首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The method of determination of hemoglobin affinity for oxygen based on polarographic analysis and the method of half-saturation values P50 calculation are described. A special design of a polarographic cell is proposed for measurements in a wide temperature range. The results of temperature and pH dependences of the hemoglobin affinity for oxygen and erythrocytes of the White-Sea cod are presented.  相似文献   

2.
Haptoglobin and haptoglobin-related protein are homologous hemoglobin-binding proteins consisting of a complement control repeat (alpha-chain) and a serine protease domain (beta-chain). Haptoglobin-hemoglobin complex formation promotes high affinity binding of hemoglobin to the macrophage scavenger receptor CD163 leading to endocytosis and degradation of the haptoglobin-hemoglobin complex. In contrast, complex formation between haptoglobin-related protein and hemoglobin does not promote high affinity interaction with CD163. To define structural components of haptoglobin important for CD163 recognition, we exploited this functional difference to design and analyze recombinant haptoglobin/haptoglobin-related protein chimeras complexed to hemoglobin. These data revealed that only the beta-chain of haptoglobin is involved in receptor recognition. Substitution of 4 closely spaced amino acid residues of the haptoglobin beta-chain (valine 259, glutamate 261, lysine 262, and threonine 264) abrogated the high affinity receptor binding. The 4 residues are encompassed by a part of the primary structure not present in other serine protease domain proteins. Structural modeling based on the well characterized serine protease domain fold suggests that this sequence represents a loop extension unique for haptoglobin and haptoglobin-related protein. A synthetic peptide representing the haptoglobin loop sequence exhibited a pronounced inhibitory effect on receptor binding of haptoglobin-hemoglobin.  相似文献   

3.
It has been established that Molpadia hemoglobin tends to dissociate into subunits as oxygen is bound. The kinetics and equilibria of carbon monoxide and ethylisocyanide binding reported here show a dependence on protein concentration that supports the conclusion that the aggregated hemoglobin has a lower ligand affinity than the dissociated subunits. This is true for the isolated D-chain as well as for the unfractionated hemolysate that contains four distinct polypeptide chains (A-D). This indicates that even homopolymers of Molpadia hemoglobin have lower ligand affinity than the dissociated subunits. At high protein concentration hemolysates of Molpadia hemoglobin show slight cooperativity. The time course of ligand binding to the deoxy D-chain also suggests cooperative interactions. The low affinity of the aggregated state may have a different molecular explanation than in human hemoglobin where tetramers of identical subunits (as in Hb H) show high oxygen affinity. The absence of tyrosine and histidine at the C-terminal of the Molpadia D-chains also suggests a different stabilization of the low affinity deoxy state. An additional functional difference between Molpadia hemoglobin and human hemoglobin is that organic phosphates do not alter the ligand affinity of the sea cucumber hemoglobin.  相似文献   

4.
An efficient method was developed for the preparation of polyanionic affinity agent (3), a key component in the measurement of glycated hemoglobin (GHb). Glycated hemoglobin is an important clinical marker for diagnosis of patients with diabetes and useful to monitor the management of disease. The affinity agent (3) was prepared based on coupling reaction between poly(acrylic acid) (1) and 3-aminophenylboronic acid (2) in water. The critical features of this polymeric affinity agent (3), such as size, boronic acid incorporation ratio and concentration, on the measurement of glycated hemoglobin were evaluated. It was found that the agent (3) prepared using poly(acrylic acid) (1) with 225 kDa molecular weight gave optimal GHb measurement. The performance test results demonstrated that the boronic acid incorporation ratio and concentration of affinity agent (3) play a critical role in the assay and determines the precision of glycated hemoglobin measurement.  相似文献   

