首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structure of Lipid Tubules Formed from a Polymerizable Lecithin   总被引:1,自引:1,他引:0       下载免费PDF全文
We have studied tubules formed from a polymerizable lipid in aqueous dispersion using freeze-fracture replication and transmission electron microscopy. The polymerizable diacetylenic lecithin 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine converts from liposomes to hollow cylinders, which we call tubules, on cooling through its chain melting phase transition temperature. These tubules differ substantially from cochleate cylinders formed by phosphatidylserines on binding of calcium. The tubules have diameters that range from 0.3 to 1 μm and lengths of up to hundreds of micrometers depending on conditions of formation. The thickness of the walls varies from as few as two bilayers to tens of bilayers in some longer tubules. Their surfaces may be either smooth, gently rippled, or with spiral steps depending on sample preparation conditions, including whether the lipids have been polymerized. The spiral steps may reflect the growth of the tubules by rolling up of flattened liposomes.  相似文献   

2.
Bacteriorhodopsin, the protein of the purple membrane of Halobacterium halobium, was freed to the extent of 90–95% from the natural membrane lipids without loss of function. The residual lipid corresponded to less than 1 mol/mol of bacteriorhodopsin. Delipidation was achieved by treatment of the purple membrane with a mixture of the detergent dimethyldodecylamine oxide and sodium chloride. The detergent was removed by dialysis or by sucrose density gradient centrifugation. Analysis of the lipids removed and those still bound to bacteriorhodopsin was facilitated by the use of purple membrane preparations labelled with 35S, 32P, or 14C. The composition of the residual lipids associated with bacteriorhodopsin was similar to that of the total lipid in the purple membrane.  相似文献   

3.
Warren V. Sherman  S.Roy Caplan 《BBA》1978,502(2):222-231
Purple membrane fragments from Halobacterium halobium were reconstituted with the native lipids replaced by dipalmitoyl phosphatidylcholine and by egg lecithin. In parallel studies the temperature dependence of bacteriorhodopsin phototransient lifetime and absorption dichroism and of in situ lipid microviscosity were determined; the former two by, respectively, conventional and polarization flash photometry, and the latter by observation of emission depolarization of an embedded fluorescent dye, 1,6-diphenyl-1,3,5-hexatriene. Discontinuities in lipid microviscosity profiles in native and egg lecithin purple membrane were reflected in both the photochemical cycle frequency and bacteriorhodopsin chromophore rotational mobility. The influence exerted by membrane-lipid viscosity appears to be a secondary effect, and points to the bacteriorhodopsin chromophoric group being situated in the protein interior.  相似文献   

4.
The lipid distribution in binary mixed membranes containing charged and uncharged lipids and the effect of Ca2+ and polylysine on the lipid organization was studied by the spin label technique. Dipalmitoyl phosphatidic acid was the charged, and spin labelled dipalmitoyl lecithin was the uncharged (zwitterionic) component. The ESR spectra were analyzed in terms of the spin exchange frequency, Wex. By measuring Wex as a function of the molar percentage of labelled lecithin a distinction between a random and a heterogeneous lipid distribution could be made. It is established that mixed lecithinphosphatidic acid membranes exhibit lipid segregation (or a miscibility gap) in the fluid state. Comparative experiments with bilayer and monolayer membranes strongly suggest a lateral lipid segregation. At low lecithin concentration, aggregates containing between 25% and 40% lecithin are formed in the fluid phosphatidic acid membrane. This phase separation in membranes containing charged lipids is understandable on the basis of the Gouy-Chapman theory of electric double layers.In dipalmitoyl lecithin and in dimyristoyl phosphatidylethanolamine membranes the labelled lecithin is randomly distributed above the phase transition and has a coefficient of lateral diffusion of D = 2.8·10?8 cm2/s at 59°C.Addition of Ca2+ dramatically increases the extent of phase separation in lecithin-phosphatidic acid membranes. This chemically (and isothermally) induced phase separation is caused by the formation of crystalline patches of the Ca2+-bound phosphatidic acid. Lecithin is squeezed out from these patches of rigid lipid. The observed dependence of Wex on the Ca2+ concentration could be interpreted quantitatively on the basis of a two-cluster model. At low lecithin and Ca2+ concentration clusters containing about 30 mol% lecithin are formed. At high lecithin or Ca2+ concentrations a second type of precipitation containing 100% lecithin starts to form in addition. A one-to-one binding of divalent ions and phosphatidic acid at pH 9 was assumed. Such a one-to-one binding at pH 9 was established for the case of Mn2+ using ESR spectroscopy.Polylysine leads to the same strong increase in the lecithin segregation as Ca2+. The transition of the phosphatidic acid bound by the polypeptide is shifted from Tt = 47.5° to Tt = 62°C. This finding suggests the possibility of cooperative conformational changes in the lipid matrix and in the surface proteins in biological membranes.  相似文献   

