首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The genome of P. marneffei, the most important thermal dimorphic fungus causing respiratory, skin and systemic mycosis in China and Southeast Asia, possesses 23 polyketide synthase (PKS) genes and 2 polyketide synthase nonribosomal peptide synthase hybrid (PKS-NRPS) genes, which is of high diversity compared to other thermal dimorphic pathogenic fungi. We hypothesized that the yellow pigment in the mold form of P. marneffei could also be synthesized by one or more PKS genes.

Methodology/Principal Findings

All 23 PKS and 2 PKS-NRPS genes of P. marneffei were systematically knocked down. A loss of the yellow pigment was observed in the mold form of the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants. Sequence analysis showed that PKS11 and PKS12 are fungal non-reducing PKSs. Ultra high performance liquid chromatography-photodiode array detector/electrospray ionization-quadruple time of flight-mass spectrometry (MS) and MS/MS analysis of the culture filtrates of wild type P. marneffei and the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants showed that the yellow pigment is composed of mitorubrinic acid and mitorubrinol. The survival of mice challenged with the pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants was significantly better than those challenged with wild type P. marneffei (P<0.05). There was also statistically significant decrease in survival of pks11 knockdown, pks12 knockdown and pks11pks12 double knockdown mutants compared to wild type P. marneffei in both J774 and THP1 macrophages (P<0.05).

Conclusions/Significance

The yellow pigment of the mold form of P. marneffei is composed of mitorubrinol and mitorubrinic acid. This represents the first discovery of PKS genes responsible for mitorubrinol and mitorubrinic acid biosynthesis. pks12 and pks11 are probably responsible for sequential use in the biosynthesis of mitorubrinol and mitorubrinic acid. Mitorubrinol and mitorubrinic acid are virulence factors of P. marneffei by improving its intracellular survival in macrophages.  相似文献   

2.
3.
4.
Novel Polyketide Synthase from Nectria haematococca   总被引:1,自引:0,他引:1       下载免费PDF全文
We identified a polyketide synthase (PKS) gene, pksN, from a strain of Nectria haematococca by complementing a mutant unable to synthesize a red perithecial pigment. pksN encodes a 2,106-amino-acid polypeptide with conserved motifs characteristic of type I PKS enzymatic domains: β-ketoacyl synthase, acyltransferase, duplicated acyl carrier proteins, and thioesterase. The pksN product groups with the Aspergillus nidulans WA-type PKSs involved in conidial pigmentation and melanin, bikaverin, and aflatoxin biosynthetic pathways. Inactivation of pksN did not cause any visible change in fungal growth, asexual sporulation, or ascospore formation, suggesting that it is involved in a specific developmental function. We propose that pksN encodes a novel PKS required for the perithecial red pigment biosynthesis.  相似文献   

5.
6.
Galbonolide (GAL) A and B are antifungal macrolactone polyketides produced by Streptomyces galbus. During their polyketide chain assembly, GAL-A and -B incorporate methoxymalonate and methylmalonate, respectively, in the fourth chain extension step. The methoxymalonyl-acyl carrier protein biosynthesis locus (galG to K) is specifically involved in GAL-A biosynthesis, and this locus is neighbored by a gene cluster composed of galA-E. GalA-C constitute a single module, highly reducing type I polyketide synthase (PKS). GalD and GalE are cytochrome P450 and Rieske domain protein, respectively. Gene knock-out experiments verified that galB, -C, and -D are essential for GAL biosynthesis. A galD mutant accumulated a GAL-C that lacked two hydroxyl groups and a double bond when compared with GAL-B. A [U-13C]propionate feeding experiment indicated that no rare precursor other than methoxymalonate was incorporated during GAL biogenesis. A search of the S. galbus genome for a modular type I PKS system, the type that was expected to direct GAL biosynthesis, resulted in the identification of only one modular type I PKS gene cluster. Homology analysis indicated that this PKS gene cluster is the locus for vicenistatin biosynthesis. This cluster was previously reported in Streptomyces halstedii. A gene deletion of the vinP2 ortholog clearly demonstrated that this modular type I PKS system is not involved in GAL biosynthesis. Therefore, we propose that GalA-C direct macrolactone polyketide formation for GAL. Our studies provide a glimpse into a novel biochemical strategy used for polyketide synthesis; that is, the iterative assembly of propionates with highly programmed β-keto group modifications.  相似文献   

