首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of pancreatitis-induced pain is unknown. In other tissues, inflammation activates transient receptor potential vanilloid 1 (TRPV1) on sensory nerves to liberate CGRP and substance P (SP) in peripheral tissues and the dorsal horn to cause neurogenic inflammation and pain, respectively. We evaluated the contribution of TRPV1, CGRP, and SP to pancreatic pain in rats. TRPV1, CGRP, and SP were coexpressed in nerve fibers of the pancreas. Injection of the TRPV1 agonist capsaicin into the pancreatic duct induced endocytosis of the neurokinin 1 receptor in spinal neurons in the dorsal horn (T10), indicative of SP release upon stimulation of pancreatic sensory nerves. Induction of necrotizing pancreatitis by treatment with L-arginine caused a 12-fold increase in the number of spinal neurons expressing the proto-oncogene c-fos in laminae I and II of L1, suggesting activation of nociceptive pathways. L-arginine also caused a threefold increase in spontaneous abdominal contractions detected by electromyography, suggestive of referred pain. Systemic administration of the TRPV1 antagonist capsazepine inhibited c-fos expression by 2.5-fold and abdominal contractions by 4-fold. Intrathecal, but not systemic, administration of antagonists of CGRP (CGRP(8-37)) and SP (SR140333) receptors attenuated c-fos expression in spinal neurons by twofold. Thus necrotizing pancreatitis activates TRPV1 on pancreatic sensory nerves to release SP and CGRP in the dorsal horn, resulting in nociception. Antagonism of TRPV1, SP, and CGRP receptors may suppress pancreatitis pain.  相似文献   

2.
Summary The co-existence of immunoreactivities to substance P (SP), calcitonin gene-related peptide (CGRP), cholecystokinin (CCK) and dynorphin (DYN) in neurons of the dorsal root ganglion (DRG) of guinea-pigs has been investigated with a double-labelling immunofluorescence procedure. Four main populations of neurons could be identified that contained different combinations of these peptides and had distinctive peripheral projections: (1) Neurons that contained immunoreactivity to SP, CGRP, CCK and DYN were distributed mainly to the skin. (2) Neurons with immunoreactivity to SP, CGPR and CCK, but not DYN, were distributed mainly to the small blood vessels of skeletal muscles. (3) Neurons with immunoreactivity to SP, CGRP and DYN, but not CCK, were distributed mainly to pelvic viscera and airways. (4) Neurons containing immunoreactivity to SP and CGRP, but not CCK and DYN, were distributed mainly to the heart, systemic blood vessels, blood vessels of the abdominal viscera, airways and sympathetic ganglia. Other small populations of DRG neurons containing SP, CGRP or CCK alone also were detected. Perikarya containing these combinations of neuropeptides were not found in autonomic ganglia. The peripheral axons of neurons containing immunoreactivity to at least SP and CGRP were damaged by chronic treatment with capsaicin. However, some sensory neurons containing CCK alone were not affected morphologically by capsaicin.These results clearly show that individual DRG neurons can contain many different neuropeptides. Furthermore, the combination of neuropeptides found in any particular neuron is related to its peripheral projection.  相似文献   

3.
Abstract In a behavioral experiment, rats reliably acquired a taste aversion to non-preferred 0.01 M HCl that had been previously paired with intraperitoneal injection of 0.15 M LiCl. These rats showed aversions to other acidic solutions such as malic acid and tartaric acid. In a neurophysiological experiment, the neuronal activities of the parabrachial nucleus (PBN) were recorded after the acquisition of conditioned taste aversion (CTA) to 0.01 M HCl in urethane-anesthetized rats. Neuronal responses to the conditioned stimulus (CS) did not change on the whole but decreased in the dorsal region to the brachium conjunctivum. The proportion of HCl-best to NaCl-best units was lower in the CTA group than in controls. The spontaneous firing rate was lower in the CTA group than in controls. Correlation coefficients between the HCl CS and normally preferred tastes (sucrose and NaCl) were more negative and those between HCl and quinine were more positive in the CTA group than in the controls. These results may be explained by the notion that gustatory responses of PBN neurons are concerned with alterations in taste hedonics after the acquisition of conditioned taste aversions.  相似文献   