5.
It has been established that Molpadia hemoglobin tends to dissociate into subunits as oxygen is bound. The kinetics and equilibria of carbon monoxide and ehtylisocyanide binding reported here show a dependence on protein concentration that supports the conclusions that the aggregated hemoglobin has a lower ligand affinity than the dissociated subunits. This is true for the isolated D-chain as well as for the unfractionated hemolysate that contains four distinct polypeptide chains (A-D). This indicates that even homopolymers of Molpadia hemoglobin have lower ligand affinity than the dissociated subunits. At high protein concentration hemolysates of Molpadia hemoglobin show slight cooperativity. The time course of ligand binding to the deoxy D-chain also suggests cooperative interactions, The low affinity of the aggregated state may have a different molecular explanation than in human hemoglobin were tetramers of identical subunits (as in Hb H) show high oxygen affinity. The absence of tyrosine and histidine at the C-tremini of the Molpadia D-chains also suggests a different stabilization of the low affinity deoxy state. An additional functional difference between Molpadia hemoglobin and human hemoglobin is that organic phosphate do not alter the ligand affinity of the sea cucumber hemoglobin.  相似文献   

6.
The Hb-O2 affinity and the erythropoietic response as a function of time were studied in mice treated with sodium cyanate for up to 2 months. Cyanate increased the Hb-O2 affinity in normoxic mice more than in chronically hypoxic mice. The hemoglobin concentration rose as a function of time both in normoxic and hypoxic conditions but reached higher levels in hypoxia. After 42 days of study (21 days of hypoxia) hemoglobin reached maximum levels and thereafter showed a plateau in both cyanate and control animals. It is concluded that a chronic left-shifted oxygen dissociation curve does not avoid the development of hypoxic polycythemia in mice. Moreover, prolonged cyanate administration potentiates the crythropoietic response to chronic hypoxia. Since polycythemia is an index of tissue hypoxia, the results show that the high hemoglobin affinity did not prevent tissue hypoxia in low PO2 conditions. Results showing beneficial effects of high hemoglobin oxygen affinity induced by cyanate based on acute hypoxic expositions should be cautiously interpreted with regard to their adaptive value in animals chronically exposed to natural or simulated hypoxia.Abbreviations Hb hemoglobin - NaOCN sodium cyanate - ODC oxygen dissociation curve - P 50 PO2 at which hemoglobin is half saturated with O2  相似文献   

7.
Hypoxic or anemic goats with the A hemoglobin genotype switch to the production of hemoglobin C, resulting in a reduced blood oxygen affinity. However, the physiologic consequences of this switch are not clear. We therefore studied the gas exchange properties of the two hemoglobin types. We found that purified hemoglobins A and C have very similar oxygen affinities and H+ Bohr effects, but in the presence of CO2, the affinity of hemoglobin C is substantially less than that of hemoglobin A. That this is not a nonspecific ionic effect is suggested by identical effects of NaCl on O2 binding to the two proteins and by a 2-fold higher capacity of hemoglobin C to bind CO2. The data can be explained by a class of CO2 binding sites in the beta C chain whose affinity is much higher than that of either of the primary sites or of those in Hb A. Our results suggest that in hemoglobin C-containing red cells CO2 acts as a potent allosteric effector, analogous to the role played by 2,3-diphosphoglycerate in human red blood cells. Goat hemoglobin C may have advantages over hemoglobins A or B in O2 transport under hypoxic conditions or in anemia.  相似文献   

8.
The effect of prostaglandin on the affinity of hemoglobin for oxygen was tested on human blood in vitro, using six different prostaglandins at several dosage levels in fresh heparinized blood from normal donors and in stored citrated blood, and using prostaglandin E2 on the blood from four seriously ill patients. No significant alterations in the affinity of hemoglobin for oxygen were dtected. A very small decrease in oxygen affinity in stored blood with high doses of prostaglandin was not statistically significant and would be of no physiologic significance even if real.We conclude that under the circumstances of this experiment prostaglandins do not alter the affinity of hemoglobin for oxygen in human whole blood in vitro.  相似文献   

