首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gene modification of hematopoietic stem cells is increasingly becoming popular as a therapeutic approach, given the recent approvals and the number of new applications for clinical trials targeting monogenetic and immunodeficiency disorders. Technological advances in stem cell selection, culture, transduction and gene editing now allow for efficient ex vivo genetic manipulation of stem cells. Gene-addition techniques using viral vectors (mainly retrovirus- and lentivirus-based) and gene editing using various targeted nuclease platforms (e.g., Zinc finger, TALEN and Crispr/Cas9) are being applied to the treatment of multiple genetic and immunodeficiency disorders. Herein, the current state of the art in manufacturing and critical assays that are required for ex vivo manipulation of stem cells are addressed. Important quality control and safety assays that need to be planned early in the process development phase of these products for regulatory approval are also highlighted.  相似文献   

2.
3.
Recent advances with the type II clustered regularly interspaced short palindromic repeats (CRISPR) system promise an improved approach to genome editing. However, the applicability and efficiency of this system in model organisms, such as zebrafish, are little studied. Here, we report that RNA-guided Cas9 nuclease efficiently facilitates genome editing in both mammalian cells and zebrafish embryos in a simple and robust manner. Over 35% of site-specific somatic mutations were found when specific Cas/gRNA was used to target either etsrp, gata4 or gata5 in zebrafish embryos in vivo. The Cas9/gRNA efficiently induced biallelic conversion of etsrp or gata5 in the resulting somatic cells, recapitulating their respective vessel phenotypes in etsrpy11 mutant embryos or cardia bifida phenotypes in fautm236a mutant embryos. Finally, we successfully achieved site-specific insertion of mloxP sequence induced by Cas9/gRNA system in zebrafish embryos. These results demonstrate that the Cas9/gRNA system has the potential of becoming a simple, robust and efficient reverse genetic tool for zebrafish and other model organisms. Together with other genome-engineering technologies, the Cas9 system is promising for applications in biology, agriculture, environmental studies and medicine.  相似文献   

4.
Success with genome editing by the RNA-programmed nuclease Cas9 has been limited by the inability to predict effective guide RNAs and DNA target sites. Not all guide RNAs have been successful, and even those that were, varied widely in their efficacy. Here we describe and validate a strategy for Caenorhabditis elegans that reliably achieved a high frequency of genome editing for all targets tested in vivo. The key innovation was to design guide RNAs with a GG motif at the 3′ end of their target-specific sequences. All guides designed using this simple principle induced a high frequency of targeted mutagenesis via nonhomologous end joining (NHEJ) and a high frequency of precise DNA integration from exogenous DNA templates via homology-directed repair (HDR). Related guide RNAs having the GG motif shifted by only three nucleotides showed severely reduced or no genome editing. We also combined the 3′ GG guide improvement with a co-CRISPR/co-conversion approach. For this co-conversion scheme, animals were only screened for genome editing at designated targets if they exhibited a dominant phenotype caused by Cas9-dependent editing of an unrelated target. Combining the two strategies further enhanced the ease of mutant recovery, thereby providing a powerful means to obtain desired genetic changes in an otherwise unaltered genome.  相似文献   

5.
基因组编辑技术的出现对植物遗传育种及作物性状的改良产生了深远意义。CRISPR/Cas(clustered regularly interspaced short palindromic repeat)是由成簇规律间隔短回文重复序列及其关联蛋白组成的免疫系统,其作用是原核生物(40%细菌和90%古细菌)用来抵抗外源遗传物质(噬菌体和病毒)的入侵。该技术实现了对基因组中多个靶基因同时进行编辑,与前两代基因编辑技术:锌指核酶(ZFNs)和转录激活因子样效应物核酶(TALENs)相比更加简单、廉价、高效。目前CRISPR/Cas9基因编辑技术已在拟南芥(Arabidopsis thaliana)、烟草(Nicotiana benthamiana)、水稻(Oryza sativa)、小麦(Triticum aestivum)、玉米(Zea mays)、番茄(tomato)等模式植物和多数大作物中实现了定点基因组编辑,其应用范围不断地向各类植物扩展。但与模式植物和一些大作物相比,CRISPR/Cas9基因编辑技术在非模式植物,尤其在一些小作物的应用中存在如载体构建、靶点设计、脱靶检测、同源重组等问题有待进一步完善。该文对CRISPR/Cas9技术在非模式植物与小作物研究的最新研究进展进行了总结,讨论了该技术目前在非模式植物、小作物应用的局限性,在此基础上提出了相关改进策略,并对CRISPR/Cas9系统在非模式植物中的研究前景进行了展望。  相似文献   

