首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Transpositions of MDG-1, MDG-3 and copia were detected as a result of crosses of the inbred maladaptive LA stock with laboratory stocks, in order to construct the genomes carrying different combinations of the LA or non-La chromosomal pairs. Changes of the mobile gene distributions were revealed in chromosomes of hybrid genotypes, as compared to parental chromosomal pairs. A trivial source of variability of chromosomal molecular structure ensured by crossing over was excluded by inversions which serve as suppressors of crossing over in corresponding crosses. Multiple transpositions of mobile genes in definite chromosomal sites were detected in genotypes carrying chromosomal pair 2 originated from the LA stock. No such transpositions were observed, when the pair 2 was substituted by the chromosome 2 originated from the Swedish-b line or in control crosses, where the LA stock was not involved. Both LA chromosomes 2 and 3 were shown to be the targets of transpositions. Comparison of hot spot transposition sites of MDG-1, as a result of crosses, with the earlier described rare events of spontaneous transpositions in the LA stock, coupled with its fitness increase, revealed that the hot spot sites were shared in both series of experiments. The data obtained show that transpositions of mobile genetic elements may change the genetic and molecular structure of the chromosome involved in crosses, in spite of suppression of crossing over by inversions usually suggested as a tool for keeping chromosomal genetic structure intact.  相似文献   

2.
A high degree of heterogeneity and an overall increase in number of insertion sites of the mobile elements Doc and copia were revealed in one substock of an isogenic Drosophila melanogaster stock, while in two other substocks the distribution of copia sites was highly homogenous, but that of Doc sites was again heterogenous. We therefore concluded that copia was unstable in one of the substocks and Doc was unstable in all. Doc instability presumably arose earlier than copia instability. Doc and copia transpositions were directly observed in experiments with one substock. An abundance of copia insertions was revealed in the X chromosome where insertions with deleterious effects are exposed to selection in hemizygous condition. The locations of many other mobile elements (mdg1, mdg2, mdg3, mdg4, 297, B104, H.M.S. Beagle, I, P, BS, FB) were found to be conserved in each substock and did not differ between them, indicating that these mobile elements were stable. This homogeneity is a strong argument against any possibility of inadvertent contamination.  相似文献   

3.
4.
5.
In an inbred low-activity (LA) strain of Drosophila melanogaster with a low level of fitness and a complex of inadaptive characters, in situ hybridization reveals an invariant pattern of distribution of three copia-like elements (mdg-1, mdg-3, and copia). Rare, spontaneous, multiple transpositions of mobile elements in the LA strain were shown to be coupled with a drastic increase of fitness. A changed pattern of various types of mobile elements was also observed on selecting the LA strain for higher fitness. High-fitness strains show transpositions of mobile elements to definite chromosomal sites ("hot spots"). Concerted changes in the location of three different mobile elements were found to be coupled with an increase of fitness. The mdg-1 distribution patterns were also examined in two low-fitness strains independently selected from the high-fitness ones. Fitness decrease was accompanied by mdg-1 excision from the hot spots of their location usually detected in the high-fitness strains. The results suggest the existence of a system of adaptive transpositions of mobile elements that takes part in fitness control.   相似文献   

6.
7.
Nuzhdin SV 《Genetica》1999,107(1-3):129-137
Transposable elements (TEs) are sequences capable of multiplying in their host's genome. They survive by increasing copy numbers due to transpositions, and natural selection washes them out because hosts with heavier loads of TEs have lower fitness. The available phylogenetic evidence supports the view that TEs have existed in living organisms for hundreds of millions of years. A fundamental question facing the field is how can an equilibrium be attained between transposition and selection which allows these parasitic genetic elements to persist for such a long time period? To answer this question, it is necessary to understand how the rate of TE transposition is controlled and to describe the mechanisms with which natural selection opposes TE accumulation. Perhaps the best models for such a study are copia and gypsy retrotransposons in Drosophila. Their average rate of transposition in nature is between 10?5 ? 10?4 transpositions per copy per generation. Unlike nature, transposition rates vary widely, from zero to 10?2, between laboratory lines. This variability in transposition rate is controlled by host genes. It is probable that in nature TE site heterogeneity is caused by frequent transpositions in rare flies with permissive alleles, and no transpositions happen in the rest of flies. The average rate of TE transposition in nature may thus depend on the frequency of permissive alleles, which is a function of the rate of mutation from restrictive to permissive alleles, the mechanism and the strength of selection opposing TE multiplication, and population size. Thus, evolution of the frequency of permissive alleles of genes controlling transposition must be accounted for to understand evolution of TE copy numbers.  相似文献   