5.
Membrane lipids are increasingly being recognised as active participants in biological events. The precise roles that individual lipids or global properties of the lipid bilayer play in the folding of membrane proteins remain to be elucidated, Here, we find a significant effect of phosphatidylglycerol (PG) on the folding of a trimeric α helical membrane protein from Escherichia coli diacylglycerol kinase. Both the rate and the yield of folding are increased by increasing the amount of PG in lipid vesicles. Moreover, there is a direct correlation between the increase in yield and the increase in rate; thus, folding becomes more efficient in terms of speed and productivity. This effect of PG seems to be a specific requirement for this lipid, rather than a charge effect. We also find an effect of single-chain lyso lipids in decreasing the rate and yield of folding. We compare this to our previous work in which lyso lipids increased the rate and yield of another membrane protein, bacteriorhodopsin. The contrasting effect of lyso lipids on the two proteins can be explained by the different folding reaction mechanisms and key folding steps involved. Our findings provide information on the lipid determinants of membrane protein folding.  相似文献   

6.
Three novel polymerizable ether lipids, 1,2-O-bis[10(2',4'-hexadienoyloxy)decyl]-rac, 1,2-O-bis(10,12-tricosadiynyl)-rac, and (-)-2,3-O-bis(10,12-tricosadiynyl)-sn-glycero-1-phosphocholine, were synthesized from 3-O-benzyl-rac, 3-O-trityl-rac and (-)-1-O-trityl-sn-glycerol as starting materials, respectively. All the reactions employed in these multi-step syntheses are straightforward giving an overall yield of 21% for the sorbyl, 42% for the racemic diacetylenic and 44% for the chiral diacetylenic lipid. All the lipids form bilayer assemblies on hydration and show transitions from gel to liquid-crystalline phases at 11.4 degrees, 27.6 degrees and 30.0 degrees C, respectively. Bilayer assemblies of each are photoreactive and are readily polymerized by irradiation with 254 nm light. Tubules of the chiral diacetylenic ether lipid were observed.  相似文献   

7.
The proteins and lipids of the scallop gill ciliary membrane may be reassociated through several cycles of detergent solubilization, detergent removal, and freeze-thaw, without significant change in overall protein composition. Membrane proteins and lipids reassociate to form vesicles of uniform, discrete density classes under a variety of reassociation conditions involving detergent removal and concentration. Freed of the solubilizing detergent during equilibrium centrifugation, a protein-lipid complex equilibrates to a position on a sucrose density gradient characteristic of the original membrane density. When axonemal tubulin is solubilized by dialysis, mixed with 2:1 lecithin/cholesterol dissolved in Nonidet P-40, freed of detergent, and reconstituted by freeze-thaw, vesicles of a density essentially equal to pure lipid result. If the lipid fraction is derived through chloroform-methanol extraction of natural ciliary membranes, a moderate increase in density occurs upon reconstitution, but the protein is adsorbed and most is removed by a simple low ionic strength wash, in contrast to vesicles reconstituted from membrane proteins where even high salt extraction causes no loss of protein. The proteins of the ciliary membrane dissolve with constant composition, regardless of the type, concentration, or efficiency of detergent. Analytical ultracentrifugation demonstrates that monodisperse mixed micelles form at high detergent concentrations, but that membranes are dispersed to large sedimentable aggregates by Nonidet P-40 even at several times the critical micelle concentration, which suggests reasons for the efficacy of certain detergent for the production of ATP-reactivatable cell models. In extracts freed of detergent, structured polydisperse particles, but not membrane vesicles, are seen in negative staining; vesicles form upon concentration of the extract. Membrane tubulin is not in a form that will freely undergo electrophoresis, even in the presence of detergent above the critical micelle concentration. All chromatographic attempts to separate membrane tubulin from other membrane proteins have failed; lipid and protein are excluded together by gel filtration in the presence of high concentrations of detergent. These observations support the idea that a relatively stable lipid-protein complex exists in the ciliary membrane and that in this complex membrane tubulin is tightly associated with lipids and with a number of other proteins.  相似文献   