6.
基因编辑技术通过对特定DNA片段的插入、敲除、修饰或替换等,实现对生物体中目标基因的编辑。与早期基因工程技术将遗传物质随机插入宿主基因组中的方式不同的是,基因编辑技术能够定点需要插入的位置,从而实现对生物体基因组特定位点的准确修饰、人为地改造生物体的遗传信息,目前广泛应用于斑马鱼的基因组学、遗传发育和基因功能研究中。其方法包括诱变技术、Tol2转座子、Morpholino、ZFNs、TALEN和CRISPR/Cas系统等。本研究主要介绍了基因编辑技术的作用机理与发展概况。作为一种精准而高效的基因工程方法,基因编辑技术在近年来得到了飞速地发展。它既可以采用对特定基因的靶向突变来研究基因的功能,也可以通过将功能性基因插入并替代缺陷基因而用于某些遗传性疾病的基因治疗。可以肯定的是,基因编辑技术未来将在基础生物学、医学、生物技术等多个领域具有重要的研究价值和应用价值。  相似文献   

7.
《Fungal biology》2020,124(3-4):228-234
The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system is widely used as a tool to precisely manipulate genomic sequence targeted by sgRNA (single guide RNA) and is adapted in different species for genome editing. One of the major concerns of CRISPR-Cas9 is the possibility of off-target effects, which can be remedied by the deployment of high fidelity Cas9 variants. Ustilago maydis is a maize fungal pathogen, which has served as a model organism for biotrophic pathogens for decades. The successful adaption of CRISPR-Cas9 in U. maydis greatly facilitated effector biology studies. Here, we constructed an U. maydis reporter strain that allows in vivo quantification of efficiency and target specificity of three high fidelity Cas9 variants, Cas9HF1, Cas9esp1.1 and Cas9hypa. This approach identified Cas9HF1 as most specific Cas9 variant in U. maydis. Furthermore, whole genome sequencing showed absence of off-target effects in U. maydis by CRISPR-Cas9 editing.  相似文献   

8.
Genome-editing technologies consisting of targeted mutagenesis and gene targeting enable us to modify genes of interest rapidly and precisely. The discovery in 2012 of CRISPR/Cas9 systems and their development as sequence-specific nucleases has brought about a paradigm shift in biology. Initially, CRISPR/Cas9 was applied in targeted mutagenesis to knock out a target gene. Thereafter, advances in genome-editing technologies using CRISPR/Cas9 developed rapidly, with base editing systems for transition substitution using a combination of Cas9 nickase and either cytidine or adenosine deaminase being reported in 2016 and 2017, respectively, and later in 2021 bringing reports of transversion substitution using Cas9 nickase, cytidine deaminase and uracil DNA glycosylase. Moreover, technologies for gene targeting and prime editing systems using DNA or RNA as donors have also been developed in recent years. Besides these precise genome-editing strategies, reports of successful chromosome engineering using CRISPR/Cas9 have been published recently. The application of genome editing to crop breeding has advanced in parallel with the development of these technologies. Genome-editing enzymes can be introduced into plant cells, and there are now many examples of crop breeding using genome-editing technologies. At present, it is no exaggeration to say that we are now in a position to be able to modify a gene precisely and rearrange genomes and chromosomes in a predicted way. In this review, we introduce and discuss recent highlights in the field of precise gene editing, chromosome engineering and genome engineering technology in plants.  相似文献   

9.
10.
11.
韩英伦  李庆伟 《遗传》2016,38(1):9-16
基因治疗是将外源正常基因通过一定方式导入人体靶细胞以纠正或补偿因基因缺陷和异常引起的疾病,从而达到治疗目的。因此,基因治疗的技术方法在研究持续感染HIV-1或潜伏感染HIV-1原病毒患者的治疗中具有重大的现实意义。目前,现有的基因治疗方法存在识别靶向位点有限及脱靶几率大等主要问题。最新研究表明来源于细菌和古菌的规律间隔成簇短回文重复序列及其相关核酸酶9系统[Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9), CRISPR/Cas9]已被成功改造成基因组定点编辑工具。因此,如何利用CRISPR/Cas9系统实现对HIV-1病毒基因组进行高效靶向修饰,从而达到治疗HIV-1感染病患的目的已经成为当前研究的热点。本文参考最新国内外研究成果,重点介绍了 CRISPR/Cas9基因组编辑技术在HIV-1感染疾病治疗中的应用,主要包括CCR5基因编辑、清除HIV-1原病毒以及活化HIV-1原病毒,以期为HIV-1感染疾病的预防与治疗提供重要研究参考。  相似文献   

