small T antigen, polyomavirus T antigen, HTLV Tax and adenovirus E4orf4. Thus an in-depth understanding of the molecular mechanisms underlying Vpr-induced G2 arrest will provide additional insights into the basic biology of cell cycle G2/M regulation and into the biological significance of this effect during host-pathogen interactions.  相似文献   

7.
8.
9.
10.
11.
The immediate early response gene X-1 (IEX-1) is involved in regulation of various cellular processes including proliferation, apoptosis in part by controlling homeostasis of reactive oxygen species (ROS) at mitochondria. The present study shows reduced inflammatory responses and colorectal cancer in IEX-1 knockout (KO) mice treated with azoxymethane/dextran sulfate sodium (DSS). However, DSS induced worse colitis in RAG(-/-)IEX-1(-/-) double KO mice than in RAG and IEX-1 single KO mice, underscoring an importance of T cells in IEX-1 deficiency-induced protection against colon inflammation. Lack of IEX-1 promoted the differentiation of interleukin (IL)-17-producing T cells, concomitant with upregulation of Gαi2 expression, a gene that is well-documented for its role in the control of inflammation in the colon. In accordance with this, T-helper 17 (T(H)17) cell differentiation was compromised in the absence of Gαi2, and deletion of Gαi2 in T cells alone aggravated colon inflammation and colorectal cancer development after azoxymethane/DSS treatment. Null mutation of IEX-1 also enhanced both proliferation and apoptosis of intestinal epithelial cells (IEC) after injury. A potential impact of this altered IEC turnover on colon inflammation and cancer development is discussed. These observations provide a linkage of IEX-1 and Gαi2 expression in the regulation of T(H)17 cell differentiation and suggest a previously unappreciated role for IEX-1 in the control of colon epithelial homeostasis.  相似文献   

12.
Mice deficient in the G-protein alpha subunit G(i)alpha(2) spontaneously develop colitis and colon cancer. IL-11 is a pleiotropic cytokine known to protect the intestinal epithelium from injury in animal models of colitis and is produced by subepithelial myofibroblasts in response to inflammatory mediators including TGF-beta, IL-1beta, and PGE(2). Arachidonic acid release and subsequent PGE(2) production is significantly decreased in the colonic mucosa of G(i)alpha(2)-/- mice, and we hypothesized that this would affect mucosal IL-11 production. Mucosal levels of IL-11 were found to be significantly decreased in G(i)alpha(2)-/- mice despite the presence of mild colitis. Primary cultures of G(i)alpha(2)-/- intestinal and colonic myofibroblasts (IMF and CMF, respectively) produced less basal and TGF-beta or IL-1beta-stimulated IL-11 mRNA and protein than wild-type cells. Inhibitors of ERK or p38 MAPK activation dose dependently inhibited IMF and CMF IL-11 production in response to TGF-beta stimulation, whereas 16,16 dimethyl-PGE(2) and prostanoid receptor subtype-selective agonists induced IL-11 production. Treatment of animals with the EP4-specific agonist ONO-AE1-329 resulted in enhanced mucosal levels of IL-11, and increased IL-11 production by ex vivo cultured CMF. Modulation of cAMP levels produced diverging results, with enhancement of TGF-beta-induced IL-11 release in IMF pretreated with 8-Br-cAMP and inhibition in cells treated either with pertussis toxin or the PKA inhibitor H-89. These data suggest a physiological role for prostaglandins, MAPK signaling, and cAMP signaling for the production of myofibroblast-derived IL-11 in the mouse intestinal mucosa.  相似文献   

13.
Expression of GTPase-deficient Gi2 alpha subunit (alpha i2) mutant polypeptides and overexpression of the wild-type alpha i2 polypeptide in Rat 1a, Swiss 3T3, and NIH 3T3 fibroblasts altered normal growth regulation and induced a loss of contact inhibition. In Rat 1a cells (but not in NIH 3T3 or Swiss 3T3 cells), expression of the GTPase-deficient alpha i2 mutant polypeptides allowed colony formation in soft agar, which correlated with a loss in anchorage dependence and a decreased serum requirement. The altered growth regulatory properties of Rat 1a cells induced by expression of alpha i2 mutant polypeptides was not significantly inhibited by cotransfection with a dominant negative Ha-ras mutant polypeptide (Asn-17rasH), indicating that the activated Gi2 membrane signal transduction protein is uniquely capable of altering the regulation of Rat 1a cell growth by a predominantly c-ras-independent mechanism. The results show that GTPase-deficient alpha i2 mutant polypeptides have the properties of an oncogene that can induce the phenotypic characteristics of transformation in Rat 1a cells but that only a subset of these changes is observed with NIH 3T3 and Swiss 3T3 cells.  相似文献   

