首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Six years ago, DMM launched a subject collection called ‘Drosophila as a Disease Model’. This collection features Review-type articles and original research that highlight the power of Drosophila research in many aspects of human disease modeling. In the ensuing years, Drosophila research has further expanded to capitalize on genome editing, development of resources, and further interest in studying rare disease mechanisms. In the current issue of DMM, we again highlight the versatility, breadth, and scope of Drosophila research in human disease modeling and translational medicine. While many researchers have embraced the power of the fly, many more could still be encouraged to appreciate the strengths of Drosophila and how such research can integrate across species in a multi-pronged approach. Only when we truly acknowledge that all models contribute to our understanding of human biology, can we take advantage of the scope of current research endeavors.

Summary: This Editorial encourages us to embrace the power of the fly in studying human disease and highlights how Drosophila studies can be integrated with research in other species to further our understanding of human biology.

For over a century, scientists have used the fruit fly to learn about fundamental and evolutionarily conserved genetic and cellular processes. The pioneering work of Thomas Hunt Morgan and his students, in the early 20th century, proved that genes are located on chromosomes and led to the first chromosome linkage maps (Morgan, 1910). In the 1980s, Ed Lewis, Christiane Nüsslein-Volhard and Eric Wieschaus showed that individual genes could be mutated to cause characteristic embryonic patterning defects (Lewis, 1978; Nüsslein-Vollhard and Wieschaus, 1980). Their genetic studies allowed them to order genes within functional pathways through epistasis analyses. The genes they identified have counterparts across species and play key roles in development and disease from flies to humans. Indeed, much of the molecular circuitry for key signaling pathways, such as RAS, Notch, Hedgehog and Wnt, was elucidated in Drosophila (Ashton-Beaucage and Therrien, 2017; Bejsovec, 2018; Ingham, 2018; Salazar and Yamamoto, 2018). This rich history has established Drosophila as a powerful tool in biology, paving the way for further advances in basic and translational research.  相似文献   

5.
Summary: We provide an Editorial perspective on approaches to improve ethnic representation in the human genome reference sequence, enabling its widespread use in genomic studies and precision medicine to benefit all peoples.

This year marks the 20th anniversary of the announced completion of the draft human genome sequence. The reference genome was a transformative accomplishment for human biological and medical research and is often referred to as biology''s moonshot. Over the past 20 years, the availability of this reference, and its refinement, has had the predicted transformative impact on our understanding of human genetic diseases, and, in many ways, has revolutionized the practice of medicine and medical diagnosis. These advances are mainly due to the emergence and refinement of rapid sequencing technology, which has facilitated our ability to generate genomic data, and to corresponding advances in computational analysis of these data, which have solidified the significant role of genomic alterations in disease etiology. Along these lines, large international projects have enriched our understanding of human genomic diversity in the context of cancer (Campbell et al., 2020), psychiatric genetics (Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2018; Cleynen et al., 2021), autism (Satterstrom et al., 2020; Trost et al., 2020) and many other diseases. Such studies have mainly catalogued individual and ancestry-based variation in human genomes, albeit to a limited extent. The inherent limitation in scope has been reflective of a predominant focus on populations of European ancestry in the earliest studies, such as the 1000 Genomes Project. More recent attempts to address these disparities have illuminated the challenges in recruiting diverse populations that either have a justifiable lack of trust in medical research or have cultural complexities regarding consent to participate. By improving diversity and inclusion in these studies, there would be increased hope that genomic studies will more broadly benefit populations. In order for the human genome and genomics to have a more significant and equitable impact in the future, accordingly, there is much more to be done. Medical and scientific communities need to consult with and listen to diverse populations and cultures to understand their concerns and needs, and, importantly, to make corresponding changes in our research practices that ensures accountability to these groups. Open in a separate windowImage reproduced under the terms of the Pixabay License.Ongoing large-scale population studies that link with individual clinical information are beginning to shape newer capabilities in predicting complex genetic disease susceptibility, primarily focused on developing and testing polygenic risk scores (Shen et al., 2020; Vujkovic et al., 2020; Riveros-Mckay et al., 2021; Weale et al., 2021). These efforts have the potential to radically change the practice of medicine, from a reactive to a proactive model of care delivery, based on an individual''s likelihood to experience predicted health challenges during their life course. As such, not only is current genomics-based diagnosis being imperiled by a lack of understanding of genomic variation based on ancestry (Sirugo et al., 2019), but future health care aspects also will be compromised in an ancestry-specific way, further compounding the impact of systemic racism that continues to make ethnic minorities more vulnerable in this setting (Yudell et al., 2020). In aggregate, this means that health disparities in many underserved populations will continue. In addition to these disparities in genomic representation, we also still lack a fundamental understanding across all ancestries, of what genotypes define as ‘healthy’ relative to our significant and growing understanding of ‘diseased’.There is renewed hope as newer projects strive to improve inclusivity, and here we highlight several examples arising in the United States. The National Institutes of Health (NIH)’s All of Us Research Program has set laudable goals for inclusion of diverse ethnic groups based on recent metrics, wherein over 50% of the currently enrolled 394,000 participants are ethnic minorities. This is a promising beginning, and, with a planned recruitment of 1 million participants, it will be interesting to see the final percentages toward the stated goal. More recently, the NIH posted a request for applications in support of research leading to the creation of best practices for the study of population identifiers. Local projects that focus on specific populations are also emerging, with a variety of funding mechanisms. For example, a study funded by the New York Genome Center plans to enroll minority participants from the broad diversity found throughout the New York City metropolitan area, with an aim to sequence whole genomes and collect health-related information, as discussed by Harold Varmus, one of the study''s leaders (Varmus, 2019). In Columbus, Ohio, the Institute for Genomic Medicine has opened an Institutional Review Board-approved study to consent, produce and database whole-genome sequences from unrelated individuals of Somali descent, to better inform our genomics-based diagnostic efforts for Somali children. Similarly, at Yale University, the Generations Project aims to increase diversity by recruiting in the Connecticut area, which is closely aligned with diversity in US consensus metrics. The exome sequencing and genotyping data from this project will be linked to electronic health records, allowing an opportunity to study and advance genomic health in under-represented minorities. Olufunmilayo Olopade, at the University of Chicago, has also discussed her work investigating genetic risk factors for breast cancer in Black women in studies based in Chicago and West Africa that aim to improve early detection, prevention and treatment in these populations (Olopade, 2021). Similar efforts outside the United States include the Human Heredity and Health in Africa Initiative (H3Africa), GenomeAsia 100K, ChileGenomico and the oriGen Project based in Mexico, among others.Technology continues to impact our human genome reference, predominantly using long-read single-molecule sequencing technologies to generate data, and algorithms capable of assembling these reads into long stretches of human chromosomes, permitting a more complete understanding of structural variation and unique content. Recently, an ‘end-to-end’ assembly of a complete hydatidiform mole cell line was reported, providing contiguity across centromeric and other complex repeats in the human genome, as described in a preprint (Nurk et al., 2021). However, the ancestry of this sample is European. Importantly, the Pangenome Project will aim to produce high-quality long-read sequencing for 300 individuals originally profiled in the 1000 Genomes Project. These comprehensive reference genomes will also include sequences of highly repetitive regions, including centromeres, segmental duplications and ribosomal DNA (rDNA) arrays on telomeres. In addition, the population diversity provided by these genomes will give researchers the option to choose a reference that is more closely related to any given sequenced individual, resulting in improved variant discovery.In addition to the influence of genomic technology, we have branched out from sole focus on DNA sequence to cataloguing RNA expression, isoforms and other types of characterization by applying next-generation and single-molecule sequencing, which, when integrated with DNA information, can provide significant insights into the sequences actively being expressed in tissues, as well as those being silenced by chromatin conformation or methylation. Such studies reveal that there is much more to be learned, and emphasize the importance of cataloguing normal tissue gene expression, which is available at GTEx, the Allen Brain Atlas and other internet resources. Exquisite new knowledge of gene expression profiles at the single-cell level from normal and diseased human tissue is emerging from the Human Cell Atlas projects, revealing the intricacies of human biology at high resolution (Ponting, 2019; Lindeboom et al., 2021).Yet, the concern about inclusion persists, even for these newest technological avenues that may indeed reveal important, ancestry-relevant differences with respect to disease susceptibility, physiologic specificity, pharmacogenomics and other pertinent areas (Okada et al., 2018). Without broadening the scope of diversity, we are concerned that individuals and populations will be left behind in many aspects of genomic medicine, effectively broadening disparities. Considering worldwide disparities that exist, such as poor access to health care, even in countries with high income and/or universal health care, the question remains about how to effectively foster inclusion and ensure that under-represented populations will benefit from expanded genomic research. Several strategies for increasing diversity and inclusion have been published (Cooke Bailey et al., 2020; Essien and Ufomata, 2021; Rotimi and Adeyemo, 2021; Nature Editorial, 2021). Here, we would like to highlight the following approaches. First, diversity in research subjects and samples starts with a diverse workforce at all levels, including leadership of major consortium efforts. To enable the creation of a diverse workforce, researchers need to engage with these communities to encourage and support them in pursuing such career paths and overcoming institutional barriers to achieve these goals. Researchers from under-represented groups that truly understand the communities being studied should have the opportunity to participate at all levels of a project, including leading the project and consenting participants (Bonham and Green, 2021). This facilitates surmounting socio-economic and cultural barriers that make it difficult to recruit under-represented minorities and engages the study team to meet diversity recruitment goals, while ensuring that the interpretation and outcomes of research are broadly beneficial. Second, there needs to be increased funding of institutions with diverse staff and students, such as Historically Black Colleges and Universities or community colleges with 2-year associate programs, as well as internship programs that bring minority students from inner-city high schools into genomics laboratories to learn about genomics research and its applicability to human health. Such programs ensure that leadership opportunities and training in genomics will directly benefit the communities that we intend to recruit. Equally important in this regard is education directed at researchers and medical providers that illuminates ongoing issues concerning racism, diversity and inclusion in science and health care. Third, long-term funding must be dedicated to build infrastructure and collaborative networks to enable the facile recruitment of diverse cohorts. H3Africa is a good model that could be replicated in other under-represented regions across the world, including diverse populations in large inner-city settings, emphasizing needed focus on consultation within these communities to understand their wants, needs and concerns regarding genetics and genomics. Lastly, funding agencies need to switch mindsets from having diversity as an optional goal to being a measurable milestone that must be met. The Human Cell Atlas in their recent funding round for the Pediatric Cell Atlas provides one example of explicit ancestry recruitment goals. Longer term, we must take responsibility to put in place mechanisms that both ensure accessibility to data and quantify the benefit of these studies to all populations.In reflecting on the 20 years since the published draft human genome, it is time to recognize that the combination of technologies, computational algorithms, and the diversity and inclusion of participants gives us the opportunity, this time around, to design cohort studies to benefit ALL of us. Certainly, there is a responsibility for journals, such as DMM, to address the issue of diversity and inclusion, by encouraging the publication of research that advances our understanding of diseases over-represented in individuals of diverse ancestries, and also encouraging reviewers to be conscious that access to technology is not equivalent in all countries, when requesting revisions for publication. DMM''s policies include aims to engage diverse and inclusive groups of authors, reviewers, Editors, Editorial Board members, readers and the communities being studied, and the journal is a signatory of the Royal Society of Chemistry''s initiative ‘Joint commitment for action on inclusion and diversity in publishing’. Journals can also seek out and publish pieces that address these important (and sometimes difficult) conversations, and openly discuss the ongoing challenges as well as approaches employed by others, as we strive to identify solutions that benefit everyone.  相似文献   

6.
First Person is a series of interviews with the first authors of a selection of papers published in Disease Models & Mechanisms, helping early-career researchers promote themselves alongside their papers. Chady Hakim is first author on ‘ Extensor carpi ulnaris muscle shows unexpected slow-to-fast fiber-type switch in Duchenne muscular dystrophy dogs’, published in DMM. Chady is a Research Assistant Professor in the lab of Dongsheng Duan at the University of Missouri, Colombia, MO, USA, investigating the preclinical development of gene therapy for Duchenne muscular dystrophy (DMD), with a particular interest in using the canine DMD model.

