首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Babesia microti is one of the most important pathogens causing humans and rodents babesiosis—an emerging tick-borne disease that occurs worldwide. At present, the gold standard for the detection of Babesia is the microscopic examination of blood smears, but this diagnostic test has several limitations. The recombinase polymerase amplification with lateral flow (LF-RPA) assay targeting the mitochondrial cytochrome oxidase subunit I (cox I) gene of B. microti was developed in this study. The LF-RPA can be performed within 10–30 min, at a wide range of temperatures between 25 and 45 °C, which is much faster and easier to perform than conventional PCR. The results showed that the LF-RAP can detect 0.25 parasites/μl blood, which is 40 times more sensitive than the conventional PCR based on the V4 variable region of 18S rRNA. Specificity assay showed no cross-reactions with DNAs of related apicomplexan parasites and their host. The applicability of the LF-RPA method was further evaluated using two clinical human samples and six experimental mice samples, with seven samples were positively detected, while only three of them were defined as positive by conventional PCR. These results present the developed LF-RPA as a new simple, specific, sensitive, rapid and convenient method for diagnosing infection with B. microti. This novel assay was the potential to be used in field applications and large-scale sample screening.  相似文献   

2.
Trichinella spiralis is a tissue-dwelling nematode parasite. A loop-mediated isothermal amplification (LAMP) assay was developed and validated for the sensitive and rapid detection of T. spiralis larvae in muscle samples. Sixteen sets of primers were designed to recognise distinct sequences of a conserved gene, a 1.6 kb repetitive element of the Trichinella genome. One set of primers was selected as the most appropriate for rapid detection. The specificity and sensitivity of the primers in LAMP reactions for T. spiralis larvae and muscle samples of mice infected with T. spiralis were determined. Another 10 heterologous parasites were selected for specificity assays. The results showed that target DNA was amplified and visualised by monitoring turbidity and adding calcein detection methods within 70 min at an isothermal temperature of 63 °C. The sensitivity of LAMP with the detection limit of 362 fg/μl was >10 times higher than that for PCR. The designed primers had a good specificity. No cross-reactivity was found with the DNA of any other parasites. The assay was able to detect T. spiralis in all mouse muscle samples infected with 10 T. spiralis larvae on day 20 p.i. We believe this is the first report regarding the application of the LAMP assay for detection of T. spiralis larvae in muscle samples from experimentally infected mice. This method demonstrates a potentially valuable means for the direct detection of T. spiralis larvae in meat inspection.  相似文献   

3.
In this study we developed and evaluated a Brugia Hha I repeat loop-mediated isothermal amplification (LAMP) assay for the rapid detection of Brugia genomic DNA. Amplification was detected using turbidity or fluorescence as readouts. Reactions generated a turbidity threshold value or a clear visual positive within 30 minutes using purified genomic DNA equivalent to one microfilaria. Similar results were obtained using DNA isolated from blood samples containing B. malayi microfilariae. Amplification was specific to B. malayi and B. timori, as no turbidity was observed using DNA from the related filarial parasites Wuchereria bancrofti, Onchocerca volvulus or Dirofilaria immitis, or from human or mosquito. Furthermore, the assay was most robust using a new strand-displacing DNA polymerase termed Bst 2.0 compared to wild-type Bst DNA polymerase, large fragment. The results indicate that the Brugia Hha I repeat LAMP assay is rapid, sensitive and Brugia-specific with the potential to be developed further as a field tool for diagnosis and mapping of brugian filariasis.  相似文献   

4.
Inchley C. J., Grieve E. M. and Preston P. M. 1987. The proliferative response of mouse lymphoid tissues during infections with Babesia microti or Babesia rodhaini. International Journal for Parasitology17: 945–950. Proliferative responses induced by the lethal protozoan parasite, Babesia rodhaini, or the non-lethal species, B. microti were measured in the lymphoid tissues of infected mice. Both stimulated equally rapid DNA synthesis in the spleen, but spleen enlargement during the first week was more pronounced after infection with B. rodhaini, suggesting an earlier influx of cirulating cells than during B. microti infections. Termination of B. rodhaini infections by chemotherapy revealed that the recruitment of cells, but not the proliferative response, was dependent on the presence of live parasites. The spleen enlargement typical of B. microti-infected mice developed during the second week, but up to half of this response could be attributed to compensatory erythropoiesis. Babesia microti, but not B. rodhaini, induced a proliferative response in peripheral lymph nodes, and transiently depressed cell division in the thymus.  相似文献   