4.
Calcitonin gene-related peptide (CGRP) and calcitonin (C) are two peptides that are cocontained and probably coreleased with the potent bronchocontrictors, bombesin (B) and substance P (SP), within the lung. Although CGRP and C have a wide intrapulmonary distribution, their actions have not been well defined. By the use of a computerized lung mechanics analyzer, changes in response to 10-min infusions of these agents were measured in spontaneously breathing, anesthetized guinea pigs. Infusion of 0.3 nmol.kg-1.min-1 CGRP and 2 nmol.kg-1.min-1 C caused little change in lung mechanics. Infusion of 0.06 nmol.kg-1.min-1 B and 0.3 nmol.kg-1.min-1 SP caused a marked increase in inspiratory, expiratory, and total pulmonary resistance (RT), from base-line values (P less than 0.02), with a maximal effect at 10 min postinfusion (PI) [RT = 326 +/- 20% (SE) (B), 490 +/- 73% (SP)]. Coinfusion of C or CGRP with B or SP at the above concentrations caused a marked reduction in SP - [RT = 189 +/- 28% (C), 142 +/- 16% (CGRP) at 10 min PI] and B - [RT = 157 +/- 18% (C), 158 +/- 10% (CGRP) at 10 min PI] induced changes in resistance (P less than 0.015). The mode of action of C and CGRP is unknown, but these peptides may antagonize the effects of B and SP via autonomic pathways by interfering with B- or SP-induced changes in intracellular calcium concentrations or by increasing intracellular cAMP levels by binding to specific cellular receptors linked to adenylate cyclase.  相似文献   

5.
The distribution of substance P (SP)- and calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers in the taste buds of the epiglottis and aryepiglottic folds was compared between normoxic control and chronically isocapnic hypoxic rats (10% O2 and 3-4% CO2 for 3 months). In the normoxic laryngeal taste buds, SP- and CGRP-immunoreactive fibers were detected within the taste buds, where they appeared as thin processes with many varicosities. Most CGRP fibers showed coexistence with SP, but a few fibers showed the immunoreactivity of CGRP only. The density of intra- and subgemmal SP and CGRP fibers penetrating into the laryngeal taste buds was significantly higher in chronically hypoxic rats than in normoxic control rats. Water intake in the hypoxic rats was significantly lower than in the normoxic rats. These results indicate that the increased density of SP- and CGRP-containing nerve fibers within the laryngeal taste buds is a predominant feature of hypoxic adaptation. The altered peptidergic innervation and reduced water intake support the hypothesis that the laryngeal taste buds are involved in water reception, and that the water reception may be under the control of peptidergic innervation.  相似文献   

6.
We report a novel isoform of β-D-[2 → 1] poly(fructo-furanosyl) α-D-glucose termed delta inulin (DI), comparing it with previously described alpha (AI), beta (BI) and gamma (GI) isoforms. In vitro, DI is the most immunologically active weight/weight in human complement activation and in binding to monocytes and regulating their chemokine production and cell surface protein expression. In vivo, this translates into potent immune adjuvant activity, enhancing humoral and cellular responses against co-administered antigens. As a biocompatible polysaccharide particle, DI is safe and well tolerated by subcutaneous or intramuscular injection. Physico-chemically, DI forms as an insoluble precipitate from an aqueous solution of suitable AI, BI or GI held at 37-48°C, whereas the precipitate from the same solution at lower temperatures has the properties of AI or GI. DI can also be produced by heat conversion of GI suspensions at 56°C, whereas GI is converted from AI at 45°C. DI is distinguished from GI by its higher temperature of solution in dilute aqueous suspension and by its lower solubility in dimethyl sulfoxide, both consistent with greater hydrogen bonding in DI's polymer packing structure. DI suspensions can be dissolved by heat, re-precipitated by cooling as AI and finally re-converted back to DI by repeated heat treatment. Thus, DI, like the previously described inulin isoforms, reflects the formation of a distinct polymer aggregate packing structure via reversible noncovalent bonding. DI forms the basis for a potent new human vaccine adjuvant and further swells the growing family of carbohydrate structures with immunological activity.  相似文献   