9.
We have studied the effects of organic cosolvents (monohydric alcohols and formamide) on the oxygen affinity of human fetal hemoglobin stripped of phosphates and have compared them with the effects of the same cosolvents on the oxygen affinity of human adult hemoglobin under the same experimental conditions. Our results confirm that, in fetal hemoglobin, the T in equilibrium R conformational equilibrium is more displaced toward the T conformation than in the adult form and indicate that increased electrostatic and hydrophobic protein-solvent interactions contribute to this effect. The data reported are discussed in terms of the known amino acid substitutions between the beta- and gamma-chains and an attempt is made to rationalize the results with a molecular mechanism based on the crystallographic structure of fetal deoxyhemoglobin.  相似文献   

10.
The O2 binding properties of sulfhemoglobin were studied. The oxygen tension required for half-saturation of sulfhemoglobin is more than 2 orders of magnitude higher than that for hemoglobin A. The binding of O2 exhibits an alkaline Bohr effect larger than that observed for hemoglobin, yet the Hill number is unity. From the Bohr titration curve, 0.68 proton is released during O2 binding at 0 degrees C. Sulfhemoglobin prepared from carboxypeptidase A-treated hemoglobin has an affinity for O2 which is about the same as that of sulfhemoglobin at the theoretical limit of the Bohr titration curve. Like its carboxypeptidase A-treated hemoglobin precursor, this sulfhemoglobin does not bind O2 cooperatively. Thus, sulfhemoglobin appears to be in a high affinity form at alkaline pH and a low affinity form at acid pH, similar to hemoglobin A. These results demonstrate that the magnitude of the Hill number is not always an indicator of the interaction between oxygen binding and other functions in a hemoglobin.  相似文献   

11.
There exists a difference in oxygen affinity between fetal andmaternal bloods in almost all vertebrates examined and thisdifference in affinities probably facilitates oxygen transferto the fetus. It is likely that the high oxygen affinity offetal blood represents a biochemical pre-adaptation from anancestral oviparous embryo for oxygen uptake in a relativelyhypoxic environment. In most cases, the maternal-fetal differencein blood oxygen affinities is due to the characteristics ofthe fetal red cell and not due to any changes in the adult redcell during pregnancy. These characteristics are based on thepresence of a unique fetal hemoglobin with an intrinsicallyhigh affinity for oxygen or on the absence of high red cellconcentrations of organic phosphates—allosteric modulatorsof hemoglobin function. However, in several species of snake,representing different families, it appears that pregnancy isassociated with apronounced decrease in the oxygen affinityof the adult red cell. This suggests that the blood of the pregnantfemale is better able to unload oxygen to the fetus than couldthe blood of thenonpregnant adult. The maternal-fetal differencein blood oxygen affinities in these species isprobably due tothe characteristics of the fetal red cell as well as to thechange in the affinity of the adult cell during pregnancy. Nonetheless,although the magnitude of the pregnancy-associated change inoxygen affinity of the adult cell in these snakes suggests thatit is physiologically significant, the actual significance remainsto be determined.  相似文献   

12.
The oxygen-binding characteristics and the multiplicity of the stripped hemoglobiin from active lungfish Protopterus amphibius, are the same as in specimens that have been estivating for about 30 months, showing that alteration in the hemoglobin molecules is not involved in the earlier reported increase in oxygen affinity of whole blood during estivation (Johansen et al., '76). At pH 7.0 and 26 degrees C the hemolysates show a high oxygen affinity (P50 = 3.1 Torr), a Bohr factor (delta log P50/delta pH) of - 0.33, and a cooperativity coefficient (n) of 1.7. Between 15 and 26 degrees C, the apparent heat of oxygenation (delta H) is - 8.6 Kcal-mole-1 at pH 7.0, corresponding with data for other fish. A low sensitivity of oxygen affinity to urea appears to be adaptive to the high urea concentrations in estivating lungfish. The salt sensitivity is, however, similar to human hemoglobin. The hemoglobin consists of two major (electrophoretically anodal) components, which differ slightly in oxygen affinity but are both sensitive to pH and nucleoside triphosphates (NTP). Guanosine triphosphate (GTP), the major erythrocytic organic phosphate, however, depresses the oxygen affinity of the composite and separated hemoglobins more effectively than ATP suggesting that GTP is the primary modulator of oxygen affinity. Comparative measurements reveal only one major hemoglobin component in P. annectens which has a markedly lower oxygen affinity and phosphate sensitivity than P. amphibius hemoglobins and thus seems less pliable to phosphate-mediated variation in oxygen affinity. The data are discussed in relation to the hemoglobin systems of other fish.  相似文献   

