首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Cells release diverse types of extracellular vesicles (EVs), which transfer complex signals to surrounding cells. Specific markers to distinguish different EVs (e.g. exosomes, ectosomes, enveloped viruses like HIV) are still lacking. We have developed a proteomic profiling approach for characterizing EV subtype composition and applied it to human Jurkat T cells. We generated an interactive database to define groups of proteins with similar profiles, suggesting release in similar EVs. Biochemical validation confirmed the presence of preferred partners of commonly used exosome markers in EVs: CD81/ADAM10/ITGB1, and CD63/syntenin. We then compared EVs from control and HIV‐1‐infected cells. HIV infection altered EV profiles of several cellular proteins, including MOV10 and SPN, which became incorporated into HIV virions, and SERINC3, which was re‐routed to non‐viral EVs in a Nef‐dependent manner. Furthermore, we found that SERINC3 controls the surface composition of EVs. Our workflow provides an unbiased approach for identifying candidate markers and potential regulators of EV subtypes. It can be widely applied to in vitro experimental systems for investigating physiological or pathological modifications of EV release.  相似文献   

2.
Remodeling of host cellular membrane transport pathways is a common pathogenic trait of many intracellular microbes that is essential to their intravacuolar life cycle and proliferation. The bacterium Brucella abortus generates a host endoplasmic reticulum‐derived vacuole (rBCV) that supports its intracellular growth, via VirB Type IV secretion system‐mediated delivery of effector proteins, whose functions and mode of action are mostly unknown. Here, we show that the effector BspF specifically promotes Brucella replication within rBCVs by interfering with vesicular transport between the trans‐Golgi network (TGN) and recycling endocytic compartment. BspF targeted the recycling endosome, inhibited retrograde traffic to the TGN, and interacted with the Arf6 GTPase‐activating Protein (GAP) ACAP1 to dysregulate Arf6‐/Rab8a‐dependent transport within the recycling endosome, which resulted in accretion of TGN‐associated vesicles by rBCVs and enhanced bacterial growth. Altogether, these findings provide mechanistic insight into bacterial modulation of membrane transport used to promote their own proliferation within intracellular vacuoles.  相似文献   

3.
Vaccinia virus (VACV), the model poxvirus, produces two types of infectious particles: mature virions (MVs) and extracellular virions (EVs). EV particles possess two membranes and therefore require an unusual cellular entry mechanism. By a combination of fluorescence and electron microscopy as well as flow cytometry, we investigated the cellular processes that EVs required to infect HeLa cells. We found that EV particles were endocytosed, and that internalization and infection depended on actin rearrangements, activity of Na(+)/H(+) exchangers, and signalling events typical for the macropinocytic mechanism of endocytosis. To promote their internalization, EVs were capable of actively triggering macropinocytosis. EV infection also required vacuolar acidification, and acid exposure in endocytic vacuoles was needed to disrupt the outer EV membrane. Once exposed, the underlying MV-like particle presumably fused its single membrane with the limiting vacuolar membrane. Release of the viral core into the host cell cytosol allowed for productive infection.  相似文献   

4.
The wasps Leptopilina heterotoma parasitize and ingest their Drosophila hosts. They produce extracellular vesicles (EVs) in the venom that are packed with proteins, some of which perform immune suppressive functions. EV interactions with blood cells of host larvae are linked to hematopoietic depletion, immune suppression, and parasite success. But how EVs disperse within the host, enter and kill hematopoietic cells is not well understood. Using an antibody marker for L. heterotoma EVs, we show that these parasite-derived structures are readily distributed within the hosts’ hemolymphatic system. EVs converge around the tightly clustered cells of the posterior signaling center (PSC) of the larval lymph gland, a small hematopoietic organ in Drosophila. The PSC serves as a source of developmental signals in naïve animals. In wasp-infected animals, the PSC directs the differentiation of lymph gland progenitors into lamellocytes. These lamellocytes are needed to encapsulate the wasp egg and block parasite development. We found that L. heterotoma infection disassembles the PSC and PSC cells disperse into the disintegrating lymph gland lobes. Genetically manipulated PSC-less lymph glands remain non-responsive and largely intact in the face of L. heterotoma infection. We also show that the larval lymph gland progenitors use the endocytic machinery to internalize EVs. Once inside, L. heterotoma EVs damage the Rab7- and LAMP-positive late endocytic and phagolysosomal compartments. Rab5 maintains hematopoietic and immune quiescence as Rab5 knockdown results in hematopoietic over-proliferation and ectopic lamellocyte differentiation. Thus, both aspects of anti-parasite immunity, i.e., (a) phagocytosis of the wasp’s immune-suppressive EVs, and (b) progenitor differentiation for wasp egg encapsulation reside in the lymph gland. These results help explain why the lymph gland is specifically and precisely targeted for destruction. The parasite’s simultaneous and multipronged approach to block cellular immunity not only eliminates blood cells, but also tactically blocks the genetic programming needed for supplementary hematopoietic differentiation necessary for host success. In addition to its known functions in hematopoiesis, our results highlight a previously unrecognized phagocytic role of the lymph gland in cellular immunity. EV-mediated virulence strategies described for L. heterotoma are likely to be shared by other parasitoid wasps; their understanding can improve the design and development of novel therapeutics and biopesticides as well as help protect biodiversity.  相似文献   