14.
The purpose of the present study was to examine the role of G(i2)alpha in Ca(2+) channel regulation using G(i2)alpha gene knockout mouse ventricular myocytes. The whole cell voltage-clamp technique was used to study the effects of the muscarinic agonist carbachol (CCh) and the beta-adrenergic agonist isoproterenol (Iso) on cardiac L-type Ca(2+) currents in both 129Sv wild-type (WT) and G(i2)alpha gene knockout (G(i2)alpha-/-) mice. Perfusion with CCh significantly inhibited the Ca(2+) current in WT cells, and this effect was reversed by adding atropine to the CCh-containing solution. In contrast, CCh did not affect Ca(2+) currents in G(i2)alpha-/- ventricular myocytes. Addition of CCh to Iso-containing solutions attenuated the Iso-stimulated Ca(2+) current in WT cardiomyocytes but not in G(i2)alpha-/- cells. These findings demonstrate that, whereas the Iso-G(s)alpha signal pathway is intact in G(i2)alpha gene knockout mouse hearts, these cells lack the inhibitory regulation of Ca(2+) channels by CCh. Therefore, G(i2)alpha is necessary for the muscarinic regulation of Ca(2+) channels in the mouse heart. Further studies are needed to delineate the possible interaction of G(i) and other cell signaling proteins and to clarify the level of interaction of G protein-coupled regulation of L-type Ca(2+) current in the heart.  相似文献   

15.
G protein-coupled receptors (GPCRs) convey extracellular stimulation into dynamic intracellular action, leading to the regulation of cell migration and differentiation. T lymphocytes express G alpha(i2) and G alpha(i3), two members of the G alpha(i/o) protein family, but whether these two G alpha(i) proteins have distinguishable roles guiding T cell migration remains largely unknown because of a lack of member-specific inhibitors. This study details distinct G alpha(i2) and G alpha(i3) effects on chemokine receptor CXCR3-mediated signaling. Our data showed that G alpha(i2) was indispensable for T cell responses to three CXCR3 ligands, CXCL9, CXCL10, and CXCL11, as the lack of G alpha(i2) abolished CXCR3-stimulated migration and guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) incorporation. In sharp contrast, T cells isolated from G alpha(i3) knock-out mice displayed a significant increase in both GTPgammaS incorporation and migration as compared with wild type T cells when stimulated with CXCR3 agonists. The increased GTPgammaS incorporation was blocked by G alpha(i3) protein in a dose-dependent manner. G alpha(i3)-mediated blockade of G alpha(i2) activation did not result from G alpha(i3) activation, but instead resulted from competition or steric hindrance of G alpha(i2) interaction with the CXCR3 receptor via the N terminus of the second intracellular loop. A mutation in this domain abrogated not only G alpha(i2) activation induced by a CXCR3 agonist but also the interaction of G alpha(i3) to the CXCR3 receptor. These findings reveal for the first time an interplay of G alpha(i) proteins in transmitting G protein-coupled receptor signals. This interplay has heretofore been masked by the use of pertussis toxin, a broad inhibitor of the G alpha(i/o) protein family.  相似文献   

16.
Mice deficient for the G protein subunit Gαi2 spontaneously develop colitis, a chronic inflammatory disease associated with dysregulated T cell responses. We and others have previously demonstrated a thymic involution in these mice and an aberrant thymocyte dynamics. The Gαi2(-/-) mice have a dramatically reduced fraction of double positive thymocytes and an increased fraction of single positive (SP) thymocytes. In this study, we quantify a number of critical parameters in order to narrow down the underlying mechanisms that cause the dynamical changes of the thymocyte development in the Gαi2(-/-) mice. Our data suggest that the increased fraction of SP thymocytes results only from a decreased number of DP thymocytes, since the number of SP thymocytes in the Gαi2(-/-) mice is comparable to the control littermates. By measuring the frequency of T cell receptor excision circles (TRECs) in the thymocytes, we demonstrate that the number of cell divisions the Gαi2(-/-) SP thymocytes undergo is comparable to SP thymocytes from control littermates. In addition, our data show that the mature SP CD4(+) and CD8(+) thymocytes divide to the same extent before they egress from the thymus. By estimating the number of peripheral TREC(+) T lymphocytes and their death rate, we could calculate the daily egression of thymocytes. Gαi2(-/-) mice with no/mild and moderate colitis were found to have a slower export rate in comparison to the control littermates. The quantitative measurements in this study suggest a number of dynamical changes in the thymocyte development during the progression of colitis.  相似文献   