8.
N A Dencher 《Biochemistry》1986,25(5):1195-1200
Functional reconstitution of the membrane protein bacteriorhodopsin into lipid vesicles is achieved by mixing aqueous suspensions of long-chain lecithins and purple membrane with the short-chain lecithin diheptanoylphosphatidylcholine (20 mol % of total lipid). The membrane protein is transmembranously inserted in the lipid bilayer of the vesicle and highly active as a light-energized proton pump. This rapid, easy, and gentle procedure might allow functional reconstitution of other membrane systems and isolated membrane proteins as well.  相似文献   

9.
The chromoprotein bacteriorhodopsin from Halobacterium halobium has been incorporated into liposomes made of a fully synthetic, polymerizable lipid. Bacteriorhodopsin is found to be active in these polymer liposomes. The advantage in the use of such polymer systems concerning long-term stability in comparison with liposomes made of natural lipid is demonstrated.  相似文献   

10.
Bacterial membranes are complex mixtures of lipids and proteins, the combination of which confers biophysical properties that allows cells to respond to environmental conditions. Carotenoids are sterol analogs that are important for regulating membrane dynamics. The membrane of Pantoea sp. YR343 is characterized by the presence of the carotenoid zeaxanthin, and a carotenoid-deficient mutant, ΔcrtB, displays defects in root colonization, reduced secretion of indole-3-acetic acid, and defects in biofilm formation. Here we demonstrate that the loss of carotenoids results in changes to the membrane lipid composition in Pantoea sp. YR343, including increased amounts of unsaturated fatty acids in the ΔcrtB mutant membranes. These mutant cells displayed less fluid membranes in comparison to wild type cells as measured by fluorescence anisotropy of whole cells. Studies with artificial systems, however, have shown that carotenoids impart membrane rigidifying properties. Thus, we examined membrane fluidity using spheroplasts and vesicles composed of lipids extracted from either wild type or mutant cells. Interestingly, with the removal of the cell wall and membrane proteins, ΔcrtB vesicles were more fluid than vesicles made from lipids extracted from wild type cells. In addition, carotenoids appeared to stabilize membrane fluidity during rapidly changing temperatures. Taken together, these results suggest that Pantoea sp. YR343 compensates for the loss of carotenoids by changing lipid composition, which together with membrane proteins, results in reduced membrane fluidity. These changes may influence the abundance or function of membrane proteins that are responsible for the physiological changes observed in the ΔcrtB mutant cells.  相似文献   

11.
M Caffrey  J Hogan  A S Rudolph 《Biochemistry》1991,30(8):2134-2146
Thermotropic and lyotropic mesomorphism in the polymerizable lecithin 1,2-ditricosa-10,12-diynoyl-sn-glycero-3-phosphocholine and its saturated analogue, 1,2-ditricosanoyl-sn-glycero-3-phosphocholine, has been investigated by wide- and low-angle X-ray diffraction of both powder and oriented samples and by differential scanning calorimetry. Previous studies have shown that the hydrated diacetylenic lipid forms novel microstructures (tubules and stacked bilayer sheets) in its low-temperature phase. The diffraction results indicate that at low temperatures fully hydrated tubules and sheets have an identical lamellar repeat size (d001 = 66.4 A) and crystalline-like packing of the acyl chains. Chain packing in the lamellar crystalline phase is hydration independent. A model for the polymerizable lecithin with (1) fully extended all-trans methylene segments, (2) a long-axis tilt of 32 degrees, and (3) minimal chain interdigitation seems most reasonable on energetic grounds, is consistent with the diffraction data (to 3.93-A resolution), and is likely to support facile polymerization. Above the chain "melting" transition the lamellar repeat of the polymerizable lipid increases to 74 A. The conformational similarity between tubules, sheets, and the dry powder is corroborated by calorimetry, which reveals a cooling exotherm at the same temperature where tubules form upon cooling hydrated sheets. The data suggest that although a high degree of conformational order is a pertinent feature of tubules, this character alone is not sufficient to account for tubule formation. The conformation of the corresponding saturated phosphatidylcholine appears to be similar to that of other saturated phosphatidylcholines in the lamellar gel phase. Furthermore, above the main transition temperature, the dry, saturated lipid shows evidence of a P delta phase (112 degrees C), whereas the diacetylenic lipid appears to exhibit a centered rectangular phase, R alpha (55 degrees C).  相似文献   