5.
Molecular methods are used increasingly for the detection of Toxoplasma gondii infection. This study developed a rapid, sensitive, and specific conventional triplex PCR for the detection of the B1 gene and ITS1 region of T. gondii using newly designed primers and an internal control based on the Vibrio cholerae HemM gene. The annealing temperature and concentrations of the primers, MgCl(2), and dNTPs were optimized. Two sets of primers (set 1 and 2) were tested, which contained different segments of the T. gondii B1 gene, 529 repeat region and ITS1 region. A series of sensitivity tests were performed using parasite DNA, whole parasites, and spiked human body fluids. Specificity tests were performed using DNA from common protozoa and bacteria. The newly developed assay based on set 2 primers was found to be specific and sensitive. The test was capable of detecting as little as 10 pg T. gondii DNA, 10(4) tachyzoites in spiked body fluids, and T. gondii DNA in the organ tissues of experimentally infected mice. The assay developed in this study will be useful for the laboratory detection of T. gondii infection.  相似文献   

6.
《Harmful algae》2010,9(6):839-842
A loop-mediated isothermal amplification (LAMP) assay was developed to detect the genomic DNA of Karenia mikimotoi using a set of four specific primers based on a ribosomal DNA internal transcribed spacer (ITS). The sensitivity of this LAMP assay was 100-fold higher than regular PCR, and its specificity was validated using other algae as a comparison. Two visual detection approaches were feasible to interpret the positive or negative results. This technology may have the potential to aid in forecasting red-tides on the scene because of its high sensitivity, specificity and rapid detection.  相似文献   

7.
As one of the major pathogens, hepatopancreatic parvovirus (HPV) can cause severe diseases in penaeid shrimp. We developed a TaqMan-based real-time PCR assay for the HPV detection in China. A pair of primers (HPVF and HPVR) and a TaqMan probe were designed according to the HPV genomic sequence of Chinese isolate (GenBank: GU371276). Our data showed that the primers and TaqMan probe were specific for HPV, and they exhibited no cross-reaction with infectious hypodermal and hematopoietic necrosis virus (IHHNV), white spot syndrome virus (WSSV) and specific pathogen free (SPF) shrimp DNA. The assay had a detection limit of four plasmid HPV DNA copies per reaction. Furthermore, HPV was detected in 16 of 21 Fenneropenaeus Chinensis, 3 of 52 Litopenaeus vannamei and 2 of 2 Marsupenaeus japonicus penaeid shrimp samples. In addition, HPV was also detected in crabs. Therefore, this assay could be successfully used as a sensitive and rapid molecular-based diagnostic method to screen HPV-free animals and survey the prevalence of HPV in cultured populations of penaeid shrimp in China.  相似文献   

8.
The loop-mediated isothermal amplification (LAMP) reaction is a method that amplifies with high sensitivity, efficiency, and rapidity, deoxyribonucleic acid (DNA) under isothermal condition in simple incubators. Two primer sets for the LAMP method were designed using the nucleotide sequences of 18S rRNA gene of Babesia sp. BQ1 (Lintan) and Babesia sp. Xinjiang-2005 isolated in China. The primers were used to detect parasite DNA extracted from infected blood and purified parasites by LAMP. The specific ladder bands were amplified from the autologous genomic DNA of two Babesia species, respectively, and did not cross-react with the genomic DNA of Theileria sp. China 1, Theileria sp. China 2, B. bovis, Theileria sp. (Japan) and sheep. The LAMP was sensitive enough to detect 0.02 pg and 0.2 pg genomic DNA of Babesia sp. BQ1 (Lintan) and Babesia sp. Xinjiang-2005, respectively, from 10-fold serially diluted samples corresponding to the amount of DNA present in 50 μl of 0.000002% and 0.00002% parasitemic erythrocytes. Furthermore, DNA extracted from blood of intact (non-splenectomized) sheep experimentally infected with Babesia sp. BQ1 (Lintan) and Babesia sp. Xinjiang-2005 was amplified by the LAMP from week 1 to 9 and week 2 and 3 post-infection, respectively, demonstrating the high sensitivity of these primers. Of 365 samples collected from Gansu province, 14.3% (52/365) were positively detected by the LAMP. Of 145 samples collected on filter papers (Whatman) from the grazing sheep in Xinjiang province, 3.5% (5/145) were positive. These results show that the LAMP could be an alternative diagnostic tool for the detection of babesial infection in sheep and goats.  相似文献   