7.
8.
阻断大鼠杏仁中央核AMPA受体对臂旁核味觉反应的影响   总被引:1,自引:0,他引:1  
Kang Y  Yan JQ  Huang T 《生理学报》2004,56(6):671-677
以往的研究表明,电刺激或损毁杏仁中央核明显改变臂旁核味觉神经元的活动。为了研究杏仁中央核内的兴奋性受体是否参与此调节,本实验应用细胞外记录方法,在乌拉坦麻醉的大鼠观察了杏仁中央核内微量注射6-氰基-7-硝基喹喔啉-2,3- 二酮(CNQX)前后臂旁核味觉神经元对四种基本味觉刺激反应的变化。结果表明,杏仁中央核内注射 CNQX 对 30% 的臂旁核神经元产生时间依赖性的抑制作用,此抑制作用以对盐酸和盐酸奎宁刺激引起的反应尤为明显(P<0.05)。根据对味觉刺激的优势反应,40% 的NaCl优势、30% 的HCl优势和20% 的奎宁优势反应神经元在注射CNQX 后对至少一种味觉刺激的反应降低;盐酸优势和奎宁优势反应神经元对各自的优势反应在杏仁中央核内注药后均明显降低(P<0.01)。相关性分析表明,在注射 CNQX 后,臂旁核味觉神经元对 NaCl 和其它三种味觉刺激物之间的分辨能力降低。以上结果表明,杏仁中央核内的AMPA 受体可能参与杏仁核对臂旁核味觉神经元的下行调控。  相似文献   

9.
Davis RE  Stretton AO 《Peptides》2001,22(1):7-23
Neuropeptides play an important role in all nervous systems and structure-activity studies of related peptides is one approach to understanding this role. This study of the motor nervous system of the parasitic nematode Ascaris suum describes the physiological effects of a family of 18 endogenous Ascaris FMRFamide-like peptides (AF peptides) on the membrane potential and input resistance of the dorsal excitatory type 2 (DE2) and dorsal inhibitory (DI) motor neurons. These motor neurons are part of the final common output pathway from the motor nervous system to the somatic muscle cells responsible for locomotion. AF peptide effects on the frequency of excitatory postsynaptic potentials (EPSPs) in DE2 motor neurons were also measured to infer peptide effects on central presynaptic spiking neurons. AF peptide injections into intact worms were made to assess their qualitative effects on behavior, providing a context for interpreting motor neuron data. One category of AF peptides, N-terminally extended -FIRFa peptides (AF5, AF7 and AF1), has pronounced behavioral effects and qualitatively similar, but quantitatively different effects on DE2 and DI motor neurons. A second category of AF peptides (AF2, AF9, and AF8) also produces dramatic behavioral effects and strong electrophysiological effects on DE2 and/or DI motor neurons. A third category of AF peptides, consisting of six members of the -PGVLRFa group (which are encoded by the same gene and have closely related sequences) and peptide AF11, have pronounced behavioral effects, but relatively weak or negligible effects on DE2 and DI motor neurons. A fourth category of AF peptides, also consisting of structurally unrelated members, has pronounced behavioral effects and, as individual peptides, similar effects on both DE2 and DI motor neurons; AF15 is excitatory, while AF17 and AF19 are inhibitory, on both motor neuron types. Finally, two AF peptides (AF6, AF16) are relatively weak or inactive in producing behavioral or motor neuronal effects. Based on comparisons of the effects of AF peptides on DE2 and DI motor neurons, a tentative list of 5 major response-types is proposed as a working hypothesis to guide the search for AF peptide receptors. The findings attest to the potential complexity of neurosignaling in this comparatively simple nervous system.  相似文献   

10.
While studies of the gustatory cortex (GC) mostly focus on its role in taste aversion learning and memory, the necessity of GC for other fundamental taste-guided behaviors remains largely untested. Here, rats with either excitotoxic lesions targeting GC (n = 26) or sham lesions (n = 14) were assessed for postsurgical retention of a presurgically LiCl-induced conditioned taste aversion (CTA) to 0.1M sucrose using a brief-access taste generalization test in a gustometer. The same animals were then trained in a two-response operant taste detection task and psychophysically tested for their salt (NaCl or KCl) sensitivity. Next, the rats were trained and tested in a NaCl vs. KCl taste discrimination task with concentrations varied. Rats meeting our histological inclusion criterion had large lesions (resulting in a group averaging 80% damage to GC and involving surrounding regions) and showed impaired postsurgical expression of the presurgical CTA (LiCl-injected, n = 9), demonstrated rightward shifts in the NaCl (0.54 log10 shift) and KCl (0.35 log10 shift) psychometric functions, and displayed retarded salt discrimination acquisition (n = 18), but eventually learned and performed the discrimination comparable to sham-operated animals. Interestingly, the degree of deficit between tasks correlated only modestly, if at all, suggesting that idiosyncratic differences in insular cortex lesion topography were the root of the individual differences in the behavioral effects demonstrated here. This latter finding hints at some degree of interanimal variation in the functional topography of insular cortex. Overall, GC appears to be necessary to maintain normal taste sensitivity to NaCl and KCl and for salt discrimination learning. However, higher salt concentrations can be detected and discriminated by rats with extensive damage to GC suggesting that the other resources of the gustatory system are sufficient to maintain partial competence in these tasks, supporting the view that such basic sensory-discriminative taste functions involve distributed processes among central gustatory structures.  相似文献   