12.
Although the incorporation of photo-activatable lipids into membranes potentially opens new avenues for studying interactions with peptides and proteins, the question of whether azide- or diazirine-modified lipids are suitable for such studies remains controversial. We have recently shown that diazirine-modified lipids can indeed form cross-links to membrane peptides after UV activation and that these cross-links can be precisely determined in their position by mass spectrometry (MS). However, we also observed an unexpected backfolding of the lipid's diazirine-containing stearoyl chain to the membrane interface challenging the potential application of this modified lipid for future cross-linking (XL)-MS studies of protein/lipid interactions. In this work, we compared an azide- (AzidoPC) and a diazirine-modified (DiazPC) membrane lipid regarding their self-assembly properties, their mixing behavior with saturated bilayer-forming phospholipids, and their reactivity upon UV activation using differential scanning calorimetry (DSC), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and MS. Mixtures of both modified lipids with DMPC were further used for photo-chemically induced XL experiments with a transmembrane model peptide (KLAW23) to elucidate similarities and differences between the azide and the diazirine moiety. We showed that both photo-reactive lipids can be used to study lipid/peptide and lipid/protein interactions. The AzidoPC proved easier to handle, whereas the DiazPC had fewer degradation products and a higher cross-linking yield. However, the problem of backfolding occurs in both lipids; thus, it seems to be a general phenomenon.  相似文献   

13.
The lipid distribution in binary mixed membranes containing charged and uncharged lipids and the effect of Ca2+ and polylysine on the lipid organization was studied by the spin label technique. Dipalmitoyl phosphatidic acid was the charged, and spin labelled dipalmitoyl lecithin was the uncharged (zwitterionic) component. The ESR spectra were analyzed in terms of the spin exchange frequency, Wex. By measuring Wex as a function of the molar percentage of labelled lecithin a distinction between a random and a heterogeneous lipid distribution could be made. It is established that mixed lecithin-phosphatidic acid membranes exhibit lipid segregation (or a miscibility gap) in the fluid state. Comparative experiments with bilayer and monolayer membranes strongly suggest a lateral lipid segregation. At low lecithin concentration, aggregates containing between 25% and 40% lecithin are formed in the fluid phosphatidic acid membrane. This phase separation in membranes containing charged lipids is understandable on the basis of the Gouy-Chapman theory of electric double layers. In dipalmitoyl lecithin and in dimyristoyl phosphatidylethanolamine membranes the labelled lecithin is randomly distributed above the phase transition and has a coefficient of lateral diffusion of D = 2.8-10(-8) cm2/s at 59 degrees C. Addition of Ca2+ dramatically increases the extent of phase separation in lecithin-phosphatidic acid membranes. This chemically (and isothermally) induced phase separation is caused by the formation of crystalline patches of the Ca2+-bound phosphatidic acid. Lecithin is squeezed out from these patches of rigid lipid. The observed dependence of Wex on the Ca2+ concentration could be interpreted quantitatively on the basis of a two-cluster model. At low lecithin and Ca2+ concentration clusters containing about 30 mol % lecithin are formed. At high lecithin or Ca2+ concentrations a second type of precipitation containing 100% lecithin starts to form in addition. A one-to-one binding of divalent ions and phosphatidic acid at pH 9 was assumed. Such a one-to-one binding at pH 9 was established for the case of Mn2+ using ESR spectroscopy. Polylysine leads to the same strong increase in the lecithin segregation as Ca2+. The transition of the phosphatidic acid bound by the polypeptide is shifted from Tt = 47.5 degrees to Tt = 62 degrees C. This finding suggests the possibility of cooperative conformational changes in the lipid matrix and in the surface proteins in biological membranes.  相似文献   