Chady Hakim How would you explain the main findings of your paper to non-scientific family and friends? DMD is a severe muscle disease caused by dystrophin deficiency. Loss of dystrophin leads to muscle degeneration and remodeling, and eventually to muscle death and replacement by fatty and fibrotic tissues. The canine DMD model shares clinical and pathophysiological similarities to that of human patients. Therefore, studies performed with the canine model provide critical insight into understanding muscle disease in DMD. In this study, we were first interested in developing a force assay platform to evaluate the contractile force and characterize the kinetic properties of a single muscle in the canine DMD model. We focused on the extensor carpi ulnaris (ECU) muscle from the forelimb muscle group. As expected, we saw a loss of muscle force in affected dogs. Surprisingly, we observed an unexpected contractile kinetic profile. It has been well established that the dystrophic muscle undergoes a fast-to-slow fiber-type switch. This led us to predict that the affected muscle would exhibit slow contraction and relaxation. Surprisingly, we saw just the opposite. There was a decrease in the time taken to reach peak tension and relax the affected ECU muscle, indicating a faster contraction and relaxation. Additional characterization of myofiber-type composition in the normal and affected ECU muscle confirmed the kinetic assay results.
“[…] studies performed with the canine model provide critical insight into understanding muscle disease in DMD.”
What are the potential implications of these results for your field of research? The unexpected slow-to-fast myofiber-type switch highlights the complexity of muscle remodeling in dystrophic large mammals and paves the way for better utilizing dystrophic canines as a preclinical model in the study of DMD pathogenesis. Additionally, the fiber-type switch phenomenon offers a unique entry point for (1) investigating the molecular mechanism(s) that lead to this phenomenon and how it directly correlates to the loss of dystrophin, and (2) evaluating the pathophysiological implications for muscle strength and in determining whether this is unique to canine muscle. Most importantly, these results have significant implications for therapeutic approaches to DMD, such as gene replacement and editing, and evaluating their efficacy in correcting the fiber-type switch. What are the main advantages and drawbacks of the model system you have used as it relates to the disease you are investigating? When initiating this study, our goal was to evaluate muscle strength in the affected dogs. To achieve this goal, we developed an all-in-one automated in situ force assay platform. This novel platform has several advantages. First, we designed all the components to be adjustable to meet the need for studying muscles at different anatomic locations or with different sizes. Our design was also made with the consideration to adopt the platform to accommodate other large animal models besides the canine. Second, we developed a detailed protocol to optimize the stimulation parameters, allowing the muscle to reach its optimal force during contraction. This allowed the comprehensive evaluation of the contractile and kinetic properties of a single muscle. Together, this novel platform offers a unique ability to correlate the physiological findings with the molecular, cellular, biochemical and histological changes in a single muscle. This ability is critical for evaluating preclinical intervention studies. Unfortunately, this is a terminal assay, limiting the investigators to follow disease progression and therapeutic response in the same animal over time. What has surprised you the most while conducting your research? It is well established that the dystrophic muscle undergoes a fast-to-slow, rather than a slow-to-fast, transition in fiber type. In this study, we observed the opposite in affected canine muscles as they were mainly composed of the fast fiber type. The underlying mechanism of this fiber-type switch needs to be further investigated so it can be determined whether it is unique to canine muscle. Furthermore, muscles that are mainly composed of the fast fiber type are characterized by a higher force, higher contraction and relaxation rate, and less time needed to achieve full contraction and relaxation. In affected dogs, we noticed a reduction in the time taken for contraction and relaxation. Surprisingly, the force, contraction rate and relaxation rate were significantly reduced in the affected muscle compared to the normal muscle. Open in a separate windowRepresentative myosin heavy chain isoform immunostaining photomicrographs of a normal (left) and an affected (right) ECU muscle. Blue, type I myofiber; red, type IIa myofiber; magenta, type I/IIa hybrid myofiber; green, laminin immunostaining Describe what you think is the most significant challenge impacting your research at this time and how will this be addressed over the next 10 years? Unlike other genetic diseases, DMD is very challenging to treat. First, it is caused by mutations in the second largest gene in the body. The large size of the dystrophin gene makes it impossible to replace it through the gene replacement approach unless a truncated gene with a similar function to the full-length gene is used. Second, DMD affects every muscle type in the body, making a whole-body treatment necessary to achieve a complete cure. Gene therapy using adeno-associated virus (AAV)-mediated CRISPR/Cas9 gene editing shows much promise for treating DMD. It allows for the restoration of a near full-length dystrophin protein without the need for using a highly truncated microgene that can only result in limited function rescue (Hakim et al. 2018). We recently showed that AAV CRISPR therapy resulted in efficient dystrophin restoration in affected dogs but resulted in a Cas9-specific immune response that eliminated the edited cell. This unfortunate response is a critical barrier to advancing CRISPR therapy into clinics. With further advances in gene therapy, combined with advances in the understanding of CRISPR genome editing and how to evade the Cas9-specific T-cell response, AAV CRISPR therapy will be suitable for treating DMD. What changes do you think could improve the professional lives of early-career scientists? I believe it is critical for early-career scientists to collaborate and interact with other related research fields. This empowers and extends their knowledge, and also has a positive influence on their research focus. Before I started my PhD, I had gained some knowledge about muscle physiology. I wanted to extend this knowledge in my PhD studies by building a bridge between muscle physiology and molecular biology, and the perfect application was the field of DMD gene therapy. Through my previous experience, I was able to develop tools, such as the platform presented in this study, to answer critical molecular questions in the field of gene therapy. As a matter of fact, the outcome observation of the fiber-type switch was a result of analyzing the kinetic properties of the affected muscle force. This observation will now become an important biomarker in the evaluation of the efficacy of novel therapy.
“I believe it is critical for early-career scientists to collaborate and interact with other related research fields.”
What''s next for you? With the novelty of the data presented in this study, I''m excited about finding out whether gene therapy approaches would correct the fiber-type switch and reverse the remodeling observed in the affected canine muscle. I''m currently working with my mentor Dr Dongsheng Duan to evaluate fiber-type composition-affected canine muscles treated with gene therapy.  相似文献   

7.
8.
9.
Prompted by the occasion of International Women''s Day, Joan Heath and DMM reunited Professors Suzanne Cory and Joan Steitz via Zoom to discuss their extraordinary careers and joint experiences in science. They also delve into past and present challenges for women in science, and discuss the role of scientists in a post-pandemic world.