7.
Polyketide synthases (PKSs) occur in many bacteria, fungi and plants. They are highly versatile enzymes involved in the biosynthesis of a large variety of compounds including antimicrobial agents, polymers associated with bacterial cell walls and plant pigments. While harmful algae are known to produce polyketide toxins, sequences of the genomes of non‐toxic algae, including those of many green algal species, have surprisingly revealed the presence of genes encoding type I PKSs. The genome of the model alga Chlamydomonas reinhardtii (Chlorophyta) contains a single type I PKS gene, designated PKS1 (Cre10.g449750), which encodes a giant PKS with a predicted mass of 2.3 MDa. Here, we show that PKS1 is induced in 2‐day‐old zygotes and is required for their development into zygospores, the dormant stage of the zygote. Wild‐type zygospores contain knob‐like structures (~50 nm diameter) that form at the cell surface and develop a central cell wall layer; both of these structures are absent from homozygous pks1 mutants. Additionally, in contrast to wild‐type zygotes, chlorophyll degradation is delayed in homozygous pks1 mutant zygotes, indicating a disruption in zygospore development. In agreement with the role of the PKS in the formation of the highly resistant zygospore wall, mutant zygotes have lost the formidable desiccation tolerance of wild‐type zygotes. Together, our results represent functional analyses of a PKS mutant in a photosynthetic eukaryotic microorganism, revealing a central function for polyketides in the sexual cycle and survival under stressful environmental conditions.  相似文献   

8.
9.
Pestalotiollide B, an analog of dibenzodioxocinones which are inhibitors of cholesterol ester transfer proteins, is produced by Pestalotiopsis microspora NK17. To increase the production of pestalotiollide B, we attempted to eliminate competing polyketide products by deleting the genes responsible for their biosynthesis. We successfully deleted 41 out of 48 putative polyketide synthases (PKSs) in the genome of NK17. Nine of the 41 PKS deleted strains had significant increased production of pestalotiollide B (P < 0.05). For instance, deletion of pks35, led to an increase of pestalotiollide B by 887%. We inferred that these nine PKSs possibly lead to branch pathways that compete for precursors with pestalotiollide B, or that convert the product. Deletion of some other PKS genes such as pks8 led to a significant decrease of pestalotiollide B, suggesting they are responsible for its biosynthesis. Our data demonstrated that improvement of pestalotiollide B production can be achieved by eliminating competing polyketides.  相似文献   

10.
NPR1 (Nonexpressor of Pathogenesis-Related gene 1) is a major co-activator of plant defense. Phosphorylations of NPR1 play important roles in fine-tuning its activity, however a kinase corresponding to such modification remains uncharacterized. Here, we report that NPR1 interacts with PKS5 (SOS2-like Protein Kinase 5). The AKR (AnKyrin Repeats) motif of NPR1 is required for this interaction. PKS5 phosphorylates NPR1 at the C-terminal region. Expression of PKS5 is induced quickly by Pseudomonas syringae pv. tomato DC3000. Expression level of two NPR1 target genes, WRKY38 and WRKY62, is reduced and/or delayed in pks5 mutants. Moreover, the expression of WRKY38 and WRKY62 displays a similar pattern in npr1-1pks5-1 double mutant comparing to that in npr1-1. Our results suggest that PKS5 functions at the upstream of NPR1 and might mediate expression of WRKY38 and WRKY62 possibly by interacting with and phosphorylating NPR1.  相似文献   

11.
Although bacterial polyketides are of considerable biomedical interest, the molecular biology of polyketide biosynthesis in Bacillus spp., one of the richest bacterial sources of bioactive natural products, remains largely unexplored. Here we assign for the first time complete polyketide synthase (PKS) gene clusters to Bacillus antibiotics. Three giant modular PKS systems of the trans-acyltransferase type were identified in Bacillus amyloliquefaciens FZB 42. One of them, pks1, is an ortholog of the pksX operon with a previously unknown function in the sequenced model strain Bacillus subtilis 168, while the pks2 and pks3 clusters are novel gene clusters. Cassette mutagenesis combined with advanced mass spectrometric techniques such as matrix-assisted laser desorption ionization-time of flight mass spectrometry and liquid chromatography-electrospray ionization mass spectrometry revealed that the pks1 (bae) and pks3 (dif) gene clusters encode the biosynthesis of the polyene antibiotics bacillaene and difficidin or oxydifficidin, respectively. In addition, B. subtilis OKB105 (pheA sfp(0)), a transformant of the B. subtilis 168 derivative JH642, was shown to produce bacillaene, demonstrating that the pksX gene cluster directs the synthesis of that polyketide. The GenBank accession numbers for gene clusters pks1(bae), pks2, and pks3(dif) are AJ 634060.2, AJ 6340601.2, and AJ 6340602.2, respectively.  相似文献   