14.
Cell‐free expression has become a highly promising tool for the efficient production of membrane proteins. In this study, we used a dialysis‐based Escherichia coli cell‐free system for the production of a membrane protein actively integrated into liposomes. The membrane protein was the light‐driven proton pump bacteriorhodopsin, consisting of seven transmembrane α‐helices. The cell‐free expression system in the dialysis mode was supplemented with a combination of a detergent and a natural lipid, phosphatidylcholine from egg yolk, in only the reaction mixture. By examining a variety of detergents, we found that the combination of a steroid detergent (digitonin, cholate, or CHAPS) and egg phosphatidylcholine yielded a large amount (0.3–0.7 mg/mL reaction mixture) of the fully functional bacteriorhodopsin. We also analyzed the process of functional expression in our system. The synthesized polypeptide was well protected from aggregation by the detergent‐lipid mixed micelles and/or lipid disks, and was integrated into liposomes upon detergent removal by dialysis. This approach might be useful for the high yield production of functional membrane proteins.  相似文献   

15.
Rapid loss of the electron spin resonance signal from a variety of spin labels is observed when ferricytochrome c or metmyogloblin are combined with lipids. Evidence is presented that this loss of signal can be used as a sensitive method to study lipid oxidation catalyzed by heme proteins. Under aerobic conditions and with lipids which bind the heme protein, the kinetics of the oxidation process as observed by the spin label method are identical to the kinetics previously observed by measurements of oxygen uptake. Use of pre-oxidized lipids under anaerobic conditions indicates that cytochrome c reacts with a product of lipid oxidation. Kinetic studies of the anaerobic reaction indicate that cytochrome c reacts rapidly with lipid oxidation products in membrane areas far larger than the area occupied by cytochrome c, implying rapid transport of reactive species within the membrane interior in directions parallel to the membrane surface. Under anaerobic conditions, reaction of cytochrome c with lipid oxidation products appears to produce a relatively long lived (hours) species located in the hydrophobic portion of the membrane, which is capable of subsequent reaction with lipid-soluble spin labels.  相似文献   

16.
Production of integral membrane proteins (IMPs) in a folded state is a key prerequisite for their functional and structural studies. In cell-free (CF) expression systems membrane mimicking components could be added to the reaction mixture that promotes IMP production in a soluble form. Here lipid–protein nanodiscs (LPNs) of different lipid compositions (DMPC, DMPG, POPC, POPC/DOPG) have been compared with classical membrane mimicking media such as detergent micelles, lipid/detergent bicelles and liposomes by their ability to support CF synthesis of IMPs in a folded and soluble state. Three model membrane proteins of different topology were used: homodimeric transmembrane (TM) domain of human receptor tyrosine kinase ErbB3 (TM-ErbB3, 1TM); voltage-sensing domain of K+ channel KvAP (VSD, 4TM); and bacteriorhodopsin from Exiguobacterium sibiricum (ESR, 7TM). Structural and/or functional properties of the synthesized proteins were analyzed. LPNs significantly enhanced synthesis of the IMPs in a soluble form regardless of the lipid composition. A partial disintegration of LPNs composed of unsaturated lipids was observed upon co-translational IMP incorporation. Contrary to detergents the nanodiscs resulted in the synthesis of ~ 80% active ESR and promoted correct folding of the TM-ErbB3. None of the tested membrane mimetics supported CF synthesis of correctly folded VSD, and the protocol of the domain refolding was developed. The use of LPNs appears to be the most promising approach to CF production of IMPs in a folded state. NMR analysis of 15N-Ile-TM-ErbB3 co-translationally incorporated into LPNs shows the great prospects of this membrane mimetics for structural studies of IMPs produced by CF systems.  相似文献   