5.
Single‐cell RNA sequencing (scRNA‐seq) enables characterizing the cellular heterogeneity in human tissues. Recent technological advances have enabled the first population‐scale scRNA‐seq studies in hundreds of individuals, allowing to assay genetic effects with single‐cell resolution. However, existing strategies to analyze these data remain based on principles established for the genetic analysis of bulk RNA‐seq. In particular, current methods depend on a priori definitions of discrete cell types, and hence cannot assess allelic effects across subtle cell types and cell states. To address this, we propose the Cell Regulatory Map (CellRegMap), a statistical framework to test for and quantify genetic effects on gene expression in individual cells. CellRegMap provides a principled approach to identify and characterize genotype–context interactions of known eQTL variants using scRNA‐seq data. This model‐based approach resolves allelic effects across cellular contexts of different granularity, including genetic effects specific to cell subtypes and continuous cell transitions. We validate CellRegMap using simulated data and apply it to previously identified eQTL from two recent studies of differentiating iPSCs, where we uncover hundreds of eQTL displaying heterogeneity of genetic effects across cellular contexts. Finally, we identify fine‐grained genetic regulation in neuronal subtypes for eQTL that are colocalized with human disease variants.  相似文献   

6.
Atherosclerosis has been regarded as a major contributor to cardiovascular disease. The role of extracellular vesicles (EVs) in the treatment of atherosclerosis has been increasingly reported. In this study, we set out to investigate the effect of macrophages‐derived EVs (M‐EVs) containing miR‐19b‐3p in the progression of atherosclerosis, with the involvement of JAZF1. Following isolation of EVs from macrophages, the M‐EVs were induced with ox‐low density lipoprotein (LDL) (ox‐LDL‐M‐EVs), and co‐cultured with vascular smooth muscle cells (VSMCs). RT‐qPCR and western blot assay were performed to determine the expression of miR‐19b‐3p and JAZF1 in M‐EVs and in VSMCs. Lentiviral infection was used to overexpress or knock down miR‐19b‐3p. EdU staining and scratch test were conducted to examine VSMC proliferation and migration. Dual‐luciferase gene reporter assay was performed to examine the relationship between miR‐19b‐3p and JAZF1. In order to explore the role of ox‐LDL‐M‐EVs carrying miR‐19b‐3p in atherosclerotic lesions in vivo, a mouse model of atherosclerosis was established through high‐fat diet induction. M‐EVs were internalized by VSMCs. VSMC migration and proliferation were promoted by ox‐LDL‐M‐EVs. miR‐19b‐3p displayed upregulation in ox‐LDL‐M‐EVs. miR‐19b‐3p was transferred by M‐EVs into VSMCs, thereby promoting VSMC migration and proliferation. mir‐19b‐3p targeted JAZF1 to decrease its expression in VSMCs. Atherosclerosis lesions were aggravated by ox‐LDL‐M‐EVs carrying miR‐19b‐3p in ApoE−/− mice. Collectively, this study demonstrates that M‐EVs containing miR‐19b‐3p accelerate migration and promotion of VSMCs through targeting JAZF1, which promotes the development of atherosclerosis.  相似文献   