12.
Autophosphorylation of phytochrome A (phyA) and transphosphorylation of its reaction partners, phytochrome kinase substrate 1 (PKS1) in particular, might play important functions in signal transduction from phyA. It was shown that PKS1 and PKS2 physically interact with phyA and phyB in vitro, and that overexpression of PKS1 interferes with phytochrome signaling in vivo. Moreover, both pks1 and pks2 loss of function mutants are specifically defective for one branch of phyA signaling. We therefore used in vivo fluorescence spectroscopy to test whether mutations in pks1 and pks2 or overexpression of PKS1 (PKS1OX) have an effect on phyA and its subpopulations, phyA' and phyA'. It was found that the emission spectra of phyA in all the Arabidopsis lines are similar. The phyA content in the single mutants pks1 and pks2, and also in PKS1OX, was 1.2-1.5 times higher than in the wild type, whereas the phyA'/phyA' ratio remained practically unchanged (approx. 1.0). However, in the double mutant pks1pks2, the picture is reversed--the phyA concentration remained unchanged, while the phyA'/phyA' ratio shifted dramatically towards phyA'(0.3). This suggests that (i) the changes in PKS1 or PKS2 content may affect the total phyA concentration, (ii) PKS1, together with PKS2, could be critical for the formation of phyA', thus shifting the equilibrium towards phyA' in the double mutant and (iii) these variations in the phyA' and phyA' content may contribute to the mutant phenotype of pks1, pks2 and PKS1OX. The fact that in the single mutants there are only small changes in the phyA'/phyA' ratio, while in the double mutant the ratio is considerably affected, indicates that PKS1 or PKS2 act redundantly with each other in this regard.  相似文献   

13.
Species of the fungal genus Trichoderma (Hypocreales, Ascomycota) are well-known for their production of various secondary metabolites. Nonribosomal peptides and polyketides represent a major portion of these products. In a recent phylogenomic investigation of Trichoderma polyketide synthase (PKS)-encoding genes, the pks4 from T. reesei was shown to be an orthologue of pigment-forming PKSs involved in synthesis of aurofusarin and bikaverin in Fusarium spp. In this study, we show that deletion of this gene in T. reesei results in loss of green conidial pigmentation and in pigmentation alteration of teleomorph structures. It also has an impact on conidial cell wall stability and the antagonistic abilities of T. reesei against other fungi, including formation of inhibitory metabolites. In addition, deletion of pks4 significantly influences the expression of other PKS-encoding genes of T. reesei. To our knowledge, this is the first indication that a low-molecular-weight pigment-forming PKS is involved in defense, mechanical stability, and stress resistance in fungi.  相似文献   

14.
15.
Tautomycetin (TMC) is a linear polyketide metabolite produced by Streptomyces sp. CK4412 that has been reported to possess multiple biological functions including T cell-specific immunosuppressive and anticancer activities that occur through a mechanism of differential inhibition of protein phosphatases such as PP1, PP2A, and SHP2. We previously reported the characterization of the entire TMC biosynthetic gene cluster constituted by multifunctional type I polyketide synthase (PKS) assembly and suggested that the linear form of TMC could be generated via free acid chain termination by a narrow TMC thioesterase (TE) pocket. The modular nature of the assembly presents a unique opportunity to alter or interchange the native biosynthetic domains to produce targeted variants of TMC. Herein, we report swapping of the TMC TE domain sequence with the exact counterpart of the macrocyclic polyketide pikromycin (PIK) TE. PIK TE-swapped Streptomyces sp. CK4412 mutant produced not only TMC, but also a cyclized form of TMC, implying that the bioengineering based in vivo custom construct can be exploited to produce engineered macrolactones with new structural functionality.  相似文献   