9.
In vitro treatment of Babesia microti infected erythrocytes with mitomycin C before their injection into mice prolonged the prepatent period of infection, reduced the levels of the infection in the ‘breakthrough’ parasitaemia and induced protection against reinfection. Treatment of B. microti with mitomycin C at a concentration of 25 μg ml?1 resulted in a mean peak parasitaemia of 6.2% in the infected mice compared with 46.5% in control mice injected with untreated B. microti parasites. In addition, mice survived a normally fatal B. rodhaini infection if injected with 6.2 × 107 infected erythrocytes treated with 25 μg ml?1 mitomycin C and four of five mice survived infection with 6.2 × 105 similarly treated infected erythrocytes. However, the degree of protection against B. rodhaini was dependent on the concentration of mitomycin C used to treat the parasites and treatment of 5 × 107 infected erythrocytes with 50 μg ml?1 resulted in survival of only four of the five infected mice. In addition, when 100 μg ml?1 of mitomycin C was used to treat B. rodhaini parasites, the course of infection, although delayed, was indistinguishable from that seen in the control mice and all the mice died. The latter results and the lack of efficacy of comparable numbers of heat killed parasites suggested the necessity for sufficient, non-replicating, mitomycin C treated parasites to metabolize and produce and/or present protective antigens to the host.  相似文献   

10.
A PCR-based diagnostic assay was developed for early detection and identification of Aphelenchoides fragariae directly in host plant tissues using the species-specific primers AFragFl and AFragRl that amplify a 169-bp fragment in the internal transcribed spacer (ITS1) region of ribosomal DNA. These species-specific primers did not amplify DNA from Aphelenchoides besseyi or Aphelenchoides ritzemabosi. The PCR assay was sensitive, detecting a single nematode in a background of plant tissue extract. The assay accurately detected A. fragariae in more than 100 naturally infected, ornamental plant samples collected in North Carolina nurseries, garden centers and landscapes, including 50 plant species not previously reported as hosts of Aphelenchoides spp. The detection sensitivity of the PCR-based assay was higher for infected yet asymptomatic plants when compared to the traditional, water extraction method for Aphelenchoides spp. detection. The utility of using NaOH extraction for rapid preparation of total DNA from plant samples infected with A. fragariae was demonstrated.  相似文献   

11.
A reliable, accurate and rapid multigene-based assay combining real time quantitative PCR (qPCR) and a Razor Ex BioDetection System (Razor Ex) was validated for detection of Xylella fastidiosa subsp. pauca (Xfp, a xylem-limited bacterium that causes citrus variegated chlorosis [CVC]). CVC, which is exotic to the United States, has spread through South and Central America and could significantly impact U.S. citrus if it arrives. A method for early, accurate and sensitive detection of Xfp in plant tissues is needed by plant health officials for inspection of products from quarantined locations, and by extension specialists for detection, identification and management of disease outbreaks and reservoir hosts. Two sets of specific PCR primers and probes, targeting Xfp genes for fimbrillin and the periplasmic iron-binding protein were designed. A third pair of primers targeting the conserved cobalamin synthesis protein gene was designed to detect all possible X. fastidiosa (Xf) strains. All three primer sets detected as little as 1 fg of plasmid DNA carrying X. fastidiosa target sequences and genomic DNA of Xfp at as little as 1 - 10 fg. The use of Razor Ex facilitates a rapid (about 30 min) in-field assay capability for detection of all Xf strains, and for specific detection of Xfp. Combined use of three primer sets targeting different genes increased the assay accuracy and broadened the range of detection. To our knowledge, this is the first report of a field-deployable rapid and reliable bioforensic detection and discrimination method for a bacterial phytopathogen based on multigene targets.  相似文献   

12.
The nested PCR method with primers flanking a conserved fragment of the Babesia microti ss-rDNA gene was used to examine 834 larvae of Ixodes trianguliceps ticks engorged to a varying degree, taken off 237 hosts of 12 species (rodents and insectivores). The hosts were collected in southern taiga forests in the lowmountain area of the Middle Urals (Chusovoi District, Perm Province) in 2003–2010. Babesia DNA was detected in 89 (10.7%) larvae from 8 species of small mammals. According to the data obtained by PCR and microscopic methods, either B. microti DNA or the parasites themselves were found in the blood of 45.2% of the mammals. The nucleotide sequences of 15 amplicons of Babesia DNA obtained from larvae of I. trianguliceps ticks and their hosts were identical to those of B. microti available in GenBank. In 13 cases, they were similar to B. microti US-type (a human pathogen) and in two cases (those from I. trianguliceps and from the vole Clethrionomys rufocanus from which it was removed), to B. microti of the Munich strain which is not pathogenic to humans. The duration of feeding on small mammals seems to exert the main influence on the infection rate of I. trianguliceps larvae. The fully engorged larvae contained B. microti DNA more often and usually in greater amounts than those collected during the first days of blood-sucking. The latter usually revealed Babesia DNA in the minimum quantity (< 0.064 ng/μl). According to the data obtained, transovarial transmission of Babesia in I. trianguliceps is unlikely. The processes of horizontal and transstadial transmission appear to be of crucial importance for the functioning of the natural foci of babesiosis.  相似文献   