12.
A set of unique sequences in bacterial genomes, responsible for protecting bacteria against bacteriophages, has recently been used for the genetic manipulation of specific points in the genome. These systems consist of one RNA component and one enzyme component, known as CRISPR (“clustered regularly interspaced short palindromic repeats”) and Cas9, respectively. The present review focuses on the applications of CRISPR/Cas9 technology in the development of cellular and animal models of human disease. Making a desired genetic alteration depends on the design of RNA molecules that guide endonucleases to a favorable genomic location. With the discovery of CRISPR/Cas9 technology, researchers are able to achieve higher levels of accuracy because of its advantages over alternative methods for editing genome, including a simple design, a high targeting efficiency and the ability to create simultaneous alterations in multiple sequences. These factors allow the researchers to apply this technology to creating cellular and animal models of human diseases by knock‐in, knock‐out and Indel mutation strategies, such as for Huntington's disease, cardiovascular disorders and cancers. Optimized CRISPR/Cas9 technology will facilitate access to valuable novel cellular and animal genetic models with respect to the development of innovative drug discovery and gene therapy.  相似文献   

13.
Recently established, custom-designed nuclease technologies such as the clustered regularly interspaced short palindromic repeat (CRISPR)-associated system provide attractive genome editing tools. Targeted gene mutagenesis using the CRISPR/Cas9 system has been achieved in several orders of insects. However, outside of studies on Drosophila melanogaster and the lepidopteron model insect Bombyx mori, little success has been reported, which is largely due to a lack of effective genetic manipulation tools that can be used in other insect orders. To create a simple and effective method of gene knockout analysis, especially for dissecting gene functioning during insect embryogenesis, we performed a functional analysis of the Bombyx Wnt1 (BmWnt1) gene using Cas9/sgRNA-mediated gene mutagenesis. The Wnt1 gene is required for embryonic patterning in various organisms, and its crucial roles during embryogenesis have been demonstrated in several insect orders. Direct injection of Cas9 mRNA and BmWnt1-specific sgRNA into Bombyx embryos induced a typical Wnt-deficient phenotype: injected embryos could not hatch and exhibited severe defects in body segmentation and pigmentation in a dose-dependent manner. Quantitative real-time PCR (qRT-PCR) analysis revealed that Hox genes were down-regulated after BmWnt1 depletion. Furthermore, large deletion, up to 18 Kb, ware generated. The current study demonstrates that using the CRISPR/Cas9 system is a promising approach to achieve targeted gene mutagenesis during insect embryogenesis.  相似文献   

14.
RNA编辑,即通过碱基的插入、删除和替换对RNA进行的转录后加工过程,这一表观遗传现象也被认为是在RNA水平上对遗传信息进行修复的一种修正机制.本文主要综述了目前植物中基于PPR基因家族等编辑复合体以及动物中关于CRISPR/Cas系统的两种RNA编辑系统,并介绍了RNA编辑在植物生长发育过程中的重要作用,并展望了RN...  相似文献   

15.
璩良  李华善  姜运涵  董春升 《遗传》2015,37(10):974-982
CRISPR/Cas系统是广泛存在于细菌和古生菌中的适应性免疫系统,用来抵抗外来病毒或质粒的入侵。近几年,由Ⅱ型CRISPR/Cas适应性免疫系统改造而来的CRISPR/ Cas9基因组编辑技术蓬勃发展,被广泛地应用于生命科学研究的各个领域,并取得了革命性的变化。文章主要综述了CRISPR/Cas9基因组编辑技术的起源与发展及在生命科学各研究领域的应用,重点介绍了该系统在人类疾病基因治疗方面的最新应用及脱靶效应,以期为相关领域的科研人员提供参考。  相似文献   