8.
A previously described genetic system comprising a Mutator Strain (MS) and the Stable Strain (SS) from which it originated is characterized by genetic instability caused by transpositions of the retrotransposon gypsy. A series of genetic crosses was used to obtain three MS derivatives, each containing one MS chromosome (X, 2 or 3) in the environment of SS chromosomes. All derivatives are characterized by elevated frequencies of spontaneous mutations in both sexes. Mutations appear at the premeiotic stage and are unstable. Transformed derivatives of SS and another stable strain 208 were obtained by microinjection of plasmid DNA containing transpositionally active gypsy inserted into the Casper vector. In situ hybridization experiments revealed amplification and active transposition of gypsy in SS derivatives, while the integration of a single copy of gypsy into the genome of 208 does not change the genetic properties of this strain. We propose that genetic instability in the MS system is caused by the combination of two factors: mutation(s) in gene(s) regulating gypsy transposition in SS and its MS derivatives, and the presence of transpositionally active gypsy copies in MS but not SS.  相似文献   

9.
10.
C. Biémont 《Genetica》1992,86(1-3):67-84
This paper is an attempt to bring together the various, dispersed data published in the literature on insertion polymorphism of transposable elements from various kinds of populations (natural populations, laboratory strains, isofemale and inbred lines). Although the results deal mainly with Drosophila, data on other organisms have been incorporated when necessary to illustrate the discussion. The data pertinent to the regions of insertion, the rates of transposition and excision, the copy number regulation, and the degree of heterozygosity were analysed in order to be confronted with the speculations made with various theoretical models of population biology of transposable elements. The parameters of these models are very sensitive to the values of the transposable element characteristics estimated on populations, and according to the difficulties of these estimations (population not at equilibrium, particular mutations used to estimate the transposition and excision rates, trouble with the in situ technique used to localize the insertions, undesired mobilization of TEs in crosses, spontaneous genome resetting, environmental effects, etc.) it cannot be decided accurately which model better accounts for the population dynamics of these TEs. Tendencies, however, emerge in Drosophila: the copia element shows evidence for deficiency of insertions on the X chromosomes, a result consistent with selection against mutational effects of copia insertions; the P element repartition does not significantly deviate from the neutral assumption, in spite of a systematic copy number of insertions higher on the X than on the autosomes. Data on other elements support either the neutral model of TE containment, neither of the two models, or both. Prudence in conclusion should then be de rigueur when dealing with such kind of data. Finally the potential roles of TEs in population adaptation and evalution are discussed.  相似文献   

11.
12.
The I-R hybrid dysgenesis syndrome is characterized by a high level of sterility and I element transposition, occurring in the female offspring of crosses between males of inducer (I) strains, which contain full-length transposable I elements, and females of reactive (R) strains, devoid of functional I elements. The intensity of the syndrome in the dysgenic cross is essentially dependent on the reactivity level of the R females, which is ultimately controlled by still unresolved polygenic chromosomal determinants. In the work reported here, we have introduced a transposition-defective I element with a 2.6 kb deletion within its second open reading frame into a highly reactive R strain, by P-mediated transgenesis. We demonstrate that this defective I element gradually alters the level of reactivity in the three independent transgenic lines that were obtained, over several generations. After > 15 generations, the transgenicDrosophila show strongly reduced reactivity, and finally become refractory to hybrid dysgenesis, without, however, acquiring the inducer phenotype. Induction of a low reactivity level is reversible reactivity again increases upon transgene removal and is maternally inherited, as observed for the control of reactivity in natural R strains. These results demonstrate that defective I elements introduced as single-copy transgenes can act as regulators of reactivity, and suggest that some of the ancestral defective pericentromeric I elements that can be found in all reactive strains could be the molecular determinants of reactivity.  相似文献   