17.
18.
RGS proteins (regulators of G protein signaling) serve as GTPase-activating proteins (GAPs) for G alpha subunits and negatively regulate G protein-coupled receptor signaling. In this study, we characterized biochemical properties of RGS5 and its N terminal (1-33)-deleted mutant (deltaN-RGS5). RGS5 bound to G alpha(i1), G alpha(i2), G alpha(i3), G alpha(o) and G alpha(q) but not to G alpha(s) and G alpha13 in the presence of GDP/AIF4-, and accelerated the catalytic rate of GTP hydrolysis of G alpha(i3) subunit. When expressed in 293T cells stably expressing angiotensin (Ang) AT1a receptors (AT1a-293T cells), RGS5 suppressed Ang II- and endothelin (ET)-1-induced intracellular Ca2+ transients. The effect of RGS5 was concentration-dependent, and the slope of the concentration-response relationship showed that a 10-fold increase in amounts of RGS5 induced about 20-25% reduction of the Ca2+ signaling. Furthermore, a comparison study of three sets of 293T cells with different expression levels of AT1a receptors showed that RGS5 inhibited Ang II-induced responses more effectively in 293T cells with the lower density of AT1a receptors, suggesting that the degree of inhibition by RGS proteins reflects the ratio of amounts of RGS proteins to those of activated G alpha subunits after receptor stimulation by agonists. When expressed in AT1a-293T cells, deltaN-RGS5 was localized almost exclusively in the cytosolic fraction, and exerted the inhibitory effects as potently as RGS5 which was present in both membrane and cytosolic fractions. Studies on relationship between subcellular localization and inhibitory effects of RGS5 and deltaN-RGS5 revealed that the N terminal (1-33) of RGS5 plays a role in targeting this protein to membranes, and that the N terminal region of RGS5 is not essential for exerting activities.  相似文献   

19.
Signaling studies in living cells would be greatly facilitated by the development of functional fluorescently tagged G-protein alpha subunits. We have designed G(i/o)alpha subunits fused to the cyan fluorescent protein and assayed their function by studying the following two signal transduction pathways: the regulation of G-protein-gated inwardly rectifying K(+) channels (Kir3.0 family) and adenylate cyclase. Palmitoylation and myristoylation consensus sites were removed from G(i/o) alpha subunits (G(i1)alpha, G(i2)alpha, G(i3)alpha, and G(oA)alpha) and a mutation introduced at Cys(-4) rendering the subunit resistant to pertussis toxin. This construct was fused in-frame with cyan fluorescent protein containing a short peptide motif from GAP43 that directs palmitoylation and thus membrane targeting. Western blotting confirmed G(i/o)alpha protein expression. Confocal microscopy and biochemical fractionation studies revealed membrane localization. Each mutant G(i/o) alpha subunit significantly reduced basal current density when transiently expressed in a stable cell line expressing Kir3.1 and Kir3.2A, consistent with the sequestration of the Gbetagamma dimer by the mutant Galpha subunit. Moreover, each subunit was able to support A1-mediated and D2S-mediated channel activation when transiently expressed in pertussis toxin-treated cells. Overexpression of tagged G(i3)alpha and G(oA)alpha alpha subunits reduced receptor-mediated and forskolin-induced cAMP mobilization.  相似文献   

20.
Using natural killer T (NKT) cell-deficient mice, we show here that allergen-induced airway hyperreactivity (AHR), a cardinal feature of asthma, does not develop in the absence of V(alpha)14i NKT cells. The failure of NKT cell-deficient mice to develop AHR is not due to an inability of these mice to produce type 2 T-helper (Th2) responses because NKT cell-deficient mice that are immunized subcutaneously at non-mucosal sites produce normal Th2-biased responses. The failure to develop AHR can be reversed by the adoptive transfer of tetramer-purified NKT cells producing interleukin (IL)-4 and IL-13 to Ja281(-/-) mice, which lack the invariant T-cell receptor (TCR) of NKT cells, or by the administration to Cd1d(-/-) mice of recombinant IL-13, which directly affects airway smooth muscle cells. Thus, pulmonary V(alpha)14i NKT cells crucially regulate the development of asthma and Th2-biased respiratory immunity against nominal exogenous antigens. Therapies that target V(alpha)14i NKT cells may be clinically effective in limiting the development of AHR and asthma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号