16.
Francisella tularensis is an intracellular pathogen whose survival is in part dependent on its ability to resist the microbicidal activity of host-generated reactive oxygen species (ROS) and reactive nitrogen species (RNS). In numerous bacterial pathogens, CuZn-containing superoxide dismutases (SodC) are important virulence factors, localizing to the periplasm to offer protection from host-derived superoxide radicals (O2). In the present study, mutants of F. tularensis live vaccine strain (LVS) deficient in superoxide dismutases (SODs) were used to examine their role in defense against ROS/RNS-mediated microbicidal activity of infected macrophages. An in-frame deletion F. tularensis mutant of sodCsodC) and a F. tularensis ΔsodC mutant with attenuated Fe-superoxide dismutase (sodB) gene expression (sodB ΔsodC) were constructed and evaluated for susceptibility to ROS and RNS in gamma interferon (IFN-γ)-activated macrophages and a mouse model of respiratory tularemia. The F. tularensis ΔsodC and sodB ΔsodC mutants showed attenuated intramacrophage survival in IFN-γ-activated macrophages compared to the wild-type F. tularensis LVS. Transcomplementing the sodC gene in the ΔsodC mutant or inhibiting the IFN-γ-dependent production of O2 or nitric oxide (NO) enhanced intramacrophage survival of the sod mutants. The ΔsodC and sodB ΔsodC mutants were also significantly attenuated for virulence in intranasally challenged C57BL/6 mice compared to the wild-type F. tularensis LVS. As observed for macrophages, the virulence of the ΔsodC mutant was restored in ifn−/−, inos/, and phox/ mice, indicating that SodC is required for resisting host-generated ROS. To conclude, this study demonstrates that SodB and SodC act to confer protection against host-derived oxidants and contribute to intramacrophage survival and virulence of F. tularensis in mice.Francisella tularensis is considered a potential biological threat due to its extreme infectivity, ease of artificial dissemination via aerosols, and substantial capacity to cause illness and death. A hallmark of all F. tularensis subspecies is their ability to survive and replicate within macrophages (18) and other cell types (6, 11, 25, 28). While recent work has furthered our understanding of F. tularensis virulence mechanisms, little is known with respect to its ability to resist the microbicidal production of reactive oxygen species (ROS) or reactive nitrogen species (RNS).Superoxide dismutases (SODs) are metalloproteins that are classified according to their coordinating active site metals. SODs catalyze the dismutation of the highly reactive superoxide (O2) anion to hydrogen peroxide (H2O2) and O2 (26). The dismutation of O2 prevents accumulation of microbicidal ROS and RNS in infected macrophages. Three major categories of SODs have been identified in bacteria and include Mn-, Fe-, and CuZn-containing SODs (SodA, SodB, and SodC, respectively) and are required for aerobic survival (27). The F. tularensis genome encodes SodB (FTL_1791) and SodC (FTL_0380). In several intracellular bacterial pathogens, SodC is an important virulence factor, and its localization to the periplasmic space protects bacteria from host-derived O2 and NO radicals (8, 9, 21, 32). Moreover, many virulent bacteria possess two copies of the sodC gene (4). The evolutionary maintenance of an extra sodC gene copy suggests that it serves some essential function in survival (4). As an intracellular pathogen, F. tularensis is exposed to ROS and RNS generated by inflammatory cells during the macrophage activation process, which suggests that SODs may play an important role in its intracellular survival and pathogenesis. We have demonstrated that decreases in SodB activity render F. tularensis sensitive to ROS and attenuate virulence in mice (2). However, the contribution of F. tularensis SodC in virulence and intramacrophage survival has not been defined. In this study we have constructed a F. tularensis sodC mutant (ΔsodC) and a F. tularensis sodBC double mutant (sodB ΔsodC) and determined that SodC in conjunction with SodB primarily protects the pathogen from host-derived ROS and is required for intramacrophage survival and virulence of F. tularensis in mice.  相似文献   