13.
Studies on the interaction of zinc with human hemoglobin   总被引:3,自引:0,他引:3  
Zn has previously been shown to increase the oxygen affinity of both normal and sickle red blood cells. Experiments are presented which demonstrate that the oxygen affinity effect of Zn is due to a Zn-hemoglobin binding mechanism rather than a Zn-2,3 diphosphoglycerate binding mechanism. Further a large shift (6 mm Hg) in the oxygen affinity of a red cell-saline suspension occurs with a low Zn/hemoglobin (tetramer) molar ratio (0.4). Zn had no influence on the Bohr effect of hemoglobin but it did decrease the Hill coefficient. Hemoglobin binding experiments using partially purified hemoglobin indicated that Zn can bind to more than one amino acid residue but it appears that the amino acid residue with the highest binding capacity for Zn is also the residue involved in the oxygen affinity effect of Zn. Hydrogen ion concentration (pH 5–8) had no influence on the Zn/hemoglobin ratios obtained in these binding experiments. The possible (and the improbable) Zn binding sites on the hemoglobin molecule are discussed.  相似文献   

14.
In the absence of Cl- in Hepes buffer at pH 7.4, the oxygen affinity of bovine and human hemoglobin is equally sensitive to 2,3-diphosphoglyceric acid. The low oxygen affinity measured for bovine hemoglobin at physiological salt concentration can be explained by the high affinity of Cl- anions for oxygen-linked sites that are absent in human hemoglobin. Bovine hemoglobin can discriminate between the different halogens in the sense that different halide concentrations are necessary to produce the same P50. Competition experiments indicate that the halogens interact with the same oxygen-linked sites. In agreement with the different affinities for halides, the Bohr effect of bovine hemoglobin is larger in the presence of Cl- than in that of Br- and there is good agreement between the number of protons and anions exchanged with the solvent upon oxygenation of bovine hemoglobin.  相似文献   

15.
In this paper we present a procedure for the isolation of the native bovine alpha chain. The method is based on affinity chromatography. The results show that the ligand-binding properties of the bovine alpha chain are almost identical to those of the human alpha chain. The hybrid alphaB2 betaH2 prepared by mixing bovine alpha chains and human beta chains shows ligand binding properties similar to those of human hemoglobin and different from those of bovine hemoglobin.  相似文献   

16.
17.
The mutations in hemoglobin Nancy beta145(HC2) Tyr leads to Asp and hemoglobin Cochin-Portal-Royal beta146(HC3) His leads to Arg involve residues which are thought to be essential for the full expression of allosteric action in hemoglobin. Relative to the structure of deoxyhemoglobin A, our x-ray study of deoxyhemoglobin Nancy shows severe disordering of the beta chain COOH-terminal tetrapeptide and a possible movement of the beta heme iron atom toward the plane of the porphyrin ring. These structural perturbations result in a high oxygen affinity, reduced Bohr effect, and lack of cooperatively in hemoglobin Nancy. In the presence of inositol hexaphosphate (IHP), the Hill constant for hemoglobin Nancy increases from 1.1 to 2.0. But relative to its action on hemoglobin A, IHP is much less effective in reducing the oxygen affinity and in increasing the Bohr effect of hemoglobin Nancy. This indicates that IHP does not influence the R in equilibrium T equilibrium as much in hemoglobin Nancy as in hemoglobin A, and this probably is due to the disordering of His 143beta which is known to be part of the IHP binding site. IHP is also known to produce large changes in the absorption spectrum of methemoglobin A, but we find that it has no effect on the spectrum of methemoglobin Nancy. In contrast to the large structural changes in deoxyhemoglobin Nancy, the structure of deoxyhemoglobin Cochin-Port-Royal differs from deoxyhemoglobin A only in the position of the side chain of residue 146beta. The intrasubunit salt bridge between His 146beta and Asp 94beta in deoxyhemoglobin A is lost in deoxyhemoglobin Cochin-Portal-Royal with the guanidinium ion of Arg 146beta floating freely in solution. This small difference in structure results in a reduced Bohr effect, but does not cause a change in the Hill coefficient, the response to 2,3-diphosphoglycerate, or the oxygen affinity at physiological pH.  相似文献   