7.
8.
Genetic variation in resistance against parasite infections is a predominant feature in host–parasite systems. However, mechanisms maintaining genetic polymorphism in resistance in natural host populations are generally poorly known. We explored whether differences in natural infection pressure between resource‐based morphs of Arctic charr (Salvelinus alpinus) have resulted in differentiation in resistance profiles. We experimentally exposed offspring of two morphs from Lake Þingvallavatn (Iceland), the pelagic planktivorous charr (“murta”) and the large benthivorous charr (“kuðungableikja”), to their common parasite, eye fluke Diplostomum baeri, infecting the eye humor. We found that there were no differences in resistance between the morphs, but clear differences among families within each morph. Moreover, we found suggestive evidence of resistance of offspring within families being positively correlated with the parasite load of the father, but not with that of the mother. Our results suggest that the inherited basis of parasite resistance in this system is likely to be related to variation among host individuals within each morph rather than ecological factors driving divergent resistance profiles at morph level. Overall, this may have implications for evolution of resistance through processes such as sexual selection.  相似文献   

9.
Haemosporidians are among the most common parasites of birds and often negatively impact host fitness. A multitude of biotic and abiotic factors influence these associations, but the magnitude of these factors can differ by spatial scales (i.e., local, regional and global). Consequently, to better understand global and regional drivers of avian‐haemosporidian associations, it is key to investigate these associations at smaller (local) spatial scales. Thus, here, we explore the effect of abiotic variables (e.g., temperature, forest structure, and anthropogenic disturbances) on haemosporidian prevalence and host–parasite networks on a horizontal spatial scale, comparing four fragmented forests and five localities within a continuous forest in Papua New Guinea. Additionally, we investigate if prevalence and host–parasite networks differ between the canopy and the understory (vertical stratification) in one forest patch. We found that the majority of Haemosporidian infections were caused by the genus Haemoproteus and that avian‐haemosporidian networks were more specialized in continuous forests. At the community level, only forest greenness was negatively associated with Haemoproteus infections, while the effects of abiotic variables on parasite prevalence differed between bird species. Haemoproteus prevalence levels were significantly higher in the canopy, and an opposite trend was observed for Plasmodium. This implies that birds experience distinct parasite pressures depending on the stratum they inhabit, likely driven by vector community differences. These three‐dimensional spatial analyses of avian‐haemosporidians at horizontal and vertical scales suggest that the effect of abiotic variables on haemosporidian infections are species specific, so that factors influencing community‐level infections are primarily driven by host community composition.  相似文献   

10.
The severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a global threat to human health and has compromised economic stability. In addition to the development of an effective vaccine, it is imperative to understand how SARS‐CoV‐2 hijacks host cellular machineries on a system‐wide scale so that potential host‐directed therapies can be developed. In situ proteome‐wide abundance and thermal stability measurements using thermal proteome profiling (TPP) can inform on global changes in protein activity. Here we adapted TPP to high biosafety conditions amenable to SARS‐CoV‐2 handling. We discovered pronounced temporal alterations in host protein thermostability during infection, which converged on cellular processes including cell cycle, microtubule and RNA splicing regulation. Pharmacological inhibition of host proteins displaying altered thermal stability or abundance during infection suppressed SARS‐CoV‐2 replication. Overall, this work serves as a framework for expanding TPP workflows to globally important human pathogens that require high biosafety containment and provides deeper resolution into the molecular changes induced by SARS‐CoV‐2 infection.  相似文献   

11.
The present paper is a commentary to ‘Identification and characterization of hADSCderived exosome proteins from different isolation methods’ (Huang et al. 2021; 10.1111/jcmm.16775). Given the enthusiasm for the potential of mesenchymal stromal cell‐derived extracellular vesicles (MSC‐EVs), some considerations deserve attention as they move through successive stages of research and application into humans. We herein remark the prerequisite of generating that evidence ensuring a high consistency in safety, composition and biological activity of the intended MSC‐EV preparations, and the suitability of disparate isolation techniques to produce efficacious EV preparations and fulfil requirements for standardized clinical‐grade biomanufacturing.  相似文献   

12.
13.
Extracellular vesicles (EVs) are a novel format of advanced therapeutical medicinal products (ATMPs). They can act regenerative or immune-modulatory as cell therapy substitutes or as a platform for designer exosomes. The biotechnological production of therapeutic EVs is still very much uncharted territory so standardized host cells, production setups, and isolation methods are not yet implemented. In this work, we present a tangential flow filtration (TFF) and fast-performance liquid chromatography (FPLC)-based size exclusion chromatography (SEC) purification setup that is compatible for industry applications. Moreover, we evaluated a series of potential host cell lines regarding their EV productivity, characteristics, and biological functionality. It was found that telomerase-immortalized Wharton's jelly mesenchymal stromal cells (WJ-MSC/TERT273) secrete high amounts of EVs per cell with regenerative capabilities. On the other hand, Cevec's amniocyte producer cells® (CAP®) and human embryonic kidney (HEK293) suspension cells are suitable platforms for designer EVs with high yields. Finally, we aimed to boost the EV secretion of HEK293 cells via chemical adjuvants and verified four compounds that heighten cellular EV secretion in a presumably cAMP-dependent manner. A combination of fenoterol, iodoacetamide, and dinitrophenol increased the EV yield in HEK293 cells threefold and cellular secretion rate fivefold.  相似文献   