17.
The plasma membrane H+-ATPase (PM H+-ATPase) plays an important role in the regulation of ion and metabolite transport and is involved in physiological processes that include cell growth, intracellular pH, and stomatal regulation. PM H+-ATPase activity is controlled by many factors, including hormones, calcium, light, and environmental stresses like increased soil salinity. We have previously shown that the Arabidopsis thaliana Salt Overly Sensitive2-Like Protein Kinase5 (PKS5) negatively regulates the PM H+-ATPase. Here, we report that a chaperone, J3 (DnaJ homolog 3; heat shock protein 40-like), activates PM H+-ATPase activity by physically interacting with and repressing PKS5 kinase activity. Plants lacking J3 are hypersensitive to salt at high external pH and exhibit decreased PM H+-ATPase activity. J3 functions upstream of PKS5 as double mutants generated using j3-1 and several pks5 mutant alleles with altered kinase activity have levels of PM H+-ATPase activity and responses to salt at alkaline pH similar to their corresponding pks5 mutant. Taken together, our results demonstrate that regulation of PM H+-ATPase activity by J3 takes place via inactivation of the PKS5 kinase.  相似文献   

18.
The stress-activated p38/Hog1 mitogen-activated protein kinase (MAPK) pathway is structurally conserved in many diverse organisms, including fungi and mammals, and modulates myriad cellular functions. The Hog1 pathway is uniquely specialized to control differentiation and virulence factors in a majority of clinical Cryptococcus neoformans serotype A and D strains. Here, we identified and characterized the Ssk2 MAPKKK that functions upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for the difference in Hog1 phosphorylation between the serotype D f1 sibling strains B-3501 and B-3502 through comparative analysis of meiotic maps showing their meiotic segregation patterns of Hog1-dependent sensitivity to the antifungal drug fludioxonil. Ssk2 is the only component of the Hog1 MAPK cascade that is polymorphic between the two strains, and the B-3501 and B-3502 SSK2 alleles were distinguished by two coding sequence changes. Supporting this finding, SSK2 allele exchange completely interchanged the Hog1-controlled signaling patterns, related phenotypes, and virulence levels of strains B-3501 and JEC21. In the serotype A strain H99, disruption of the SSK2 gene enhanced capsule and melanin biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2Δ, pbs2Δ, and hog1Δ mutants were hypersensitive to a variety of stresses and resistant to fludioxonil. In agreement with these results, Hog1 phosphorylation was abolished in the ssk2Δ mutant, similar to what occurred in the pbs2Δ mutant. Taken together, these findings indicate that Ssk2 is a critical interface connecting the two-component system and the Pbs2-Hog1 MAPK pathway in C. neoformans.  相似文献   

19.
We have analyzed an anthracycline biosynthesis gene cluster fromStreptomyces nogalater. Based on sequence analysis, a contiguous region of 11 kb is deduced to include genes for the early steps in anthracycline biosynthesis, a regulatory gene (snoA) promoting the expression of the biosynthetic genes, and at least one gene whose product might have a role in modification of the glycoside moiety. The three ORFs encoding a minimal polyketide synthase (PKS) are separated from the regulatory gene (snoA) by a comparatively AT-rich region (GC content 60%). Subfragments of the DNA region were transferred toStreptomyces galilaeus mutants blocked in aclacinomycin biosynthesis, and to a regulatory mutant ofS. nogalater. TheS. galilaeus mutants carrying theS. nogalater minimal PKS genes produced auramycinone glycosides, demonstrating replacement of the starter unit for polyketide biosynthesis. The product ofsnoA seems to be needed for expression of at least the genes for the minimal PKS.  相似文献   

20.
Phytochrome kinase substrate1 (PKS1) is a cytoplasmic protein that interacts physically with, and is phosphorylated by, the plant photoreceptor phytochrome. Here, we show that light transiently increases PKS1 mRNA levels and concentrates its expression to the elongation zone of the hypocotyl and root. This response is mediated by phytochrome A (phyA) acting in the very low fluence response (VLFR) mode. In the hypocotyl, PKS1 RNA and protein accumulation are maintained only under prolonged incubation in far-red light, the wavelength that most effectively activates phyA. Null mutants of PKS1 and its closest homolog, PKS2, show enhanced phyA-mediated VLFR. Notably, a pks1 pks2 double mutant has no phenotype, whereas overexpression of either PKS1 or PKS2 results in the same phenotype as the pks1 or pks2 single null mutant. We propose that PKS1 and PKS2 are involved in a growth regulatory loop that provides homeostasis to phyA signaling in the VLFR. In accordance with this idea, PKS1 effects are larger in the pks2 background (and vice versa). Moreover, the two proteins can interact with each other, and PKS2 negatively regulates PKS1 protein levels specifically under VLFR conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号