13.
A rapid method, utilizing both polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA), was developed for detection of oyster MSX disease. The technique included using Haplosporidium nelsoni pathogen-specific PCR primers (based on ribosomal RNA genes), a Chelex resin (for rapid DNA extraction from oyster mantle tissues), and cloned H. nelsoni rRNA plasmid DNA (for use as a capture probe). Digoxigenin was incorporated into the pathogen-specific PCR products, which were captured by the coated probe in a fast hybridization reaction and then detected by ELISA. The sensitivity of PCR amplification on cloned plasmid DNA was 10 fg for detection by stained agarose gel, and increased to 0.01 fg for ELISA. Positive signals were observed in infected oysters using the PCR-ELISA technique. This method may be applicable to early detection of infection. Received April 14, 1998; accepted September 30, 1998.  相似文献   

14.
We have sequenced the genome of the emerging human pathogen Babesia microti and compared it with that of other protozoa. B. microti has the smallest nuclear genome among all Apicomplexan parasites sequenced to date with three chromosomes encoding ∼3500 polypeptides, several of which are species specific. Genome-wide phylogenetic analyses indicate that B. microti is significantly distant from all species of Babesidae and Theileridae and defines a new clade in the phylum Apicomplexa. Furthermore, unlike all other Apicomplexa, its mitochondrial genome is circular. Genome-scale reconstruction of functional networks revealed that B. microti has the minimal metabolic requirement for intraerythrocytic protozoan parasitism. B. microti multigene families differ from those of other protozoa in both the copy number and organization. Two lateral transfer events with significant metabolic implications occurred during the evolution of this parasite. The genomic sequencing of B. microti identified several targets suitable for the development of diagnostic assays and novel therapies for human babesiosis.  相似文献   

15.
The need for a rapid detection and characterization of biowarfare (BW) agents cannot be over emphasized. With diverse array of potential BW pathogen available presently, rapid identification of the pathogen is crucial, so that specific therapy and control measures can be initiated. We have developed a multiplex polymerase chain reaction based reverse line blot macroarray to simultaneously detect four pathogens of BW importance viz. Bacillus anthracis, Yersinia pestis, Brucella melitensis and Burkholderia pseudomallei. The multiplex PCR utilizes 14 pairs of primers targeting 18 specific markers. These markers include genes which are genus specific, species-specific chromosomal sequences and virulence markers of plasmid origin. The assay was evaluated on various human, environment and animal isolates. The assay w successful in simultaneous detection and characterization of isolates of the four pathogens on as a single platform with sensitivity ranging from 0.3 pg to 0.3 ng of genomic DNA. The assay was able to detect 5 × 102 cfu/ml for B. anthracis, 8 × 102 cfu/ml for Yersinia sp., 1.4 × 102 cfu/ml for B. melitensis and 4 × 102 cfu/ml for B. pseudomallei.  相似文献   

16.

Background

Cloning of parasites by limiting dilution is an essential and rate-limiting step in many aspects of malaria research including genomic and genetic manipulation studies. The standard Giemsa-stained blood smears to detect parasites is time-consuming, whereas the more sensitive parasite lactate dehydrogenase assay involves multiple steps and requires fresh reagents. A simple PCR-based method was therefore tested for parasite detection that can be adapted to high throughput studies.

Methods

Approximately 1 μL of packed erythrocytes from each well of a microtiter cloning plate was directly used as template DNA for a PCR reaction with primers for the parasite 18s rRNA gene. Positive wells containing parasites were identified after rapid separation of PCR products by gel electrophoresis.

Results

The PCR-based method can consistently detect a parasitaemia as low as 0.0005%, which is equivalent to 30 parasite genomes in a single well of a 96-well plate. Parasite clones were easily detected from cloning plates using this method and a comparison of PCR results with Giemsa-stained blood smears showed that PCR not only detected all the positive wells identified in smears, but also detected wells not identified otherwise, thereby confirming its sensitivity.