Suzanne Cory, Joan Steitz and Joan Heath (from left to right) As one of Australia''s most eminent molecular biologists, with a school in Melbourne bearing her name, Professor Suzanne Cory has been both Director of The Walter and Eliza Hall Institute of Medical Research in Australia (WEHI) and President of the Australian Academy of Science. She earned her PhD at the Medical Research Council (MRC) Laboratory of Molecular Biology (LMB) in Cambridge, UK, with postdoctoral training at the University of Geneva. She continues her research at WEHI as an honorary distinguished research fellow, investigating the genetics of the immune system in the development of blood cancers and the effects of chemotherapeutic drugs on cancer cells.Joan Steitz – currently Sterling Professor of Molecular Biophysics and Biochemistry at Yale University, and for 35 years the recipient of a Howard Hughes fellowship – is best known for her seminal work in RNA biology. She was the first female graduate student to join the laboratory of James Watson at Harvard University and proceeded with her postdoctoral training at the MRC LMB in Cambridge. Her pioneering research delved into the fundamental mechanisms of ribosome and messenger RNA interactions, as well as RNA splicing, heralding the phenomenon of alternative RNA splicing. A recipient of many awards and honours, she is also involved in international projects aimed at supporting women in science.Host Joan Heath heads a laboratory at WEHI in Australia. She received her undergraduate degree from the University of Cambridge, followed by her PhD at the Strangeways Research Laboratory also in Cambridge, then just across the road from the MRC LMB. After postdoctoral positions in bone biology and osteoporosis research, Joan joined the Ludwig Institute for Cancer Research where she became a laboratory head, and changed her focus to cancer research using zebrafish to identify genes that are indispensable for the rapid growth and proliferation of cells during development. She joined the WEHI in 2012. There she showed that the same developmental genes are also required by highly proliferative, difficult-to-treat cancers, including lung, liver and stomach cancer, paving the way for translational research targeting these genes in novel cancer therapies. Joan H: How long have you two known each other? Suzanne: I was calculating that this morning and I was astonished because it seems like only yesterday, but it has been 55 years since we met in Cambridge. It has been a voyage in science and a voyage in the world because we have always made a point to meet up in beautiful places and go hiking. That is how we''ve been able to renew our friendship over all these years. Joan H: Where were you when you first met? Joan S: We both were working at the MRC LMB in Cambridge, England. Suzanne was doing her PhD and I arrived slightly later for a postdoc.Suzanne: We had a pre-meeting in the sense that Joan, Jerry Adams (my future husband) and Tom Steitz (Joan''s husband), were all graduate students together in Harvard. So, when Joan and Tom came to Cambridge, it was natural that we would all start doing things together. And Joan and I ended up sharing a lab bench.Joan S: The reason that I did a postdoc in the mecca of X-ray crystallography was that I had married a crystallographer – and there was no other place that he could possibly go. They very much wanted to have my husband at the Cambridge MRC lab, but there wasn''t a clear plan for me. Francis Crick suggested that I do a literature project in the library, but I knew that theory was not my forte in comparison to experiments. I started talking to the many people working in the lab and found a project that no one wanted, because it was so challenging. But it was a very interesting problem, so I decided to take it on – and it turned out to be a great project.Joan H: That''s amazing. You were obviously determined to overturn other people''s expectations of you.Suzanne, even now, it''s extremely unusual for a young person to leave their home country to do their PhD. It''s still a brave thing to do but all those years ago it was really courageous. You told me that you ended up there because you wrote a simple letter, which was a complete shot in the dark.Suzanne: It certainly was. During my master''s degree at the University of Melbourne, I became more and more interested in doing science and decided I would do a PhD. But I had a counteracting desire to travel and see Europe. So I decided that I would do my PhD overseas to give myself the opportunity of travelling. I had fallen in love with DNA during my undergraduate studies. So, I wrote a letter to Francis Crick in Cambridge, and asked if he would take me on as a PhD student. Much to my amazement, I eventually got a letter back saying yes. I think that my professor of biochemistry might have also visited Cambridge while he was travelling and spoken up for me. However, I was still extraordinarily fortunate that Francis had agreed because there weren''t many PhD students in the LMB at that time. It made such a difference to my entire life. I look back on that letter and think, “How did you have the audacity to write that letter and aim to go to that laboratory?”. I think it was partly naivety.Joan H: That''s a lesson for everyone, to go for your dreams, and don''t assume people won''t take notice of you. It is more difficult now, when scientists receive hundreds of e-mail applications from prospective PhD students in their inbox. You would have written a letter with a stamp on it that probably took three weeks to arrive, but it just shows you that you should be audacious. Did you have a different experience to Joan when you arrived? Was there a proper project already lined up for you?Suzanne: I was interviewed by Francis Crick and Sydney Brenner, who were the joint directors of the department. They decided that I would work on the structure of the methionyl-tRNA that puts methionine into internal positions in polypeptides. After they described the project – which involved doing counter-current distribution fractionation of bulk tRNAs, in which I had no experience whatsoever – Sydney in his very characteristic monotone said, “Do you think you''re up to it?”. I sort of gulped to myself and said, “Yes, I think I could do that”. I then went to Brian Clark''s laboratory, who was going to be my PhD supervisor, and started the project. Like always in life, if you learn from people and just go from one day to the next, you actually get there in the end.Joan H: So, persistence was key. Were there many other women at the LMB at the time?Suzanne: I don''t remember any female scientists who had official senior positions. There were certainly some strong female scientists there, but I don''t think they were given the recognition or the status that they actually deserved.Joan S: Later, some were given more recognition, crystallographers in particular, but not so much the molecular biologists.Suzanne: I think, as women, we both pioneered in that department.Joan H: Given the fact that you both agreed to take on projects you had very little previous experience with and that the male supervisors thought you weren''t going to have the mettle to carry it through, once you were there, did you feel that you had to work the whole time? Or did you still manage to have lots of fun and partake in opportunities that Cambridge had to offer at the time?Joan S: We certainly partook in a lot of those things. My husband and I got interested in antique furniture, antique paintings, and used to scour the countryside for little antique shops. We saw lots of England, then a little bit of Scotland and Wales. It was wonderful. A real adventure.Suzanne: I worked really hard most of the time that I was in Cambridge, as the work was very exciting. But I would take holiday periods, camping and youth hostelling all over Europe with a girlfriend from Melbourne and later, travelling with Jerry. We also would go to London for the opera and looking for amazing clothes on Carnaby Street and Chelsea Road (this was the Beatles era, late 60s). Jerry once came back with a purple velvet suit, which was his prized possession for many years. There was lots of fun but also lots of work.Open in a separate windowJoan Steitz, Tom Steitz, Jerry Adams and Suzanne Cory (from left to right) in the Swiss Alps, 1970. Image courtesy of Mark Bretscher. This image in not reproduced under the terms of the Creative Commons Attribution 2.0 Generic license. For permission to reproduce, contact the DMM Editorial office. Joan H: Can you remember the first moment in that part of your career that gave you the most pleasure? Joan S: I worked on a project for about a year, and it turned out that I was doing the wrong fractionation method to get the material that I needed to analyse. Then I had a conversation with Sydney Brenner telling him that I was going to give this one more try with a new method, and then I was going to give up. I remember Sydney saying, “Sometimes, like with a bad marriage, you have to give experiments one last try before you give them up.” Then I tried again, and it worked. This is often the case in science, that you try something new, that''s a little bit different, and it makes all the difference. Then you''re running.Suzanne: The same thing happened to me. I was labouring away on the counter current distribution machines fractionating methionine tRNA, with the goal of sequencing it by the laborious procedure recently published by Robert Holley. However, Fred Sanger, in the department upstairs, had invented a totally new method for sequencing using 32P-labelled RNA. I desperately wanted to try this, so I managed to persuade my supervisor that we should change techniques. That change was key to my future because the approach was successful. I still remember to this day exactly where I was in Cambridge, walking on a Sunday afternoon, when the last piece of the puzzle dropped into place in my mind, and I had the entire sequence. In that moment, I was extremely joyful, because I knew I had my PhD and that I had succeeded. So that was my eureka moment.Joan H: Obviously, these were extremely productive years, and you''ve mentioned several Nobel Prize winners in your midst. It must have been the most inspiring environment, which I''m sure had a big impact on what you did next. By this stage in your career, were you already feeling ambitious or was it still your scientific curiosity that was driving your path?
“I expected that I would go back to the United States and be a research associate in some man''s lab […]. Then it turned out that people were more impressed than I thought and started offering me junior faculty jobs.”
Joan S: I had gotten a lot of recognition for having sequenced a piece of mRNA, using the same methods that Suzanne used to sequence tRNA. However, I had no expectations, because I had never seen a woman as a science professor, or head of a lab. I expected that I would go back to the United States and be a research associate in some man''s lab, and maybe they''d let me guide a graduate student. Then it turned out that people were more impressed than I thought and started offering me junior faculty jobs.My husband had already secured a junior faculty job in Berkeley before we even went to England, so we went back there after two years. My husband went to the chair of the department in Berkeley and put down letters on his desk of job offers that both of us had received for independent, junior faculty positions from several universities. The Chairman then said to Tom, “But all of our wives are research associates in our labs, and they love it”. This tore at my pride, as there had been a couple of universities that offered us both faculty jobs, and Berkeley was only offering one. So, we didn''t stay at Berkeley, and we came to Yale, which was wonderful.Suzanne: It''s really amazing to think that they gave you up. How foolish they were.Joan H: They''ve lived to regret it a million times over. Suzanne, at that point were you ready to climb this very difficult ladder?Suzanne: Like Joan, I didn''t have any expectations. For me, it was a matter of being able to continue discovering things in science. Jerry had already arranged to start a postdoc in Geneva. So, I applied for a postdoctoral fellowship, and obtained one. We went off together to Geneva to start our married life, and that was the beginning of us doing science together, which we''ve done ever since. I think without Jerry guiding me at that stage in my life, I would have probably drifted out of science. I don''t think I had the scientific confidence to ever think that I would be running a lab. For me, it was just continuing a voyage of discovery; and being lucky to end up in a wonderful scientific partnership and, through that partnership, my confidence grew over the years. Joan H: How many years after your postdoctoral training was it before you looked around your environment and had the confidence to think that you could be a lab or department head or could run an Institute? Joan S: I would say that confidence just grew. Tom and I were part of a departmental overhaul that involved hiring about six new people at Yale. We all stuck together, supported each other and were very collegial even though we worked in different areas. I think the collegial nature of the department in Yale helped me gain confidence. It was very scary at first because I didn''t know if I could write grants or direct people.Suzanne: Cambridge had an incredible influence, certainly over me, and I''m sure over Joan, Tom and Jerry, too. We looked around and saw all these amazing Nobel laureates, but