14.
SARS‐CoV‐2 is an emerging coronavirus that causes dysfunctions in multiple human cells and tissues. Studies have looked at the entry of SARS‐CoV‐2 into host cells mediated by the viral spike protein and human receptor ACE2. However, less is known about the cellular immune responses triggered by SARS‐CoV‐2 viral proteins. Here, we show that the nucleocapsid of SARS‐CoV‐2 inhibits host pyroptosis by blocking Gasdermin D (GSDMD) cleavage. SARS‐CoV‐2‐infected monocytes show enhanced cellular interleukin‐1β (IL‐1β) expression, but reduced IL‐1β secretion. While SARS‐CoV‐2 infection promotes activation of the NLRP3 inflammasome and caspase‐1, GSDMD cleavage and pyroptosis are inhibited in infected human monocytes. SARS‐CoV‐2 nucleocapsid protein associates with GSDMD in cells and inhibits GSDMD cleavage in vitro and in vivo. The nucleocapsid binds the GSDMD linker region and hinders GSDMD processing by caspase‐1. These insights into how SARS‐CoV‐2 antagonizes cellular inflammatory responses may open new avenues for treating COVID‐19 in the future.  相似文献   

15.
16.
Patterns of genetic differentiation within and among animal populations might vary due to the simple effect of distance or landscape features hindering gene flow. An assessment of how landscape connectivity affects gene flow can help guide management, especially in fragmented landscapes. Our objective was to analyze population genetic structure and landscape genetics of the native wild boar (Sus scrofa meridionalis) population inhabiting the island of Sardinia (Italy), and test for the existence of Isolation‐by‐Distance (IBD), Isolation‐by‐Barrier (IBB), and Isolation‐by‐Resistance (IBR). A total of 393 Sardinian wild boar samples were analyzed using a set of 16 microsatellite loci. Signals of genetic introgression from introduced non‐native wild boars or from domestic pigs were revealed by a Bayesian cluster analysis including 250 reference individuals belonging to European wild populations and domestic breeds. After removal of introgressed individuals, genetic structure in the population was investigated by different statistical approaches, supporting a partition into five discrete subpopulations, corresponding to five geographic areas on the island: north‐west (NW), central west (CW), south‐west (SW), north‐central east (NCE), and south‐east (SE). To test the IBD, IBB, and IBR hypotheses, we optimized resistance surfaces using genetic algorithms and linear mixed‐effects models with a maximum likelihood population effects parameterization. Landscape genetics analyses revealed that genetic discontinuities between subpopulations can be explained by landscape elements, suggesting that main roads, urban settings, and intensively cultivated areas are hampering gene flow (and thus individual movements) within the Sardinian wild boar population. Our results reveal how human‐transformed landscapes can affect genetic connectivity even in a large‐sized and highly mobile mammal such as the wild boar, and provide crucial information to manage the spread of pathogens, including the African Swine Fever virus, endemic in Sardinia.  相似文献   

17.
Neuronal communication is typically mediated via synapses and gap junctions. New forms of intercellular communication, including nanotubes (NTs) and extracellular vesicles (EVs), have been described for non‐neuronal cells, but their role in neuronal communication is not known. Recently, transfer of cytoplasmic material between donor and host neurons (“material transfer”) was shown to occur after photoreceptor transplantation. The cellular mechanism(s) underlying this surprising finding are unknown. Here, using transplantation, primary neuronal cultures and the generation of chimeric retinae, we show for the first time that mammalian photoreceptor neurons can form open‐end NT‐like processes. These processes permit the transfer of cytoplasmic and membrane‐bound molecules in culture and after transplantation and can mediate gain‐of‐function in the acceptor cells. Rarely, organelles were also observed to transfer. Strikingly, use of chimeric retinae revealed that material transfer can occur between photoreceptors in the intact adult retina. Conversely, while photoreceptors are capable of releasing EVs, at least in culture, these are taken up by glia and not by retinal neurons. Our findings provide the first evidence of functional NT‐like processes forming between sensory neurons in culture and in vivo.  相似文献   