11.
Abstract: To determine whether protein kinase C (PKC) mediates release of peptides from sensory neurons, we examined the effects of altering PKC activity on resting and evoked release of substance P (SP) and calcitonin gene-related peptide (CGRP). Exposing rat sensory neurons in culture to 10 or 50 n M phorbol 12,13-dibutyrate (PDBu) significantly increased SP and CGRP release at least 10-fold above resting levels, whereas the inactive 4α-PDBu analogue at 100 n M had no effect on release. Furthermore, 100 n M bradykinin increased peptide release approximately fivefold. Down-regulation of PKC significantly attenuated the release of peptides evoked by either PDBu or bradykinin. PDBu at 1 n M or 1-oleoyl-2-acetyl- sn -glycerol at 50 µ M did not alter resting release of peptides, but augmented potassium- and capsaicin-stimulated release of both SP and CGRP approximately twofold. This sensitizing action of PKC activators on peptide release was significantly reduced by PKC down-regulation or by pretreating cultures with 10 n M staurosporine. These results establish that activation of PKC is important in the regulation of peptide release from sensory neurons. The PKC-induced enhancement of peptide release may be a mechanism underlying the neuronal sensitization that produces hyperalgesia.  相似文献   

12.
胍丁胺对大鼠海马 CA1区神经元放电的影响   总被引:4,自引:3,他引:4  
Wang ZM  Sun GQ  Wang ZA  He RR 《生理学报》2003,55(6):717-721
应用细胞外记录单位放电技术,在大鼠海马脑片上观察了胍丁胺(agmatine,Agm)对CAl区神经元放电的影响。实验结果如下:(1)在47个海马脑片放电单位上灌流Agm(0.1—1.0μmol/L)2min,有38个单位(80.9%)自发放电频率明显降低,且呈剂量依赖性,9个单位(19.1%)无明显的反应;(2)预先用0.2mmol/L的L-谷氨酸(L-glutamate,L-Glu)灌流12个海马脑片放电单位,有9个单位(75%)放电频率明显增加,表现为癫痫样放电,在此基础上灌流Agm(1.0μmol/L)2min,其癫痫样放电被抑制;(3)在7个海马脑片放电单位上给予L型钙通道激动剂Bay K8644(0.1μmoL/L)时,有6个单位(85.7%)放电频率明显增加,另外1个单位(14.3%)无明显变化,再给予Agm(1.0μmol/L)2min,其放电频率被明显抑制;(4)13个CAl放电单位,灌流50μmoL/L一氧化氮合酶(NOS)抑制剂N^G-nitro-L-arginine methyl ester。(L-NAME)5min后其放电频率明显增加,在此基础上再给予Agm(1.0μmol/L)2min,有11个单位(84.6%)的放电频率被抑制,有2个单位(15.4%)的变化不明显。上述结果提示:胍丁胺能抑制海马CAl区神经元自发放电以及由谷氨酸、BayK8644和L-NAME诱发的放电,这一抑制效应可能与胍丁胺阻断CAl区锥体细胞上的NMDA受体,并减少钙离子内流有关。  相似文献   

13.
Nakamura  T.; Ogawa  H. 《Chemical senses》1997,22(5):517-528
In the rat cortical taste area (CTA), we recorded 31 pairs oftaste neurons and seven pairs of taste and non-taste neurons,with single or double electrodes. By using a cross-correlogram(CCG) in a stationary state, we examined the functional interactionbetween neurons of the pairs while activating them by tastestimulation. Though only 14.3% of the taste and non-taste neuronpairs were correlated, 54.8% of the taste neuron pairs showedcorrelated activities, 41.9% of them showing common inputs,including one with an additional excitatory connection. Theremainder (12.9%) showed excitatory connections with a timelag of 1–3 ms. When pairs were recorded using single ordouble electrodes with an intertip distance of <50µmin a dorsoventral direction, a larger fraction had correlatedactivities than when the intertip distance was >50 µm.Whereas pairs of neurons showed correlated activities in areaDI whatever the vertical intertip distance was, most of thepairs having correlated activities in area GI were found within50 µm of the vertical intertip distance. The taste profilesof common inputs to the pair were estimated on the basis ofpeak at time 0 in CCGs for various taste stimuli. The efficacycontribution of the source to target neurons tended to be largerwhen both had the same best stimulus. This tendency held truefor pairs showing excitatory connections. Interlayer excitatoryconnections were also evident. It is concluded that a functionalcolumn with a diameter of 50 µm may present in the CTAin rats, and that information flow is larger between pairs ofneurons with the same best stimulus. Chem. Senses 22: 517–528,1997.  相似文献   