also all these very ambitious, talented postdocs from around the world. I don''t think anyone thought about being the head of a department at that stage. We were simply striving to make discoveries and we gave each other mutual confidence, and stiff competition, too.The other thing that Cambridge gave us, was a new technology. For Joan and me, it was RNA sequencing. Being able to do that technology opened doors all around the world. I now always advise young people to go to the best place in the world to train in your chosen subject and acquire a new technology, because that will open the door to many opportunities in the future.Jerry and I made some excellent discoveries in Geneva, which were published in front-rank journals. Then it was time to move to full independence. I really wanted to go back to Australia but, as Jerry is an American, it was not at all obvious that he should take the big leap of moving to the bottom of the world and starting a lab there. I owe him a tremendous debt because he decided that he would take that risk.Earlier, whilst on our honeymoon, we had visited various labs in Australia. Although WEHI was an institute for immunology, a field we knew little about at that stage, it had the same atmosphere as the LMB in the sense that everyone was striving at the frontiers of science and competing with the rest of the world. We decided this was the only place in Australia that we would work at and that we would attempt to persuade the new director Gus Nossal that he needed molecular biologists. We had an interview with him in Switzerland and he offered us jobs as postdocs. Again, we were probably very naive and audacious but we told him we didn''t want to be postdocs – we wanted to run our own lab. And he agreed and we launched our fledgling lab together in 1971. What drove us was always discovery, rather than career ambitions.Joan H: You''ve both described these amazing sets of circumstances that were challenging but, nevertheless, very satisfying. However, a lot of things have since changed. What do you think are the main remaining barriers to women in science?Joan S: There is an important phenomenon called social identity threat, or stereotype threat, that I think still impedes women in proceeding in their careers. The phenomenon is described by cognitive psychologists as a reaction that all people experience if they feel that they are part of an undervalued minority. And so, by definition, since there are fewer women in science than there are men, women are being subjected to stereotype threat. Cognitive psychologists have studied the physiological manifestations of this, including increased heart rate and perspiration but, psychologically, they''ve also documented that cognitive learning and memory are impaired when one has these feelings.I first learned about this in 2007 and I looked back and realized why, for 30 years, when I''d been on committees as the only woman amongst ten men, I wouldn''t dare say anything – because I was frightened stiff. Men undergo this response, too, if they''re put into the situation of being undervalued. If you understand why you''re reacting the way you''re reacting and know that this is a normal human response, I think it helps you to overcome your own feelings of insecurity and allows you to go ahead. I always tell young women who I''m rooting for in science about this, because I want them to know that they will very likely end up feeling this way, and it''s a normal human response.
“One thing I sometimes get frustrated about is that we often need men to change things […] but what we really need are women in those high-level positions, so that they can be the champions of change.”
Joan H: There are other terms describing other relevant phenomena, such as unconscious bias, imposter syndrome and champions of change. One thing I really relate to is imposter syndrome. I''ve listened to webinars on this topic and they all reach a similar conclusion that we all feel the same. On the one hand, at the end of the webinar, you do feel somewhat elated to know that it''s not just you, and that it''s normal. But, on the other hand, it doesn''t really change things. It''s a recognition of what we feel, and we all get some help from that, but you really need opportunities to change things at a higher level. One thing I sometimes get frustrated about is that we often need men to change things, leading to this concept of male champions of change. I admire those men; but what we really need are women in those high-level positions, so that they can be the champions of change. Not having 50% of university departments and medical research institutes run by women still limits our full potential.Joan S: I certainly agree with you, Joan. It''s very important to have realistic role models. Suzanne being head of the WEHI for all those years has engendered all sorts of admiration.Joan H: During that period, Suzanne not only did fantastic science but our Institute doubled in size.It''s transformative when you have women making up 50% of people around the table. It''s no help just having a token female because that poor person''s not going to be able to change everything on her own. In American scientific institutions, are there any firm quotas for female scientists and other people that are underrepresented in science?Joan S: In recent years there has been a push in that direction. Sometimes it''s successful and sometimes it''s not. It is very different now compared to when there was no consciousness that this was unfair or that things could be better if we had real representation.Suzanne: I agree with both of you in everything that''s been said. While reflecting at this moment, what it says to me is that what''s really needed is societal change, and that we need to give courage to girls from the very earliest age. It should come naturally, they shouldn''t feel inferior, and others should not look at them as inferior. They should expect to have careers as well as families, be able to manage both and have somebody alongside them who helps them manage both.I think that affirmative action for women in science is necessary because the pace of change has been so slow. However, I also think quotas can be detrimental to the cause of women, in the sense that it''s then possible for people to say you only made it because there was a quota – which is very destructive. If I look back on our careers in science, it is clear that things have changed tremendously. Today there are more opportunities for women because many universities and institutes are bending over backwards to equalise things. The downside of this is that talented men may miss out on positions because of this policy and the pendulum could swing back.Joan H: The evidence shows that when more women are involved in things, those things go better. For instance, boards that have more women on them are more productive. Obviously, what you alluded to is there are lots of fantastic male scientists as well. The real issue here is there''s not enough funding to go round to support all the great men and women. But there are clearly enough good women around to be represented at the 50% level, without disproportionately disadvantaging male scientists.Joan S: Men and women are now operating on a more even playing field, which doesn''t mean that the men are missing out. They''re just in a more-competitive situation – as they should be. Joan H: Suzanne previously covered the specific advice she would give to young female researchers. Joan, do you have any other suggestions? Joan S: I encourage them to try lots of different things in science, and when they find something that really grabs them, then go for it and be persistent. We all know that science is very up and down. But if you keep pushing when you''re in a trough, it will always go back up again and you will succeed. That''s harder for a young person, who hasn''t experienced these troughs, to understand.Joan H: Yes, and the period when women scientists start having children is the hardest part. It''s still a choice that some women make, to take some years off and come back with a less ambitious plan for their career. Obviously, things like maternity leave payments and so on are improving but there''s no question that, in most circumstances, the research will slow down during that period.Suzanne: What I say to young women at that stage of their careers is that you have to be very focused, you must spend the time that you do have in a very focused manner, so that you can be the most productive you can be. But you have to be supported at home by your partner. If you''re both scientists it''s easier because you can appreciate why the other person is rushing into the lab late at night, for example, but for most people, that''s not true. So, what is really important is equal sharing of responsibilities from both partners when young families are around. And I think employers need to give both of those partners a longer time to achieve the kind of papers that they need to progress in their careers. That''s a period when it is much harder to be productive, and we need to continue to support people during that difficult phase of their careers because we''ve invested so much in them. They have so much to offer to science and to society, so to let them slip out at that stage is a great waste.Joan H: Let''s change tack a little bit and think about some of the broader challenges in science. What do you think the COVID-19 pandemic has taught us about the importance of clear scientific communication and real engagement with the community?Joan S: Whenever I talk to people about this, I very clearly make the point that it was decades of fundamental research that led to the development of the COVID-19 vaccine. If it hadn''t been for those fundamental discoveries in how cells and mRNA work, it would never have only taken 63 days from sequencing the virus to phase one clinical trials at Moderna. I try to point out to people that all the different discoveries coming in from different angles made that possible. I personally find it absolutely remarkable that all that knowledge could be harnessed, so very quickly. I''ve been doing fundamental research my entire life and I never expected to see it materialise in the way it has. It''s a wonderful reward. Joan H: Do you think this has resulted in the community appreciating scientists more? Joan S: I don''t think we''re far enough downstream to know that. In the US, there has been a congressional vote to abandon our maintenance of vigilance and preparedness for future pandemics – which seems ridiculous. Now we have all these procedures set up, all we have to do is maintain them for the next one. Whereas, if we just let go of these procedures, we''ll have to start over again for future pandemics. I guess we''re not good enough at communicating some of these things at this point.Joan H: Millions of people died from the virus and yet, if we hadn''t had the vaccines, the scale would have been even more horrific. If we were able to convey this information effectively to the public, then, hopefully, people would recognise that – as well as spending a fixed percentage of the gross domestic product on defence, for example – we should spend at least the same amount on science. Not only for pandemics but for tackling climate change and other pressing issues. I like to think this is an auspicious time but I don''t know whether we are really taking advantage of it.Suzanne: The pandemic has brought science and scientists to the forefront, and there has been a period of great respect for scientists having developed the vaccine. It''s an absolute miracle that it was done so fast and effectively. We''re very fortunate but, as Joan said, that was not luck. It was through investment in basic science for decades. We have to keep conveying this message, to our politicians in particular, so that they will keep supporting all kinds of scientists, because we never know what''s around the corner.Joan H: Certainly, people like Anthony Fauci in the US and Catherine Bennett in Melbourne, spoke eloquently and had a real talent for communicating things clearly and in a nutshell. That''s not something we''re all good at and it''s not something that is easy to train into people either. I think we all need to try to capture the attention of the community at large, by speaking plainly. I don''t think people understand that scientists are underfunded and could do so much more if funding was more generous.
“All I can say to young people is, if you really love science and have a passion for it, keep trying – because you will succeed if you put your whole heart and soul into this career path.”
Suzanne: I think the general public has no appreciation of how tenuous the life of a scientist can be, and how we are losing so many great minds entering the field because young people just finishing their PhDs look with dismay at how hard it is to support a career in science and get enough funding. There''s a tremendous waste of talent. All I can say to young people is, if you really love science and have a passion for it, keep trying – because you will succeed if you put your whole heart and soul into this career path.Joan H: This has been an absolutely fantastic discussion and it''s such a delight to talk to women who, after all these years, are still as passionate as ever and are pursuing their scientific subjects with the same vigour as they have all along.Suzanne: It''s been wonderful to talk with you, Joan, and I hope that we see each other soon, no matter what continent. And thank you, Joan Heath for getting us together and giving us this opportunity.  相似文献   