18.
The O(2) equilibria of human adult hemoglobin have been measured in a wide range of solution conditions in the presence and absence of various allosteric effectors in order to determine how far hemoglobin can modulate its O(2) affinity. The O(2) affinity, cooperative behavior, and the Bohr effect of hemoglobin are modulated principally by tertiary structural changes, which are induced by its interactions with heterotropic allosteric effectors. In their absence, hemoglobin is a high affinity, moderately cooperative O(2) carrier of limited functional flexibility, the behaviors of which are regulated by the homotropic, O(2)-linked T/R quaternary structural transition of the Monod-Wyman-Changeux/Perutz model. However, the interactions with allosteric effectors provide such "inert" hemoglobin unprecedented magnitudes of functional diversities not only of physiological relevance but also of extreme nature, by which hemoglobin can behave energetically beyond what can be explained by the Monod-Wyman-Changeux/Perutz model. Thus, the heterotropic effector-linked tertiary structural changes rather than the homotropic ligation-linked T/R quaternary structural transition are energetically more significant and primarily responsible for modulation of functions of hemoglobin.  相似文献   

19.
The demonstration of intracellular hemoglobin in permanent preparations has long been a problem. The affinity of hemoglobin for iron hematoxylin is well known but this stain also colors yolk, chromatin, and other structures and is therefore not a reliable criterion. The presence of hemoglobin has been associated with an acidophil cytoplasm which stains a characteristic color, but a careful inspection of living cells in early hematopoetic or embryological stages demonstrates that hemoglobin is present in the erythrocytes which are quite basophilic. In the course of some research on the blood of embryonic frogs it became desirable to demonstrate the presence of hemoglobin in cells by means of a specific staining reaction.  相似文献   

20.
J M Rifkind  L D Lauer  S C Chiang  N C Li 《Biochemistry》1976,15(24):5337-5343
Oxidation studies of hemoglobin by Cu(II) indicate that for horse hemoglobin, up to a Cu(II)/heme molar ratio of 0.5, all of the Cu(II) added is used to rapidly oxidize the heme. On the other hand, most of the Cu(II) added to human hemoglobin at low Cu(II)/heme molar ratios is unable to oxidize the heme. Only at Cu(II)/heme molar ratios greater than 0.5 does the amount of oxidation per added Cu(II) approach that of horse hemoglobin. At the same time, binding studies indicate that human hemoglobin has an additional binding site involving one copper for every two hemes, which has a higher copper affinity than the single horse hemoglobin binding site. The Cu(II) oxidation of human hemoglobin is explained utilizing this additional binding site by a mechanism where a transfer of electrons cannot occur between the heme and the Cu(II) bound to the high affinity human binding site. The electron transfer must involve the Cu(II) bound to the lower affinity human hemoglobin binding site, which is similar to the only horse hemoglobin site. The involvement of beta-2 histidine in the binding of this additional copper is indicated by a comparison of the amino acid sequences of various hemoglobins which possess the additional site, with the amino acid sequences of hemoglobins which do not possess the additional site. Zn(II), Hg(II), and N-ethylmaleimide (NEM) are found to decrease the Cu(II) oxidation of hemoglobin. The sulfhydryl reagents, Hg(II) and NEM, produce a very dramatic decrease in the rate of oxidation, which can only be explained by an effect on the rate for the actual transfer of electrons between the Cu(II) and the Fe(II). The effect of Zn(II) is much smaller and can, for the most part, be explained by the increased oxygen affinity, which affects the ligand dissociation process that must precede the electron transfer process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号