14.
The distribution and ontogeny of four neuropeptides in developing chick lumbosacral sensory and sympathetic ganglia were studied using immunohistochemical techniques. Antibodies to two of these peptides, substance P (SP) and calcitonin gene-related peptide (CGRP), stained small neurons in the medial part of the dorsal root ganglia from embryonic Day 5 and Day 10, respectively, whereas neurons in the lateral part of the ganglia were negative; this distribution persisted throughout development. Both sets of neurons apparently send fibers to the dorsal horn of the spinal cord: SP to laminae I and II, and CGRP to lamina I, suggesting that the SP- and CGRP-positive sensory neurons are nociceptive or thermoreceptive. This correlation between the presence of SP or CGRP in a neuron and a particular functional modality thus provides evidence for a functional distinction between the mediodorsal and ventrolateral zones that are apparent during the development of chick dorsal root ganglia. Moreover, this study suggests that the type of neuron that develops within the dorsal root ganglion correlates with its position within the ganglion. In contrast to SP and CGRP, somatostatin (SOM) and vasoactive intestinal polypeptide (VIP) immunoreactivities were not seen in the lumbosacral sensory ganglia at any stage during development. However, both were present in sympathetic ganglia: SOM from embryonic Day 4.5 and VIP from embryonic Day 10. VIP immunoreactivity persisted throughout development in a large number of sympathetic neurons, but the number of cells with SOM immunoreactivity decreased from embryonic Day 10 onward. SOM therefore appears to be present only transiently in most chick lumbosacral sympathetic cells.  相似文献   

15.
Multiple site optical recording was used to analyze the neural activity changes caused by conditioned taste aversion (CTA) training in the pond snail Lymnaea stagnalis. In response to electrical stimulation of the median lip nerve, which transmits chemosensory signals of appetitive taste to the central nervous system, we optically detected large numbers of spikes in several parts of the buccal ganglion. The effects of CTA training on the spike responses were examined in two areas of the ganglion where the most active neural responses occurred. In one area (termed Area I) that included the N1 medial (N1M) cells, a class of central pattern generator interneurons involved in feeding behavior, the number of spikes in a period 1500-2000 ms after median lip nerve stimulation was significantly reduced in conditioned animals compared to control animals. In another area (termed Area II) positioned between buccal motoneurons, the B3 and B4CL (cluster) cells, the evoked spike responses were unaffected by CTA training. These results, taken together with our previous results indicating an enhancement of an inhibitory input to the N1M cells during CTA, suggest that an appetitive taste signal transmitted to the N1M cells through the median lip nerves is suppressed during CTA, resulting in a decrease of the feeding response.  相似文献   

16.
To determine the presence in the human choroid of substance P (SP)-and calcitonin gene-related peptide (CGRP) positive intrinsic choroidal neurons (ICNs), choroidal whole-mounts were processed for indirect immunofluorescence. An antibody to a component of the neuronal cytoskeleton, neurofilament 200 kDa (NF-200), was combined with antibodies to SP and to CGRP (neuropeptides proper to the sensory nervous system). The human choroid possesses numerous SP(+) and CGRP(+) ICNs. These neurons were observed in the suprachoroid, both in isolation and forming microganglia. For both types of ICNs studied, neurons were more numerous in the temporal than in the nasal regions. In both locations, SP(+) and CGRP(+) ICNs were more abundant in the central choroid (the choroid underneath the macular area of the retina), with cell density diminishing outwards to the choroidal periphery. There were no appreciable differences between the two populations of ICNs studied in terms of size, morphology or immunostaining characteristics. In conclusion, given that peripheral sensory innervation could be involved in the regulation of both choroidal blood flow and vascular architecture, the SP(+) and CGRP(+) ICNs described for the first time in the present work may be involved in these mechanisms of vascular regulation.  相似文献   