10.
11.
《Disease models & mechanisms》2015,8(10):1179-1183
Geoffrey W. Smith is currently the Managing Director of Mars Ventures. He actually started his studies with a Bachelor of Arts degree and a Doctorate in Law but then, in part by chance and in part by following in his family footsteps, he stepped into the healthcare and biotech field. Since then, he has successfully contributed to the birth of a number of healthcare companies and has also held academic positions at the Icahn School of Medicine at Mount Sinai and at The Rockefeller University in New York, teaching about the interface between science and business. During 2014 he served as Senior Editor on Disease Models & Mechanisms, bringing to the editorial team his valuable experience in drug development and discovery. In this interview, Geoff talks to Ross Cagan, Editor-in-Chief of Disease Models & Mechanisms, about how he developed his incredibly varied career, sharing his views about industry, academia and science publishing, and discussing how academia and industry can fruitfully meet to advance bioscience, train the scientists and stakeholders of the future, and drive the successful discovery of new therapeutics to treat human disease.Geoffrey W. Smith was born in 1965. He obtained a Bachelor of Arts degree from Williams College in Williamstown, MA. After a stint as a Research Associate at Harvard Business School, he graduated from the University of Pennsylvania Law School. Following a federal court clerkship and first job experiences in law, he joined a healthcare services start-up named Advanced Health as one of its first employees. Geoff then co-founded various healthcare and technology companies, including Interbind and Ascent Biomedical Ventures, and is still a Managing Partner at the latter. In 2012, he joined the Icahn School of Medicine at Mount Sinai, first as Professor in the Department of Population Health Science And Policy, and then as Director and co-founder of the Design, Technology, and Entrepreneurship PhD program. Until December 2014, he was a Senior Editor at Disease Models & Mechanisms. Geoff is now Managing Director of Mars Ventures.Let''s start with your background. You have a Bachelor of Arts degree and a law degree. How is it exactly that you ended up working in biotech and pharma?My career path has been anything other than linear. I was actually pursuing my legal career when two entrepreneurs turned up at the law firm I was working for with an idea for a new technology-based company focused on more effectively managing healthcare services. I was a new associate without much to do, so I got assigned to work with the start-up and after about a year they asked me to come and join the company, Advanced Health. I had grown up in a very medically oriented family – my father was a medical school professor, my older sister was a PhD, and my younger sister is a medical doctor – and so to a certain extent joining a start-up in the healthcare space was a bit like joining the family business.We had a fair amount of success with that company. A little less than 2 years after I joined it, we had a successful initial public offering, and that started me down the road of participating in the start-up environment around healthcare.It sounds like it was not a surprising path for you. Which key people influenced you?Actually, it is somewhat surprising in that I had really prepared for and expected a career in law. Certainly, the work I did in law school and the first jobs I had after that started me on a different career. I was really focused on international relations and international law. The twist was that I got brought back into the healthcare arena, and ultimately the biotech arena, by a serendipitous connection – one of the entrepreneurs who started Advanced Health had trained at Brigham Women''s Hospital where my father was the Chief of Cardiology. It was through this connection that I became more than just an associate drafting legal documents and really began to build a close relationship with the founders, which ultimately led to me joining that business. This taught me that you can spend much of your time preparing, and thinking that your schooling is going to take you in one direction, but individual relationships can change your path and take you somewhere else altogether. In my case, these particular relationships stemmed from my father, who clearly had an enormous influence on me. He was both a practising clinician and a basic researcher, studying basic biology related to the function of sodium and potassium in the heart, but he also did applied research. He helped develop a radioimmunoassay test to measure digitalis levels in the blood and ultimately was involved in developing a drug called Digibind, an antidote to digitalis toxicity, which was one of the first drugs to use antigen-binding fragments [Fab] as the basis for a drug. Watching him manage these different activities in his career had a big influence on me.
“This taught me that you can spend much of your time preparing, and thinking that your schooling is going to take you in one direction, but individual relationships can change your path and take you somewhere else altogether”
I think that each of my sisters – as I said, one of whom went down a PhD route and one of whom went down a medical training route – had a big influence on me, as well. Watching the challenges that they had to face in those areas in some ways pushed me to go off towards law school and take a different path. It also brought me back to one of the aspects that I think is the most rewarding in the bioscience field, which is that you can have a profound impact on a large number of people through your efforts, whether they be purely research-based, academic-based or commercially-based.One of the things I was constantly impressed by is that you always seem to have a good feel for the health field and the biology field. Is this because it is something of a family business?I think so. Growing up at my dinner table, I was just privileged to get to meet and interact with a lot of incredibly successful clinicians and researchers. For me those were comfortable conversations: these were friends and so there was a comfort level being involved in that environment. I didn''t feel a lot of intimidation from it, which I think sometimes people who come from the outside do.One of the aspects I really like about the bioscience field is the impact of ideas. Success is really about one''s ideas and ability to execute them, and that was very appealing to me. It wasn''t about how much money you had or where you went to school, it was really about the ability to think deeply about a problem or a potential advancement and figure out a way to find a way forward. It is also a very people-driven process because it is not only about thinking deeply yourself but also about thinking deeply with those in your field or adjacent to your field. Lots of different personality types can succeed in this field, but I think it is certainly easier for people who have an affinity for sitting with people and thinking about a common area of interest.To that point, you actually have walked between business and scientists. What do you see is the difference? Some of the priorities are obvious, but what are the differences in terms of what motivates people in the two? Are the personalities that you come across different between the basic science world, the translating science world and the business world?I don''t think the personalities are particularly different. I think you find introverts and extroverts and everything in between in each of these areas. I am not sure that personality is necessarily a good predictor of success. I think it''s a question of what toolset you are most comfortable using to get at a problem, and where in the lifespan of a problem you''re interested in working.For example, scientists in academia very often are interested in working at an early stage of a problem. They understand something fairly basic about a process or something earlier in the understanding of a field. People who gravitate towards industry, instead, are more excited about working on the later part of a process, so, rather than trying to understand what the fundamental working mechanism is, they want to understand how to work that mechanism in a way that is predictable and repeatable.Obviously people in the commercial realm are often highly influenced by money, but even that I don''t think is really particularly the differentiator. There are plenty of academics who are driven by money as well. I really think it has much more to do with where on the spectrum of understanding one is interested in working. Industry is geared to solving practical problems and, if a lot is understood about a problem, to getting down to the ability to repeatedly and safely intervene, whereas academia really lends itself more towards understanding the front end of a problem or of an unknown mechanism to understand it first and at a more basic level.What about working in teams versus individually? Do you see a difference there?I think that has changed over time. I think it is very hard in academia today to be the brilliant solo investigator. I''m not saying it''s impossible but, considering the increasing size of the data sets one is working with, the statistical methods one has to use, the complexity of different fields overlapping with each other, it''s just very hard to handle all the necessary aspects of modern science as an individual. Increasingly, working in teams isn''t a choice: I think it''s a necessity in order to be effective. The difference may be that, in academia, often the teams are teams of collaborators (meaning they have influence but not necessarily power over all people participating in the team) who may work for different institutions, whereas, more commonly in industry, teams are working within a single corporate structure. In industry more often there are hierarchical relationships, which may allow for more directive behavior. Again, I''m not sure I would draw as much distinction between team or not team and between industry and academia, but I might draw somewhat of a distinction between how those teams function and how one manages a team. I think they are a bit different between the two realms.
“Increasingly, working in teams isn''t a choice: I think it''s a necessity in order to be effective”
Let''s turn to Disease Models & Mechanisms [DMM], where you have been a Senior Editor. What did your experience at DMM teach you about science publishing that perhaps you hadn''t thought about, and has it made you think more deeply about what goes into a good scientific piece of work? What were some of the surprises?Watching the detailed process that is necessary to take a piece from an initial submission through to a published article gave me comfort and respect for the level of diligence and the level of attention that the reviewers brought to the vast majority of the pieces. It gave me a good feeling that the science community can be a strong self-reinforcing organization that takes its responsibility to heart and only publishes the best of the work available. I think that was very reassuring.An interesting question for me was: is there a different function that the publication process could play in helping to galvanize new ideas or new interactions among different fields? That seemed to be challenging because people don''t want to rush out there without their ideas and data being fully thought-out and fully vetted. But still, somewhere in my mind is this notion that there should be an option in the publishing world to play a little bit earlier in the generation of new ideas.Do you mean journals having an earlier relationship – earlier in the experimental process with a laboratory – to work with them to provide advice?I don''t know if it''s to provide advice. One of the things I was struck by at DMM is that there are these different siloed research communities – for example, the fly and the fish communities – in which interactions and relationships in the individual fields are so well established and routinized. And the outcome from a publishing standpoint is still the canonical academic paper that has been relatively unchanged over a long period of time. Yet, we have had these tremendous changes in information and communication technology such that the manner of knowledge production and the methods of communicating in other parts of society have changed dramatically. It feels like there hasn''t been nearly as big a concomitant communication change in the biomedical sciences, and so the silos and the standard paper remain the way things are done.The publication process, because of its preciseness, can take quite a long time, so the musing here is whether there is a way that the publishing industry could facilitate an earlier, more speculative communication of interesting results in a way that would positively impact the field by turning over new information sooner. If you look at an area like maths, for example, and their pre-print servers, there is more of a notion of putting ideas out in the community that acts as a kind of peer-review process and a way to get the community interacting on new ideas early. That doesn''t seem to get a lot of attention in the life sciences area. It seems to me that even journals like the PLOS journals that are pushing towards a more open world of communication are still ending up being pulled back into the canonical paper form to communicate.
“…the musing here is whether there is a way that the publishing industry could facilitate an earlier, more speculative communication of interesting results in a way that would positively impact the field by turning over new information sooner”
I guess one of the issues on the biology side is that there is a real emphasis on trying to get your paper into the most prestigious journal, so people don''t want to drop that paper until it is as far along as possible to aim at high-impact journals.That of course becomes a self-reinforcing system. If the yardstick used in the life sciences industry is publication in high-impact-rated journals, then you are going to get that behavior. But if you''re interested in the generation of new knowledge and in moving your field forwards, it is at least plausible that publishing in a quicker fashion or with at least some outlet to move more creative ideas ahead would be attractive.There are clearly challenges to that. But I do think it''s remarkable that if you look at almost every other media area there has been a huge amount of change since the advent of the internet era, but there really has been very limited change around life sciences publishing. It''s been surprisingly conservative to me. I am wishing there would be more experimentation to find other ways to communicate information sooner and in a way that could spur more creativity.Of course, when you tie publishing back to industry, for competitive and intellectual property protection reasons, industry tends to not really want to get out in the front with its most interesting work too early. I think that a lot of things being published out of industry are not the most interesting stuff that is happening. But again it seems to me that another area that science publishing should be thinking about is how they could come up with other solutions that might provide for a more creative interaction between publishing and industry.Talking about old models versus new models, let''s move to issues of training. Another area that you''ve been impressive at is the training of scientists. You''ve had your hand in creating a new PhD track at Mount Sinai called Design, Technology, and Entrepreneurship [DTE]. What is your view about how we train scientists, what we''re doing better these days and what you would like to see being done better to train them?It seemed to me that there was a remarkably small amount of experimentation in academia around thinking about how to train biomedical PhDs, and that academia had missed the opportunity to provide a better set of tools to PhDs to allow them to be effective across a wider range of potential career outcomes. The majority of biomedical PhDs are not ending up in tenure-track faculty positions but rather in the ‘alternative career track’. It seemed to be disingenuous to train them solely for the academic track if in reality the majority were going to some other career track.So what I was really excited about in putting together the DTE program was trying new ways to train PhDs to be effective askers of questions and proposers of solutions, and to create an environment where they could gain experience in how to solve a variety of problems effectively.
“…what I was really excited about in putting together the DTE program was trying new ways to train PhDs to be effective askers of questions and proposers of solutions, and to create an environment where they could gain experience in how to solve a variety of problems effectively”
This meant that our students had to be rigorously trained as scientists, but this was an ‘and’ opportunity and not an ‘or’ opportunity. In addition to being trained as excellent basics scientists, we wanted to give them some training in how engineers think about problems, how designers approach issues, what tools those people use and how that impacts how they try to solve a problem. Hopefully over time this would produce students that are better suited for interacting and influencing other parts of society – be it industry, government or policy – and better positioned to compete in what is a very competitive job market.What were some of the things you did in the DTE training to get at this?We really tried to teach theory in the context of real problems. Virtually all the classes of the DTE curriculum were problem-driven. We created a class that we called ‘The Q.E.D. Project’ that followed along from efforts at Stanford and elsewhere to teach students how to identify an unmet need. We then asked them to form a team to address the unmet need, and then helped them understand how to build a prototype to address that need. Along the way, we also talked about what kind of roles people in their team need to play. Should your team be very diverse or very deep in a given area? How do we integrate people who have different cultural backgrounds or how do we integrate medical students with PhD students? We brought in a lot of people out of the non-academic environment who were practitioners and experts in their various areas and we tried to get students to think about the full range of stakeholders they would have to engage with to bring a solution to bear.We did not want to spend a lot of time lecturing the students in a purely didactic way. We wanted to engage them in a process where they were solving important problems as part of the class. Whether that was a class on modelling or an engineering-focused class, or how to think about scientific problems, the core of DTE was built around getting the students to grapple with a real world problem and let all the learning hang off that.How did the students respond to that? Do you think you were successful?Based on the number of students signing up to take the courses and the student evaluations after the classes were over, I think we really struck a chord. I wouldn''t say it was necessarily the right answer for every student but I think there is clearly a group of students for whom this is a really effective and motivating approach.Let''s now move to drug discovery and development – the focus of the new online Special Collection from DMM. What would you say are some of the most urgent challenges in drug development that you have seen?I think one of the most urgent challenges is to begin to break free of some of our ‘old’ ways of thinking and take advantage of new scientific insights. For example, if you look at the traditional organization in a medical school environment, they are centered around departments devoted to organs (liver, heart, kidney). I think our increasing scientific understanding is that there are disease processes that may impact multiple organ systems but ultimately it is understanding the process, and drugging the process, that becomes important and not drugging the organ.I think that moving towards a process-oriented understanding of what common mechanisms are implicated in a given disease state or therapeutic challenge will help us be a little more creative and a little bit more interdisciplinary in how we think about these challenges.One of the difficulties with those new approaches is that pharmaceutical companies and academic institutions have not had a great track record of working together. Do you think that''s true? And why do you think it''s been so difficult to move ideas from the bench to the clinics?I think this is complicated. If you take the academic researchers'' point of view, their early identification of a problem and early identification of a potential solution feels like they have moved the ball very far forward towards the end solution. If you take industry''s point of view, the identification of the target or even the identification of a potential chemical compound is really just barely beginning to get to the starting line; the bulk of the time and the bulk of the dollars that will ultimately be needed to create a product come after the academic work and these will be spent by industry. I think that this differing point of view around where and how value is created has a lot to do with many of the challenges that arise when academia and industry are speaking to each other.Is it important to bridge this gap or is everybody playing their role?I think there''s an opportunity for academia to continue in its current role but to carry the potential solution further. I think in certain areas the access to tools and to patients allows academics to maybe carry projects further and closer to ‘proof of concept’ than they did historically, and that will continue to add value to the academic institution. That would ultimately help to bridge this gap because if you''ve taken something closer to proof of concept while still within the academic institution, you have created more value, you are able to engage with industry differently, and maybe the value perception gap is closed somewhat.What industry is really good at is organizing and managing late-stage research and clinical trials in an effective manner, and what academia is really good at is understanding basic questions, finding targets and sometimes finding early chemical compounds. Again, I think that the perception in academia of where value has been created is in part related to the fact that many academics haven''t been given the exposure or the training to actually understand the full breadth of the drug-development process. While they may have a general sense of it – we have all seen the same diagrams showing the steps and the funnel narrowing down from a million compounds to something getting onto the market – only those with real exposure to the work in industry understand it at a visceral or experiential level. One of the opportunities for academia is to find better ways to have some cross-talk, whether that''s internships for graduate students to get some experience in industry or other ways to get the students really exposed to the industrial side of drug development. Obviously, all the trained scientists on the industry side have been through academia because they had to go through it to get their PhDs, and thus they understand the academic side of the house pretty well. I really think the challenge is getting to people who have spent their whole career in academia to have a better understanding of what the drivers are on the industry side.
“One of the opportunities for academia is to find better ways to have some cross-talk, whether that''s internships for graduate students to get some experience in industry or other ways to get the students really exposed to the industrial side of drug development”
Between target identification and clinical trials of course there is another piece. At what point does the researcher in academia put down his pipette, walk out and start a biotech company? Should that happen?That''s a fraught question because I think it is an enormous undertaking to start a biotechnology company. Fundraising, intellectual property, regulatory affairs, company management – there are a whole number of disciplines that biotech companies have to take on. It is very rare that an academic scientist is going to have the training, the time and the motivation to do all of those things while also continuing to pursue their academic career in a very challenging funding environment. I think it comes back to this point that we were talking about with teams. I think it is really important for a scientist who is excited about their work and thinks it may be the basis of a company to go out and begin to form a team that is going to increase the likelihood of success. They have to accept the fact that science is a critical component, but it is just a component, and many different disciplines along with many different people are needed to make a successful company. If a scientist can bring that sort of collaborative view point and is open to working closely with an intellectual property attorney, with a business development person and with whomever their funding source is, that will increase their likelihood of success. They have to do it with a certain amount of humility, which is to say that it isn''t just going to be the science that drives the success: all the given pieces have to come together to be successful.You''ve watched a lot of technology coming through, including at your new position at Mars. Which technology excites you?We all have to pay a lot of attention to CRISPR and the gene-editing technologies. There is certainly a number of intellectual property issues that have to get sorted out but that''s clearly an area that will have a huge impact not just on human health but on animal health and plant health as well.The other area I''ve been thinking a lot about lately is the microbiome. As sequencing technology has altered in cost and time, we have begun to be able to explore the microbiome in a way that historically was not possible. And it feels like we are moving towards a tipping point where the explosion of understanding is going to open up a lot of interesting opportunities for us to intervene. Whether that''s through traditional drug modalities or through altered nutrition or through changing the microbial community in soil to produce crops that have higher nutrient value or other approaches, I think that''s another broad area that seems poised to begin to offer really interesting results.Were you surprised that a company like Mars, which has not been a basic research company at all, is now giving you an opportunity to build something that is much more research-orientated?The reality of Mars is that they have actually had a very deep fundamental research program for a number of years. They got involved in the sequencing of the cacao genome and contributed it to the public domain, and they are now also involved in the sequencing of the genomes of a large number of orphan crops in Africa. So they have been very active in their research both in the company and in collaboration with academic scientists around the world. The nature of the company has meant that the work is perhaps not as obvious as others, but it is a remarkably science-driven company in much of what it does.You have done a myriad of things. What are the one or two things that you are most proud of?I am most proud of my efforts to keep a hand in both the commercial and the academic world. It certainly has not been easy but I have received enormous satisfaction from the opportunity to work with bright students at each of the schools I have had the opportunity to teach at. I am not sure there is anything more satisfying than the opportunity to work with students and feel you have helped them towards their goals.At the same time, I think I''ve been effective in doing that because I have managed to keep an active role in the applied world. In some ways, my greatest achievement has been finding a way to balance those two interests in a way that seems to have worked for the various organizations I''ve been affiliated with.How do you relax away from work? Do you have a family?I am married. My wife is a securities litigator so has a very active career of her own. We have two children, one in high school and one in middle school. I''ve had the privilege to coach both of them on their various soccer teams since they were each about 4 years old so that''s been a lot of fun.The other thing that many people will not find relaxing – but for some reason my family does – has been taking backcountry ski trips annually for a number of years. Worrying about navigating through the snow and finding shelter before darkness falls has a way of clearing the mind.  相似文献   