18.
Osteoarthritis (OA) is a whole‐joint disease characterized by synovial inflammation and cartilage degeneration. However, the relationship between synovial inflammation and cartilage degeneration remains unclear. The modified Hulth''s method was adopted to establish a knee OA (KOA) rabbit model. Synovial tissue was collected after 8 weeks, and synovial tissue‐derived extracellular vesicles (ST‐EVs) were extracted by filtration combined with size exclusion chromatography (SECF), followed by identification through transmission electron microscopy (TEM), nanoparticle tracer analysis (NTA) and Western blot (WB). The collagenase digestion method was used to extract normal rabbit chondrocytes, which were then treated with the SF‐EVs to observe the effect and mechanism of SF‐EVs on chondrocytes. The morphology, particle size and labelled protein marker detection confirmed that SECF successfully extract ST‐EVs. The ST‐EVs in the KOA state significantly inhibited chondrocyte proliferation and promoted chondrocytes apoptosis. Moreover, the ST‐EVs also promoted the expression of pro‐inflammatory cytokines (IL‐1β, IL‐6, TNF‐α and COX‐2) and cartilage degradation‐related enzymes (MMP13, MMP9 and ADAMTS5) in the chondrocytes. Mechanistically, the ST‐EVs significantly promoted the activation of NF‐κB signalling pathway in chondrocytes. Inhibition the activation of the NF‐κB signalling pathway significantly rescued the expression of inflammatory cytokines and cartilage degradation‐related enzymes in the ST‐EVs–induced chondrocytes. In conclusion, the ST‐EVs promote chondrocytes inflammation and degradation by activating the NF‐κB signalling pathway, providing novel insights into the occurrence and development of OA.  相似文献   

19.
The SARS‐CoV‐2 infection cycle is a multistage process that relies on functional interactions between the host and the pathogen. Here, we repurposed antiviral drugs against both viral and host enzymes to pharmaceutically block methylation of the viral RNA 2''‐O‐ribose cap needed for viral immune escape. We find that the host cap 2''‐O‐ribose methyltransferase MTr1 can compensate for loss of viral NSP16 methyltransferase in facilitating virus replication. Concomitant inhibition of MTr1 and NSP16 efficiently suppresses SARS‐CoV‐2 replication. Using in silico target‐based drug screening, we identify a bispecific MTr1/NSP16 inhibitor with anti‐SARS‐CoV‐2 activity in vitro and in vivo but with unfavorable side effects. We further show antiviral activity of inhibitors that target independent stages of the host SAM cycle providing the methyltransferase co‐substrate. In particular, the adenosylhomocysteinase (AHCY) inhibitor DZNep is antiviral in in vitro, in ex vivo, and in a mouse infection model and synergizes with existing COVID‐19 treatments. Moreover, DZNep exhibits a strong immunomodulatory effect curbing infection‐induced hyperinflammation and reduces lung fibrosis markers ex vivo. Thus, multispecific and metabolic MTase inhibitors constitute yet unexplored treatment options against COVID‐19.  相似文献   

20.
Latent liver stages termed hypnozoites cause relapsing Plasmodium vivax malaria infection and represent a major obstacle in the goal of malaria elimination. Hypnozoites are clinically undetectable, and presently, there are no biomarkers of this persistent parasite reservoir in the human liver. Here, we have identified parasite and human proteins associated with extracellular vesicles (EVs) secreted from in vivo infections exclusively containing hypnozoites. We used P. vivax-infected human liver-chimeric (huHEP) FRG KO mice treated with the schizonticidal experimental drug MMV048 as hypnozoite infection model. Immunofluorescence-based quantification of P. vivax liver forms showed that MMV048 removed schizonts from chimeric mice livers. Proteomic analysis of EVs derived from FRG huHEP mice showed that human EV cargo from infected FRG huHEP mice contain inflammation markers associated with active schizont replication and identified 66 P. vivax proteins. To identify hypnozoite-specific proteins associated with EVs, we mined the proteome data from MMV048-treated mice and performed an analysis involving intragroup and intergroup comparisons across all experimental conditions followed by a peptide compatibility analysis with predicted spectra to warrant robust identification. Only one protein fulfilled this stringent top-down selection, a putative filamin domain-containing protein. This study sets the stage to unveil biological features of human liver infections and identify biomarkers of hypnozoite infection associated with EVs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号