16.
The clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated(Cas) protein 9 system(CRISPR/Cas9) provides a powerful tool for targeted genetic editing. Directed by programmable sequence-specific RNAs,this system introduces cleavage and double-stranded breaks at target sites precisely. Compared to previously developed targeted nucleases, the CRISPR/Cas9 system demonstrates several promising advantages, including simplicity, high specificity,and efficiency. Several broad genome-editing studies with the CRISPR/Cas9 system in different species in vivo and ex vivo have indicated its strong potential, raising hopes for therapeutic genome editing in clinical settings. Taking advantage of non-homologous end-joining(NHEJ) and homology directed repair(HDR)-mediated DNA repair, several studies have recently reported the use of CRISPR/Cas9 to successfully correct disease-causing alleles ranging from single base mutations to large insertions. In this review, we summarize and discuss recent preclinical studies involving the CRISPR/Cas9-mediated correction of human genetic diseases.  相似文献   

17.
Brain endothelial cells (ECs) are an important component of the blood-brain barrier (BBB) and play key roles in restricting entrance of possible toxic components and pathogens into the brain. However, identifying endothelial genes that regulate BBB homeostasis remains a time-consuming process. Although somatic genome editing has emerged as a powerful tool for discovery of essential genes regulating tissue homeostasis, its application in brain ECs is yet to be demonstrated in vivo. Here, we used an adeno-associated virus targeting brain endothelium (AAV-BR1) combined with the CRISPR/Cas9 system (AAV-BR1-CRISPR) to specifically knock out genes of interest in brain ECs of adult mice. We first generated a mouse model expressing Cas9 in ECs (Tie2Cas9). We selected endothelial β-catenin (Ctnnb1) gene, which is essential for maintaining adult BBB integrity, as the target gene. After intravenous injection of AAV-BR1-sgCtnnb1-tdTomato in 4-week-old Tie2Cas9 transgenic mice resulted in mutation of 36.1% of the Ctnnb1 alleles, thereby leading to a dramatic decrease in the level of CTNNB1 in brain ECs. Consequently, Ctnnb1 gene editing in brain ECs resulted in BBB breakdown. Taken together, these results demonstrate that the AAV-BR1-CRISPR system is a useful tool for rapid identification of endothelial genes that regulate BBB integrity in vivo.  相似文献   

18.
19.
基因治疗是指利用基因编辑技术对细胞基因进行“修饰”而达到治疗的目的。CRISPR/Cas的出现为基因编辑提供了简单、高效和多功能的平台,同时,为克服DNA双链断裂产生的不良影响,基于CRISPR/Cas的新型技术,如碱基编辑器(base editors,BE)、Prime Editors(PE)和Cas13效应器,被相继开发出来。目前,CRISPR/Cas及其衍生编辑技术已被广泛应用于动物细胞模型构建、药物靶点筛查和基因功能研究等领域,在基因治疗领域也展现出广阔的应用前景。基于此,简要介绍了CRISPR/Cas及其衍生编辑技术,综述了其在单基因遗传病、肿瘤和其他疾病的基因治疗中的应用进展,并分析了其当下面临的挑战,以期为基因编辑在单基因遗传病、肿瘤和其他疾病治疗领域提供理论参考。  相似文献   

20.
基因组编辑技术可以对DNA或RNA进行精准改造,极大地促进了生命科学的发展。CRISPR/Cas9系统在靶位点诱导DNA发生双链或单链损伤,细胞对损伤部位采用无供体模板的非同源末端连接(non-homologous end joining,NHEJ)或有供体模板的同源重组(homologous recombination,HR)修复。基于HR的基因组编辑策略通常被用于获得DNA的精准改造,而NHEJ在动物DNA损伤修复中起主导作用。为了提升HR效率,研究人员设计了多种方案,包括CRISPR/Cas9系统优化和DNA修复通路调控等。从DNA损伤修复途径、Cas9变体选择、sgRNA设计、供体模板设计、DNA修复途径相关蛋白功能调控、供体模板募集效率提升、细胞周期调控及编辑细胞生存效率提升等方面详细综述了相关研究成果,发现尚未开发出放之四海而皆准的HR提升策略,基于HR的基因组编辑需要针对具体案例制定个体化策略。旨在为动物基因组编辑中提升CRISPR/Cas9介导的HR效率研究提供理论参考,为动物基因功能分析、基因治疗和经济动物基因编辑育种提供帮助。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号