Conclusion

The PCR-based method reported here is a simple, sensitive and efficient method for detecting parasite clones in culture. This method requires very little manual labor and can be completely automated for high throughput studies. The method is sensitive enough to detect parasites a week before they can be seen in Giemsa smears and is highly effective in identifying slow growing parasite clones.  相似文献   

17.
Botrytis cinerea is a devastating plant pathogen that causes grey mould disease. In this study, we developed a visual detection method of B. cinerea based on the Bcos5 sequence using loop-mediated isothermal amplification (LAMP) with hydroxynaphthol blue dye (HNB). The LAMP reaction was optimal at 63°C for 45 min. When HNB was added prior to amplification, samples with B. cinerea DNA developed a characteristic sky blue color after the reaction but those without DNA or with DNA of other plant pathogenic fungi did not. Results of HNB staining method were reconfirmed when LAMP products were subjected to gel electrophoresis. The detection limit of this LAMP assay for B. cinerea was 10−3 ng µL−1 of genomic DNA per reaction, which was 10-fold more sensitive than conventional PCR (10−2 ng µL−1). Detection of the LAMP assay for inoculum of B. cinerea was possible in the inoculated tomato and strawberry petals. In the 191 diseased samples, 180 (94.2%) were confirmed as positive by LAMP, 172 (90.1%) positive by the tissue separation, while 147 (77.0%) positive by PCR. Because the LAMP assay performed well in aspects of sensitivity, specificity, repeatability, reliability, and visibility, it is suitable for rapid detection of B. cinerea in infected plant materials prior to storage and during transportation, such as cut flowers, fruits and vegetables.  相似文献   

18.
Giardia lamblia is recognized as one of the most prevalent parasites in dogs. The present study aimed to establish a loop-mediated isothermal amplification (LAMP) assay for rapid and specific detection of G. lamblia from dogs. The fecal samples were collected and prepared for microscopic analysis, and then the genomic DNA was extracted directly from purified cysts. The concentration of DNA samples of G. lamblia were diluted by 10-fold serially ranging from 10-1 to 10-5 ng/µl for LAMP and PCR assays. The LAMP assay allows the amplification to be finished within 60 min under isothermal conditions of 63℃ by employing 6 oligonucleotide primers designed based on G. lamblia elongation factor 1 alpha (EF1α) gene sequence. Our tests showed that the specific amplification products were obtained only with G. lamblia, while no amplification products were detected with DNA of other related protozoans. Sensitivity evaluation indicated that the LAMP assay was sensitive 10 times more than PCR. It is concluded that LAMP is a rapid, highly sensitive and specific DNA amplification technique for detection of G. lamblia, which has implications for effective control and prevention of giardiasis.  相似文献   

19.
Evaluation of Cryptosporidium parvum Genotyping Techniques   总被引:1,自引:0,他引:1       下载免费PDF全文
We evaluated the specificity and sensitivity of 11 previously described species differentiation and genotyping PCR protocols for detection of Cryptosporidium parasites. Genomic DNA from three species of Cryptosporidium parasites (genotype 1 and genotype 2 of C. parvum, C. muris, and C. serpentis), two Eimeria species (E. neischulzi and E. papillata), and Giardia duodenalis were used to evaluate the specificity of primers. Furthermore, the sensitivity of the genotyping primers was tested by using genomic DNA isolated from known numbers of oocysts obtained from a genotype 2 C. parvum isolate. PCR amplification was repeated at least three times with all of the primer pairs. Of the 11 protocols studied, 10 amplified C. parvum genotypes 1 and 2, and the expected fragment sizes were obtained. Our results indicate that two species-differentiating protocols are not Cryptosporidium specific, as the primers used in these protocols also amplified the DNA of Eimeria species. The sensitivity studies revealed that two nested PCR-restriction fragment length polymorphism (RFLP) protocols based on the small-subunit rRNA and dihydrofolate reductase genes are more sensitive than single-round PCR or PCR-RFLP protocols.  相似文献   

20.
The need for rapid methods in order to precisely detect methicillin-resistant Staphylococcus aureus (MRSA) is extensively acknowledged. This study evaluated a quantitative real-time PCR assay targeting mecA (encoding high level resistance to methicillin) and femB (a specific genomic marker for S. aureus) genes to detect MRSA from broth culture, from serum seeded with MRSA and straight from the patient''s serum. One hundred and thirty-five clinical isolates of MRSA strains and different species were utilised in this study. In addition, a pilot study with 9 patients'' serum samples was performed. The sensitivity and specificity values for this assay were 99% and 100% respectively. The detection limit for this method was 1.23×102 CFU/ml from the serum seeded with MRSA cells and the limiting concentration of DNA for detection was 18 fg, which equates to 5.14 genomic DNA copies. In addition, this assay detected MRSA from patient''s serum (7 out of 9) with sensitivity of 77.8%. Overall, the assay was rapid, efficient, sensitive and easy to perform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号