13.
Germ line transposition rates of the retrotransposon copia were directly measured in males and females of an inbred Drosophila melanogaster line, 2b3, which is highly polymorphic for copia insertion sites. The elevated germ line transposition rate of copia in this line (3–8 × 10−3 per generation per element) is confined to males, with transposition in females being undetectable under the conditions of the experiment but at most 50-fold lower than the rate for males. To determine the molecular basis of this effect, copia RNA levels were measured in whole bodies and germ lines of male and female flies of both the unstable 2b3 line and a stable line, Oregon RC-iso, which shows normal rates of copia transposition. Both male and female 2b3 flies contain much more copia RNA than flies of the stable line. However, 2b3 male germinal tissues contain much higher levels of copia RNA than the equivalent female tissues. The highest copia expression is detected in maturing primary spermatocytes. Our data show that high rates of germ line copia transposition are restricted to males by tissue-specific control of RNA levels and suggest that transposition of copia only occurs in fly tissues containing more than a relatively high threshold level of copia RNA. Received: 8 October 1996 / Accepted: 7 January 1997  相似文献   

14.
    
In Drosophila melanogaster, transposition of the P element is under the control of a cellular state known as cytotype. The P cytotype represses P transposition whereas the M cytotype is permissive for transposition. In the long-term, the P cytotype is determined by chromosomal P elements but over a small number of generations it is maternally inherited. In order to analyse the nature of this maternal inheritance, we tested whether a maternal component can be transmitted without chromosomal P elements. We used a stable determinant of P cytotype, linked to the presence of two P elements at the tip of the X chromosome (IA site) in a genome devoid of other P elements. We measured P repression capacity using two different assays: gonadal dysgenic sterility (GD) and P-lacZ transgene repression. We show that zygotes derived from a P cytotype female (heterozygous for P (1A)/balancer devoid of P copies) and which inherit no chromosomal P elements from the mother, have, however, maternally received a P-type extra-chromosomal component: this component is insufficient to specify the P cytotype if the zygote formed does not carry chromosomal P elements but can promote P cytotype determination if regulatory P elements have been introduced paternally. We refer to this strictly extra-chromosomally inherited state as the pre-P cytotype. In addition, we show that a zygote that has the pre-P cytotype but which has not inherited any chromosomal P elements, does not transmit the pre-P cytotype to the following generation. The nature of the molecular determinants of the pre-P cytotype is discussed.  相似文献   

15.
The activity of several families of transposable elements (TEs) in the genome of Fusarium oxysporum represents a potential source of karyotypic instability. We investigated transposon-mediated chromosome rearrangements by analyzing the karyotypes of a set of strains in which transposition events had occurred. We uncovered exceptional electrophoretic karyotype (EK) variability, in both number and size of chromosomal bands. We showed that EK differences result from chromosomal translocations, large deletions, and even more complex rearrangements. We also revealed many duplicated chromosomal regions. By following transposition of two elements and analyzing the distribution of different families of TEs on whole chromosomes, we find (i) no evidence of chromosomal breakages induced by transposition, (ii) a clustering of TEs in some regions, and (iii) a correlation between the high level of chromosomal polymorphism and the concentration of TEs. These results suggest that chromosome length polymorphisms likely result from ectopic recombination between TEs that can serve as substrates for these changes.  相似文献   

16.
Summary The laboratory imitator strain (MS) of Drosophila melanogaster is characterized by an elevated frequency of spontaneous mutation (10–3–10–4). Mutations occur in both sexes at premeiotic stages of germ cell development. The increased mutability is a characteristic feature of MS itself, since it appears in the absence of outcrossing. Most of the mutations arising in this strain are unstable: reversions to wild type, high frequency mutation to new mutant states and replicating instability were observed. We have investigated the localization of the transposable genetic elements mdg1, 412, mdg3, gypsy (mdg4), copia and P in the X chromosomes of the MS and in the mutant lines y, ct, sbt derived from it by in situ hybridization. The P element was not found in any of these strains. The distributions of mdg1, 412, mdg3 and copia were identical in the X chromosomes of the MS and its derivatives. However, the sites of hybridization with gypsy differ in the various lines tested. In the polytene chromosomes of MS animals significant variation in location and number of copies of the gypsy element was demonstrated between different larvae; copy numbers as high as 30–40 were observed. These results suggest autonomous transposition of gypsy in the MS genome while several other mobile elements remain stable.  相似文献   