17.
Ordered lipid domains (rafts) are generally considered to be features of eukaryotic cells, but ordered lipid domains formed by cholesterol lipids have been identified in bacteria from the genus Borrelia, and similar cholesterol lipids exist in the bacterium Helicobacter pylori. To determine whether H. pylori lipids could form ordered membrane domains, we investigated domain formation in aqueous dispersions of H. pylori whole lipid extracts, individual H. pylori lipids, or defined mixtures of H. pylori lipids and other membrane-forming lipids. DPH (1,6-diphenyl-1,3,5-hexatriene) anisotropy measurements were used to assay membrane order and FRET (Förster resonance energy transfer) was used to detect the presence of co-existing ordered and disordered domains. We found that H. pylori membrane lipid extracts spontaneously formed lipid domains. Domain formation was more stable when lipids were extracted from H. pylori cells grown in the presence of cholesterol. Certain isolated H. pylori lipids (by themselves or when mixed with other lipids) also had the ability to form ordered domains. To be specific, H. pylori cholesteryl-6-O-tetradecanoyl-α-D-glucopyranoside (CAG) and cholesterol-6-O-phosphatidyl-α-D-glucopyranoside (CPG) had the ability to form and/or stabilize ordered domain formation, while H. pylori phosphatidylethanolamine did not, behaving similarly to unsaturated phosphatidylethanolamines. We conclude that specific H. pylori cholesterol lipids have a marked ability to form ordered lipid domains.  相似文献   

18.
Three forms of penicillinase from Bacillus licheniformis have been isolated. Two are secreted into the extracellular medium and one is membrane-bound. The secreted proteins are water-soluble; one has been previously described and sequenced, the other contains an amino-terminal extension of eight amino acid residues. The membrane-bound form behaves in all respects as a typical amphiphilic membrane protein. It binds one micelle of Triton XI00 and reassociates with egg lecithin to lipid vesicles into which the protein is incorporated. No lipids are covalently associated with the purified protein. Membrane penicillinase contains an amino-terminal peptide extension as compared to the exo forms. This tail is the most likely explanation to its amphiphilic properties.  相似文献   

19.
Stable nanosized bilayer disks were prepared from either 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and cholesterol, or lipid mixtures with a composition reflecting that of the porcine brush border membrane. Two different polyethylene glycol (PEG)-grafted lipids, the negatively charged 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-5000] (DSPE-PEG5000) and the neutral N-palmitoyl-sphingosine-1-[succinyl (methoxy (polyethylene glycol) 5000] (Ceramide-PEG5000), were used to stabilize the disks. The disks were employed as model membranes in drug partition studies based on a fast chromatography method. Results show that the lipid composition, as well as the choice of PEG-lipid, have an important influence on the partition behavior of charged drugs. Comparative studies using multilamellar liposomes indicate that bilayer disks have the potential to generate more accurate partition data than do liposomes. Further, initial investigations using bacteriorhodopsin suggest that membrane proteins can be reconstituted into the bilayer disks. This fact further strengthens the potential of the bilayer disk as an attractive model membrane.  相似文献   

20.
We have studied the biocompatibility properties of polymerizable phosphatidylcholine bilayer membranes, in the form of liposomes, with a view toward the eventual utilization of such polymerized lipid assemblies in drug carrier systems or as surface coatings for biomaterials. The SH-based polymerizable lipid 1,2-bis[1,2-(lipoyl)dodecanoyl]-sn-glycero-3-phosphocholine (dilipoyl lipid, DLL) and the methacryl-based lipid 1,2-bis[(methacryloyloxy)dodecanoyl]-sn-glycero-3-phosphocholine (dipolymerizable lipid, DPL) were studied in comparison to ‘conventional’ zwitterionic or charged phospholipids. We examined binding of serum proteins to liposomes and effects of liposomes on fibrin clot formation and on platelet aggregation. All types of liposomes tested bound complex mixtures of serum proteins with IgG being the most abundant bound component. DPL vesicles and anionic vesicles bound substantially more protein than other vesicle types. Polymerized DPL vesicles uniquely bound a protein of about 53 kDa which was not bound to other types of phosphatidylcholine liposomes. Likewise polymerized DPL vesicles, but not other types of phosphatidylcholine vesicles, caused a marked alteration in coagulation as measured by activated partial thromboplastin time (APTT) and prothrombin time (PT) tests; this effect was shown to be due to binding and depletion of clothing factor V by the DPL polymerized vesicles. Polymerized DPL liposomes and DLL liposomes in polymerized or nonpolymerized form, were without substantial effect on platelet aggregation. However, DPL nonpolymerized vesicles, while not causing aggregation, did impair ADP-induced aggregation of platelets. These studies suggest that SH based polymerizable lipids of the DLL type may be very suitable for in vivo use in the contexts of drug delivery systems or biomaterials development. Methacryloyl-based lipids of the DPL type seem to display interactions with the hemostatic process which militate against their in vivo utilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号