12.
13.
14.
Ye Tian investigates how mitochondrial stress signaling pathways regulate longevity using C. elegans as a model system.

An avid reader, Ye Tian used to save up her child allowance with the sole purpose of buying science fiction books. Reading and solving mathematical problems were her favorite hobbies; indeed, she liked mathematics so much that she was about to enroll herself as an architecture major but finally chose biotechnology. Ye moved from her hometown in the Northwest of China, Baoji—famous for housing the Zhou dynasty’s bronzeware and being close to the Terracotta Army—to Beijing for her college and graduate studies.Ye is proud of being among the earliest researchers working on Caenorhabditis elegans in her country; for her PhD studies, she joined the lab of Hong Zhang, who at that time has just established the first C. elegans lab in China at the National Institute of Biological Sciences in Beijing. Ye identified epg-2 as an adaptor for cargo recognition during autophagy. In 2010, she crossed the Pacific toward the U.S. West Coast for her postdoctoral training in the aging field with Andrew Dillin, first at the Salk Institute in San Diego and then at the University of California, Berkeley. There, she discovered that mild mitochondrial stress during development in worms rewires their chromatin landscape to establish specific gene expression patterns throughout the lifespan and promote longevity.Ye Tian. Photo courtesy of Ye Tian.Ye came back to China at the end of 2016 to start her own lab at the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences. Her research team studies mitochondrial stress signaling pathways and their interplay with aging. We chatted with her to learn more about her next scientific plans.What interested you about the interplay between mitochondria and aging?I became interested in mitochondrial biology during my postdoc in Andrew Dillin’s lab. Since the origin of eukaryotic cells, mitochondria have been a driving force of evolution. During reproduction, mitochondria are passed from the mother to the offspring through egg cells and they exhibit a unique inheritance pattern. As essential hubs that dictate cellular metabolism, it is clear now that mitochondria and the nucleus maintain a bidirectional communication. Early life “stressed” mitochondria communicate with the nucleus to induce gene expression changes that are beneficial on longevity and persist throughout the lifespan. The fact that mitochondrial function is crucial to aging fascinated me; I wanted to continue exploring that topic further, and that’s why I established my lab around the question of how mitochondrial surveillance mechanisms regulate the aging process.What are you currently working on? What is up next for you?My research team focuses on the interplay between mitochondrial stress signaling pathways and aging. The first work that my lab published was a project that I started during my postdoc. The Dillin lab reported a phenomenon in which perturbations of mitochondria in neurons induced a mitochondrial stress response in the peripheral tissues and hypothesized that a secreted signal molecule, named after mitokine, is required for the cell non-autonomous regulation (1). The identity of this molecular signal remained elusive for almost ten years until we found that a secreted Wnt ligand, EGL-20, functions as the mitokine to coordinate mitochondrial stress signaling across tissues and promote longevity of the organism (2). We are also interested in how the crosstalk between mitochondria and the nucleus influences lifespan. We found that mitochondrial perturbations alter the nuclear epigenome to induce longevity via the histone deacetylation complex NuRD in response to cellular acetyl-CoA levels, the key metabolite at the entry point of the Krebs cycle (3).Lab group picture; current lab members (2021). Photo courtesy of Ye Tian.Our latest work stemmed from a serendipitous observation that neuronal mitochondrial stress is sensed by and transmitted through the mitochondria in the germline. Intergenerational, maternal inheritance of elevated levels of mitochondrial DNA via the mitokine Wnt/EGL-20, which causes the activation of the mitochondrial unfolded protein response (UPRmt), provides descendants with a greater tolerance to environmental stress. This makes the offspring live longer (4).Among our short-term scientific plans, we’re determining how mitochondria functions during the aging process at both the genetic and biochemical levels and searching for ways to apply our findings from C. elegans to neurodegenerative disease models in mammals.What kind of approach do you bring to your work?The curiosity about how things work drives me; what I enjoy the most is when I see things happening in front of my eyes and when I figure out why they occur that way. That enthusiasm is what I try to spread to my team every day. In the lab, we rely on C. elegans as our model system and on genetics to dissect complex biological processes like aging. We have also adapted modern biochemical and imaging techniques as well as bioinformatics to complement our genetic studies. I’m a geneticist at heart, and I like to initiate a project with a well-designed genetic screen. The best part is that the screen often leads me to answers I was not expecting, and that’s genuinely inspiring!What did you learn during your PhD and postdoc that helped prepare you for being a group leader? What were you unprepared for?Like most scientists, my research career has gone through ups and downs. I had to change my research project in the last year of my graduate school; that was nerve-racking, but I eventually managed to redirect my thesis and get exciting results under time pressure, thanks in large to the support of my parents, mentors, and lab mates. That helped me prepare to become a principal investigator; I gained confidence in problem solving, and since I’ve experienced the stress of dealing with last-minute scope changes firsthand, I connect better with my students.I guess, as many other non-native English speakers, I wasn’t prepared for writing grants and papers fluently in English. This issue wasn’t obvious during my graduate and postdoctoral studies, as my mentors were always there for me and proofread and edited my writing. Now I have to stand up for myself. I spend most of my time writing; I’ve improved my writing skills but it’s still an ongoing process.Reconstruction of the nerve system of C. elegans by confocal microscopy. Green corresponds to YFP-labeled neuronal specific marker Q40, and red labels germline specific mitochondrial outer membrane protein TOMM-20::mkate2. Image courtesy of Ye Tian’s lab.What has been the biggest accomplishment in your career so far?My very first PhD student, Qian Zhang, graduated with two first-author papers and decided to pursue a research career in academia. Being responsible for someone else’s career is challenging but also rewarding.What has been the biggest challenge in your career so far?I use the model organism C. elegans for my research in aging, so from time to time, peers criticize the relevance of my work to human health. I’m used to justifying my scientific approach to funding agencies and peers in other fields, but sometimes it’s exhausting or not pleasant.Who were your key influences early in your career?My PhD mentor, Hong Zhang. He is very passionate about the science he does, and he is courageous to shift his research directions to answer new biological questions.What is the best advice you have been given?I think the best advice I’ve gotten is that “tomorrow is another day.” It reminds me to keep going and be optimistic.What hobbies do you have?I love art and music. When I was in San Diego, I used to play in the Chinese Music Band; I miss my musician friends over there. In my teens, I used to hike mountainside trails along the river with my parents. Now, running has become my new favorite hobby. I enjoy the tranquility and peace of mind while running; it’s soothing.  相似文献   