17.
Effective transposon tagging with theAc/Ds system in heterologous plant species relies on the accomplishment of a potentially high transposon-induced mutation frequency. The primary parameters that determine the mutation frequency include the transposition frequency and the transposition distance. In addition, the development of a generally applicable transposon tagging strategy requires predictable transposition behaviour. We systematically analysedDs transposition frequencies andDs transposition distances in tobacco. An artificialDs element was engineered with reporter genes that allowed transposon excision and integration to be monitored visually. To analyse the variability ofDs transposition between different tobacco lines, eight single copy T-DNA transformants were selected. Fortrans-activation of theDs elements, differentAc lines were used carrying an unmodifiedAc + element, an immobilizedsAc element and a stableAc element under the control of a heterologous chalcone synthas (chsA) promoter. With allAc elements, eachDs line showed characteristic and heritable variegation patterns at the seedling level. SimilarDs line-specificity was observed for the frequency by whichDs transpositions were germinally transmitted, as well as for the distances of theDs transpositions. ThesAc element induced transposition ofDs late in plant development, resulting in low germinal transposition frequencies (0.37%) and high incidences of independent transposition (83%). The majority of theseDs elements (58%) transposed to genetically closed linked sites (10 cM).  相似文献   

18.
The genomic distribution and the number of elements of eleven transposon families have been compared by the Southern technique between permanent cultured cells, larval salivary glands and the brains and whole flies of an inbred Drosophila line (inb-c) from which the cells were established. In cultured cells, changes in restriction patterns consistent with various types of rearrangements such as amplification, transposition and excision of the elements of copia, 1731, 412, 297 and mdg-4 transposon families are detected whereas B 104, G and blood elements appear stable. In previous reports these rearrangements were not detected among individuals of the inb-c line or among samples of somatic tissues, or in samples spanning years of maintenance of cultured cells. Hence, we believe that they have been induced de novo during the passage to the cell culture.  相似文献   

19.
Summary We report a detailed molecular analysis of three chromosomal rearrangements, which have been produced during I-R hybrid dysgenesis in Drosophila melanogaster. They all disrupt the yellow gene. One of them is a deletion; the other two are inversions, which may be interpreted as the results of recombination events between I elements inserted at their break points. These events appear to occur at the time of transposition and involve integrating rather than resident I elements. They are produced by a mechanism very similar to homologous ectopic recombination.  相似文献   

20.
The distribution of four retrotransposon families (MDG1, MDG3, MDG4 and copia) on polytene chromosomes of different (from 9 to 15) Drosophila simulans strains is studied. The mean number of MDG1 and copia euchromatic hybridization sites (3 sites for each element) is drastically decreased in D. simulans in comparison with D. melanogaster (24 and 18 sites respectively). The mean number of MDG3 sites of hybridization is 5 in D. simulans against 12 in D. melanogaster. As for MDG4 both species have on the average about 2-3 euchromatic sites. The majority of MDG1 and copia and about a half of MDG3 euchromatic copies are localized in restricted number of sites (hot spots) on D. simulans polytene chromosomes. In D. melanogaster these elements are scattered along the chromosomes though there are some hot spots too. It appears that euchromatic copies of MDG1 and copia are considerably less mobile in D. simulans in contrast to D. melanogaster. Some common hot spots of retrotransposon localization in D. simulans and D. melanogaster were earlier described as intercalary heterochromatin regions in D. melanogaster. The level of interstrain variability of MDG4 hybridization sites is comparable in both species. Comparative blot-analysis of adult and larval salivary gland DNA shows that MDG1 and copia are situated mainly in euchromatic regions of D. melanogaster chromosomes. In D. simulans genome they are located mainly in heterochromatic regions underreplicated in salivary gland polytene chromosomes. There are interspecies differences in the distribution of retrotransposons in beta-heterochromatic chromosome regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号