17.
The responses of 3687 neurons in the macaque primary taste cortex in the insula/frontal operculum, orbitofrontal cortex (OFC) and amygdala to oral sensory stimuli reveals principles of representation in these areas. Information about the taste, texture of what is in the mouth (viscosity, fat texture and grittiness, which reflect somatosensory inputs), temperature and capsaicin is represented in all three areas. In the primary taste cortex, taste and viscosity are more likely to activate different neurons, with more convergence onto single neurons particularly in the OFC and amygdala. The different responses of different OFC neurons to different combinations of these oral sensory stimuli potentially provides a basis for different behavioral responses. Consistently, the mean correlations between the representations of the different stimuli provided by the population of OFC neurons were lower (0.71) than for the insula (0.81) and amygdala (0.89). Further, the encoding was more sparse in the OFC (0.67) than in the insula (0.74) and amygdala (0.79). The insular neurons did not respond to olfactory and visual stimuli, with convergence occurring in the OFC and amygdala. Human psychophysics showed that the sensory spaces revealed by multidimensional scaling were similar to those provided by the neurons.  相似文献   

18.
Hanamori T 《Chemical senses》2003,28(8):717-728
Extracellular neuronal responses were recorded from the posterior insular cortex following electrical and chemical stimulation of the thalamic reticular nucleus (Rt) regions. In the present study, most neurons (29/32) were first characterized for their responses to electrical stimulation of the superior laryngeal (SL) nerve or glossopharyngeal (IXth) nerve. In the first experiment, 15 neurons in the posterior insular cortex were examined for their responses to electrical stimulation of the Rt regions. It was found that effective stimulation sites to evoke action potentials in the posterior insular cortex were the ventromedial portion of the Rt and its adjacent regions. In the second experiment, 17 neurons in the posterior insular cortex were examined for their responses by pressure injection of glutamate (Glu) into the Rt regions. Of the 17 neurons, 13 were inhibited in the spontaneous discharge rate following injection of Glu into the Rt, and the remaining four were unaffected. Histologically, it was demonstrated that Glu injection sites for the case of inhibition were located near or within the Rt. On the other hand, the injection sites for all four non-responsive neurons were located outside of the Rt. These data suggest that excitation of the Rt (GABAergic neurons) causes depression of the neuronal activity in the thalamic relay nucleus and then this may in turn induce depressed neuronal activity in the posterior insular cortex. The results here indicate that neuronal activity in the posterior insular cortex is controlled by the Rt, which has been reported in other sensory systems.  相似文献   

19.
Biochemical mapping of five different peptide-like materials--calcitonin gene-related peptide (CGRP), substance P (SP), Met5-enkephalin (ME), cholecystokinin (CCK), and dynorphin A (1-8) (DYN)--was conducted in the dorsal and ventral zones of the spinal cord at the cervical, thoracic, and lumbar levels in 3-month-old rats 10 days after unilateral dorsal rhizotomy at the cervical level (C4-T2) or after neonatal administration of capsaicin (50 mg/kg s.c.). In control rats, all peptide-like materials were more abundant in the dorsal than in the ventral zone all along the spinal cord. However, in both zones, absolute concentrations of CGRP, SP, ME, and CCK were significantly higher at the lumbar than at the cervical level. Rhizotomy-induced CGRP depletion (-85%) within the ipsilateral dorsal zone of the cervical cord was more pronounced than that due to neonatal capsaicin (-60%), a finding suggesting that this peptide is contained in both capsaicin-sensitive (mostly unmyelinated) and -insensitive (myelinated) primary afferent fibers. In contrast, similar depletions of SP (-50%) were observed after dorsal rhizotomy and neonatal capsaicin treatment, as expected from the presence of SP only in the capsaicin-sensitive small-diameter primary afferent fibers. Although the other three peptides remained unaffected all along the cord by either intervention, evidence for the existence of capsaicin-insensitive CCKergic primary afferent fibers could be inferred from the increased accumulation of CCK (together with SP and CGRP) in dorsal root ganglia ipsilateral to dorsal root sections.  相似文献   

20.
Calcitonin gene-related peptide (CGRP) and substance P (SP) are released from sensory nerves upon exposure to irritating stimuli. Neutral endopeptidase (NEP), a membrane-bound peptidase, cleaves many peptides including SP, thereby limiting their biological actions. Recombinant NEP cleaved CGRP1 approximately 88-fold less rapidly than it cleaved SP. The slow cleavage by NEP of CGRP compared to SP suggests that this enzyme is likely to have weaker physiologic effects on CGRP than have been demonstrated for SP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号