15.
Gaia Pigino studies the molecular mechanisms and principles of self-organization in cilia using 3D cryo-EM.

Gaia Pigino was only 3 yr old when she became fascinated with nature in the beautiful countryside of Siena, Italy, where she grew up. The neighbor’s daughter showed her a hen in the chicken coop, and they caught it in the act of laying an egg. Gaia remembers, “This was for me almost a shock, as my experience about eggs was that they come directly out of paper boxes!” Her father was also an important part of awakening Gaia’s curiosity for the amazing things in nature. He used to bring home the award-winning magazine Airone, the Italian equivalent of National Geographic. Gaia never missed an issue; even before learning to read, she could spend hours looking at the captivating photos of the wildlife. She wanted to understand what she was seeing, and maybe because of that, she was determined to do science.Gaia Pigino. Photo courtesy of Human Technopole.Gaia took her first “scientific” steps with Professor Fabio Bernini and Professor Claudio Leonzio at the University of Siena, where she studied bioindicators of soil contamination and detoxification strategies of soil arthropods as part of her PhD project. But it was later, when she joined the laboratory of Professor Pietro Lupetti and met Professor Joel Rosenbaum, a pioneer of cilia research, that Gaia discovered the world of 3D EM and felt her place was “inside a single cell.” She solidified her interest in the structure of protein complexes of cilia and flagella and boosted her passion for cryo-electron tomography (ET) in the laboratory of Professor Takashi Ishikawa, first at the ETH Zurich and then at the Paul Scherrer Institut in Switzerland. In 2012, Gaia started her own laboratory at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, Germany, with the vision of creating a truly interdisciplinary laboratory. Her team combines techniques from different fields such as biophysics, cell biology, and structural biology to answer open questions in the cilia field. Gaia recently moved countries again—this time to take over the position of Associate Head of the Structural Biology Research Centre, at the Human Technopole, Milan, Italy.We reached out to Gaia to learn more about her scientific journey and future research directions.What interested you about cilia?The first thing that attracted me toward cilia and flagella were some EM micrographs, by Professor Romano Dallai in Siena, that showed the beautiful geometrical microtubular structures of sperm flagella. I was intrigued by the apparent perfection of these organelles that clearly showed me that a cell is a coordinated system of complex molecular machines, the mechanism of many of which we do not understand. Soon after, Professor Joel Rosenbaum introduced me to the bidirectional transport of components inside cilia, which, he explained to me, is required for both assembly and function of virtually all cilia and flagella, from the motile cilia in our lungs to the primary cilium in our kidneys. He called it intraflagellar transport (IFT) and compared it to a Paternoster elevator, where the individual cabins were what we now call IFT trains. I was completely fascinated by the IFT system, the structure, the function, the dynamics, and the mechanism of which were still largely unknown. Quickly, I realized that in addition to IFT, cilia represent a virtually infinite source of open biological questions waiting to be solved, from the mechanics and regulation of the beating to the sensory function of primary cilia, and their importance for human health.What are some of the scientific questions currently of interest in your laboratory?In the past few years, we have made substantial contributions to the current understanding of the structure and the mechanism of the IFT (1, 2, 3). Currently, we are investigating how the structure of IFT trains relates to their functions by looking, in cryo-electron tomography, at how anterograde trains transform into retrograde trains and at how different ciliary cargoes are loaded on the trains. Beside this more classical line of research, we are exploring other approaches to study IFT, for instance we have developed a method to reactivate IFT trains in vitro on reconstituted microtubules. We want to use this approach to investigate the behavior of IFT trains, and their motors, in experimentally controllable conditions, e.g., in the presence of only certain tubulin posttranslational modifications. We have also made interesting discoveries about the distribution of tubulin posttranslational modifications on the microtubule doublets of the axoneme and how this spatially defined tubulin code affects the function of different ciliary components. We hope we will be able to share these new “stories” with the structural and cell biology community very soon!What kind of approach do you bring to your work?I believe that the main reason for why science became an integral, and dominant, part of my life is because it provides infinite riddles and continuous challenges. I have always been curious about how things work in nature, but I quickly realized that learning from books didn’t satisfy me. My desire was to be at the frontline, to be among the ones that see things happening in front of their eyes, at the microscope, for the first time. I wanted to be among the ones that make the discoveries that students read about in textbooks. Thus, what I bring to my work is an endless desire of solving biological riddles, curiosity, creativity, determination, and energy, with which I hope to inspire the members of my team. My laboratory uses an interdisciplinary approach; we use whatever method, technique or technology is needed to reach our goal, from the most basic tool to the most sophisticated cryo-electron microscope. And if the method we need does not yet exist, we try to invent it.A young Gaia Pigino (3 yr old) the day she discovered how eggs are made. Photo courtesy of Giancarlo Pigino.Could you tell us a bit about the Structural Biology Research Centre at the Human Technopole (HT)?At the HT Structural Biology Centre, we are working to create a vibrant and interdisciplinary scientific environment that will attract molecular, structural, cell, and computational biologists from all over the world. We are creating fantastic facilities, including one of the most well equipped and advanced electron microscopy facilities in Europe—and likely the world—headed by Paolo Swuec. My team, together with the teams of my colleague Alessandro Vannini and the research group leaders Ana Casañal, Francesca Coscia, and Philipp Erdmann, already cover a vast range of competences and know-how from classical molecular and structural biology approaches, such as crystallography and protein biophysics, to cryo-CLEM, cryo-FIB SEM and cryo-ET, all of which allow us to address questions in cell biology. Our goal is to create a scientific infrastructure and culture that will enable biologists to obtain a continuum of structural and functional information across scales.What did you learn during your PhD and postdoc that helped prepare you for being a group leader? What were you unprepared for?I learned that everyday research is mostly made of failures, but that with the right amount of obsession, persistence, curiosity, and creativity, it is always possible to succeed and discover new things. Being given the freedom to develop your own ideas and your own project very early in your career is a treat; science is not only about having good ideas! One needs to follow up on these ideas with intense work and troubleshooting to make them reality. In addition, I realized that being fearless and attempting what is considered too difficult by others, despite challenges, can turn into a worthy learning experience. Also, how you present your work to the scientific community matters for swinging the odds of success in your favor. Different places might work in very different ways, and conducting good science does not only depend on you, but also on the possibilities given to you by your environment.What was I unprepared for?—I guess several things, but one comes immediately to mind: I underestimated how much being responsible not only for my own life and career, but also the career of students, postdocs, and others in the laboratory, would affect me personally.Structure of the 96-nm axonemal repeat reconstructed by cryo-ET and subtomogram averaging. Image courtesy of Gonzalo Alvarez Viar, Pigino Lab.What has been the biggest accomplishment in your career so far?This is a tricky question for me... I tend to look into the future more than celebrating the past. I fight to succeed in something, but as soon as I conquer it, I find it less of an achievement than the thing I could conquer next. Nevertheless, I am happy about the discoveries and the papers published together with my students and postdocs (1, 2, 3, 4, 5). I am extremely excited about the fact that after many years of work I am now leading an interdisciplinary laboratory, where we combine techniques from different fields. I am also happy that three times my husband and I were able to move from one world class academic institution to the another to start exciting and fitting jobs and could still live together in the same place. We worked hard for this, but we also got lucky.What has been the biggest challenge in your career so far?I studied French in school; I had almost no exposure to spoken English until the end of my PhD. To avoid having to show my English insufficiencies, I did hide beside the board of my poster at the first international conference I attended in 2004! It took me a while to overcome this barrier and feel confident to express my thoughts and ideas in English.What do you think you would be if you were not a scientist?I had been a good fencer during my youth. I was a member of the Italian National Team between ages 14 and 19 and saw quite a bit of the world, which was cool! When my sporting career failed, due to diabetes, I was torn between art and science. I guess that in a parallel universe, I am a wildlife photographer and a potter specialized in wood kiln firing. [Gaia confesses that she misses “the amazing and addictive adrenaline rush of a good fencing match!”]Any tips for a successful research career?Do not compare your performances to the ones of the people at your career stage; compare yourself with people that are already successful one level higher than you currently are at. For example, if you are a PhD student, ask yourself what in your current performance separates you from being a good postdoc—once a postdoc, what is missing to be a good PI.  相似文献   

16.
Writing and receiving reference letters in the time of COVID. Subject Categories: Careers

“People influence people. Nothing influences people more than a recommendation from a trusted friend. A trusted referral influences people more than the best broadcast message.” —Mark Zuckerberg.
I regularly teach undergraduate courses in genetics and genomics. Sure enough, at the end of each semester, after the final marks have been submitted, my inbox is bombarded with reference letter requests. “Dear Dr. Smith, I was a student in your Advanced Genetics course this past term and would be forever grateful if you would write me a reference for medical school…” I understand how hard it can be to find references, but I have a general rule that I will only write letters of support for individuals that I have interacted with face‐to‐face on at least a few occasions. This could include, for example, research volunteers in my laboratory, honors thesis students that I have supervised, and students who have gone out of their way to attend office hours and/or been regularly engaged in class discussions. I am selective about who I will write references for, not because I am unkind or lazy, but because I know from experience that a strong letter should include concrete examples of my professional interactions with the individual and should speak to their character and their academic abilities. In today''s highly competitive educational system, a letter that merely states that a student did well on the midterm and final exams will not suffice to get into medical or graduate school.However, over the past 2 years many, if not most, students have been attending university remotely with little opportunity to foster meaningful relationships with their instructors, peers, and mentors, especially for those in programs with large enrollments. Indeed, during the peak of Covid‐19, I stopped taking on undergraduate volunteers and greatly reduced the number of honors students in my laboratory. Similarly, my undergraduate lectures have been predominantly delivered online via Zoom, meaning I did not see or speak with most of the students in my courses. It did not help that nearly all of them kept their cameras and microphones turned off and rarely attended online office hours. Consequently, students are desperately struggling to identify individuals who can write them strong letters of reference. In fact, this past spring, I have had more requests for reference letters than ever before, and the same is true for many of my colleagues. Some of the emails I have received have been heartfelt and underscore how taxing the pandemic has been on young adults. With permission, I have included an excerpt from a message I received in early May:Hi Dr. Smith. You may not remember me, but I was in Genome Evolution this year. I enjoyed the class despite being absent for most of your live Zoom lectures because of the poor internet connection where I live. Believe it or not, my mark from your course was the highest of all my classes this term! Last summer, I moved back home to rural Northern Ontario to be closer to my family. My mom is a frontline worker and so I''ve been helping care for my elderly grandmother who has dementia as well as working part‐time as a tutor at the local high school to help pay tuition. All of this means that I''ve not paid as much attention to my studies as I should have. I''m hoping to go to graduate school this coming fall, but I have yet to find a professor who will write a reference for me. Would you please, please consider writing me a letter?I am sympathetic to the challenges students faced and continue to face during Covid‐19 and, therefore, I have gone out of my way to provide as many as I can with letters of support. But, it is no easy feat writing a good reference for someone you only know via an empty Zoom box and a few online assignments. My strategy has been to focus on their scholarly achievements in my courses, providing clear, tangible examples from examinations and essays, and to highlight the notable aspects of their CVs. I also make a point to stress how hard online learning can be for students (and instructors), reiterating some of the themes touched upon above. This may sound unethical to some readers but, in certain circumstances, I have allowed students to draft their own reference letters, which I can then vet, edit, and rewrite as I see fit.But it is not just undergraduates. After months and months of lockdowns and social distancing, many graduate students, postdocs, and professors are also struggling to find suitable references. In April, I submitted my application for promotion to Full Professor, which included the names of 20 potential reviewers. Normally, I would have selected at least some of these names from individuals I met at recent conferences and invited to university seminars, except I have not been to a conference in over 30 months. Moreover, all my recent invited talks have been on Zoom and did not include any one‐on‐one meetings with faculty or students. Thus, I had to include the names of scientists that I met over 3 years ago, hoping that my research made a lasting impression on them. I have heard similar anecdotes from many of my peers both at home and at other universities. Given all of this, I would encourage academics to be more forthcoming than they may have traditionally been when students or colleagues approach them for letters of support. Moreover, I think we could all be a little more forgiving and understanding when assessing our students and peers, be it for admissions into graduate school, promotion, or grant evaluations.Although it seems like life on university campuses is returning to a certain degree of normality, many scholars are still learning and working remotely, and who knows what the future may hold with regard to lockdowns. With this uncertainty, we need to do all we can to engage with and have constructive and enduring relationships with our university communities. For undergraduate and graduate students, this could mean regularly attending online office hours, even if it is only to introduce yourself, as well as actively participating in class discussions, whether they are in‐person, over Zoom, or on digital message boards. Also, do not disregard the potential and possibilities of remote volunteer research positions, especially those related to bioinformatics. Nearly, every laboratory in my department has some aspect of their research that can be carried out from a laptop computer with an Internet connection. Although not necessarily as enticing as working at the bench or in the field, computer‐based projects can be rewarding and an excellent path to a reference letter.If you are actively soliciting references, try and make it as easy as possible on your potential letter writers. Clearly and succinctly outline why you want this person to be a reference, what the letter writing/application process entails, and the deadline. Think months ahead, giving your references ample time to complete the letter, and do not be shy about sending gentle reminders. It is great to attach a CV, but also briefly highlight your most significant achievements in bullet points in your email (e.g., Dean''s Honours List 2021–22). This will save time for your references as they will not have to sift through many pages of a CV. No matter the eventual result of the application or award, be sure to follow up with your letter writers. There is nothing worse than spending time crafting a quality support letter and never learning the ultimate outcome of that effort. And, do not be embarrassed if you are unsuccessful and need to reach out again for another round of references—as Winston Churchill said, “Success is stumbling from failure to failure with no loss of enthusiasm.”  相似文献   

17.
18.
19.
There is no perfect recipe to balance work and life in academic research. Everyone has to find their own optimal balance to derive fulfilment from life and work. Subject Categories: S&S: Careers & Training

A few years ago, a colleague came into my office, looking a little irate, and said, “I just interviewed a prospective student, and the first question was, ‘how is work‐life balance here?’”. Said colleague then explained how this question was one of his triggers. Actually, this sentiment isn''t unusual among many PIs. And, yet, asking about one''s expected workload is a fair question. While some applicants are actually coached to ask it at interviews, I think that many younger scientists have genuine concerns about whether or not they will have enough time away from the bench in order to have a life outside of work.In a nutshell, I believe there is no one‐size‐fits‐all definition of work–life balance (WLB). I also think WLB takes different forms depending on one''s career stage. As a new graduate student, I didn''t exactly burn the midnight oil; it took me a couple of years to get my bench groove on, but once I did, I worked a lot and hard. I also worked on weekends and holidays, because I wanted answers to the questions I had, whether it was the outcome of a bacterial transformation or the result from a big animal experiment. As a post‐doc, I worked similarly hard although I may have actually spent fewer hours at the bench because I just got more efficient and because I read a lot at home and on the six train. But I also knew that I had to do as much as I could to get a job in NYC where my husband was already a faculty member. The pressure was high, and the stress was intense. If you ask people who knew me at the time, they can confirm I was also about 30 pounds lighter than I am now (for what it''s worth, I was far from emaciated!).As an assistant professor, I still worked a lot at the bench in addition to training students and writing grant applications (it took me three‐plus years and many tears to get my first grant). As science started to progress, work got even busier, but in a good way. By no means did I necessarily work harder than those around me—in fact, I know I could have worked even more. And I’m not going to lie, there can be a lot of guilt associated with not working as much as your neighbor.My example is only one of millions, and there is no general manual on how to handle WLB. Everyone has their own optimal balance they have to figure out. People with children or other dependents are particularly challenged; as someone without kids, I cannot even fathom how tough it must be. Even with some institutions providing child care or for those lucky enough to have family take care of children, juggling home life with “lab life” can create exceptional levels of stress. What I have observed over the years is that trainees and colleagues with children become ridiculously efficient; they are truly remarkable. One of my most accomplished trainees had two children, while she was a post‐doc and she is a force to be reckoned with—although no longer in my laboratory, she still is a tour de force at work, no less with child number three just delivered! I think recruiters should view candidates with families as well—if not better—equipped to multi‐task and get the job done.There are so many paths one can take in life, and there is no single, “correct” choice. If I had to define WLB, I would say it is whatever one needs to do in order to get the work done to one''s satisfaction. For some people, putting in long days and nights might be what is needed. Does someone who puts in more hours necessarily do better than one who doesn''t, or does a childless scientist produce more results than one with kids? Absolutely not. People also have different goals in life: Some are literally “wedded” to their work, while others put much more emphasis on spending time with their families and see their children grow up. Importantly, these goals are not set in stone and can fluctuate throughout one''s life. Someone recently said to me that there can be periods of intense vertical growth where “balance” is not called for, and other times in life where it is important and needed. I believe this sentiment eloquently sums up most of our lives.Now that I''m a graying, privileged professor, I have started to prioritize other areas of life, in particular, my health. I go running regularly (well, maybe jog very slowly), which takes a lot of time but it is important for me to stay healthy. Pre‐pandemic, I made plans to visit more people in person as life is too short not to see family and friends. In many ways, having acquired the skills to work more efficiently after many years in the laboratory and office, along with giving myself more time for my health, has freed up my mind to think of science differently, perhaps more creatively. It seems no matter how much I think I’m tipping the balance toward life, work still creeps in, and that’s perfectly OK. At the end of the day, my work is my life, gladly, so I no longer worry about how much I work, nor do I worry about how much time I spend away from it. If you, too, accomplish your goals and derive fulfillment from your work and your life, neither should you.  相似文献   

20.
Academia has fostered an unhealthy relationship with alcohol that has an undeniable impact on the health and behaviour of students and staff. Subject Categories: S&S: History & Philosophy of Science, Chemical Biology, S&S: Ethics

University life has a lot to offer. And, for better or worse, much of it goes hand in hand with a bottle. Believe it or not, I was a bit of teetotaler in my undergraduate days but quickly made up for it in graduate school, where each celebration included inebriation. Indeed, my initial tour of the laboratory I eventually worked in included a refreshing visit to the grad club. Orientation week ended with a marathon beer blitz at a nightclub. The semester’s first invited seminar speaker was welcomed with the sounds of loose change, ice buckets and the clickity‐clack of organic microbrews being opened. Our inaugural genome evolution journal club was such a success that we vowed to spill even more red wine onto our notebooks the following week. In hindsight, I should have realized at this early stage in my studies that I was fostering an unhealthy and unsustainable relationship between biology and booze. Unfortunately, my post‐graduate education in alcohol didn’t stop there.Like many keen students, I arrived at my first scientific conference with a belly full of nerves and a fistful of drink tickets, which I quickly put to good use at the poster session. The successful completion of my PhD proposal assessment was met with pats on the back as I was swiftly marched off to a local pub with no chance of escape. My first peer‐reviewed paper literally arrived with a pop as Champagne was generously poured into plastic cups for the entire laboratory group. My failures, too, were greeted with a liberal dose of ethanol. “Sorry you came up short on that scholarship application, Smitty. It’s nothing a little weapons‐grade Chianti won’t cure.” “That experiment failed again! Come on, let me buy you a lunchtime martini to make up for it.” Soon I learnt that every academic event, achievement or ailment, no matter how big or small, could be appropriately paired with beer, wine or spirit. Missing from the menu were two crucial ingredients for any burgeoning researcher: moderation and mindfulness.But it was the older vintages that really inspired me – the legendary drinking escapades of my scientific mentors, advisors and idols. The tale of professor so‐and‐so who at that epic meeting in 1993 polished off an entire magnum of rosé at dinner and then went on to deliver among the greatest keynote lectures on record at 9 am the following morning. That celebrated chaired researcher who kept the single malt next to the pipette tips for quick and easy access. The grizzled evolutionary ecologist who never went into the field without half a dozen cans of high‐end smoked oysters and two hip flaks, which didn’t contain water. And so, when I was told by someone in the know of how the most famous geneticist on campus wrote that monumental Nature paper (the one I’d read ten times!) while locked in his office for twelve hours with a six‐pack, I bought into the romance hook, line and sinker. The result: I’ve been nursing a recurring headache for nearly two decades and I’m still waiting on that Nature paper. Most importantly, I now realize the various dangers of romanticizing the bottle, especially for individuals in mentorship positions.Like my idols before me, I’ve accrued a cask full of well‐oaked academic drinking stories, except that they haven’t aged well. There is that heroic evening of intense scotch‐fueled scientific discussion, which led to me forfeiting two front teeth to the concrete sidewalk (my mother still thinks it was a squash accident). Or that time I commemorated the end of a great conference in Barcelona by throwing up on the front window of a café while the most prominent minds in my field sipped aperitifs inside (thank god this was before Twitter). Even more romantic: me buying a bottle of Cotes de Nuits Burgundy at Calgary airport on route to a job interview, discreetly opening the bottle in‐flight because economy class wine sucks, and then being met by airport security upon landing. Let’s just say I didn’t get the job. To some, these anecdotes might seem light‐hearted or silly, but they are actually rather sad and underscore the seriousness of substance abuse. Many readers will have their own complicated experiences with alcohol in academia and, I believe, will agree that it is high time we asked ourselves: are we training our graduate students to be great thinkers or great drinkers? Moreover, this question does not address the equally if not more serious issue of excessive drinking among undergraduate students.As I sit at my desk writing this, I think to myself: is it normal that within a two‐minute walk of my university office there are three different places on campus that I can have a beer before lunch, not including the minifridge behind my desk? Is it normal that in my department the first thing we do after a student defends their thesis is go to the grad club where they can have any alcoholic drink of their choosing for free from the goblet of knowledge, which is kept on a pedestal behind the bar? Is it normal that before the COVID pandemic when I was visiting a prominent university for an invited talk, one of the professors I met with offered me a glass of expensive Japanese gin at 11 am in the morning? (And, yes, I accepted the drink.)Of course, if you don’t want to drink you can just say no. But we are learning more and more how institutional cultures – “the deeply embedded patterns of organisational behaviour and the shared values, assumptions, beliefs or ideologies that members have about their organisation or its work” (Peterson & Spencer, 1991) – can have powerful effects on behaviour. Excessive alcohol consumption is undeniably an aspect of collegial culture, one that is having major impacts on the health and behaviour of students and staff, and one that I’ve been an active participant in for far too long. I’ll be turning forty in a few months and I have to face the fact that I’ve already drunk enough alcohol for two lifetimes, and not one drop of it has made me a better scientist, teacher or mentor. The question remains: how much more juice can I squeeze into this forty‐year‐old pickled lemon? Well, cheers to that.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号