首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
甘南尕海湿地退化过程中植被生物量变化及其季节动态   总被引:2,自引:0,他引:2  
为探讨尕海湿地退化过程中植被生物量变化规律,以尕海泥炭沼泽和沼泽化草甸为例,采用定位样地调查方法,研究了不同退化程度湿地植被生物量的时空分布格局。结果表明,1)随着湿地退化演替,两类湿地植被地上生物量逐渐减小,泥炭沼泽未退化(PⅠ)、退化阶段(PⅡ)地上生物量依次为334.19,290.72 g/m~2,沼泽化草甸未退化(SⅠ)、轻度退化(SⅡ)、中度退化(SⅢ)地上生物量依次为378.40,308.07,261.21 g/m~2;地上生物量季节动态规律均为单峰型,8月中下旬达到峰值;同一湿地类型各退化阶段地上生物量绝对增长率(AGR)和相对增长率(RGR)在同一年份变化趋势基本相同,但不同年份间存在差异,而同一湿地类型不同阶段AGR和RGR的大小存在差异。2)地下生物量也随退化程度加剧显著减小(P0.05),PⅠ,PⅡ地上生物量依次为23081.46,12607.72 g/m~2,SⅠ,SⅡ,SⅢ地下生物量依次为4583.16,3008.63,1290.73 g/m~2;地下生物量季节变化均表现出愈接近生长季始末值愈大;地下生物量由土壤表层向深层显著下降(P0.05),总体呈"T"形分布,0—10cm土层,泥炭沼泽、沼泽化草甸地下生物量都最大,分别占各自总地下生物量50%和70%以上。3)尕海2类高寒湿地5—9月平均根冠比均表现未退化高于退化,根冠比季节动态为越接近生长季始末值越大,生长旺盛季值越小。  相似文献   

2.
土壤呼吸会影响全球碳循环,而湿地水位与土壤呼吸息息相关。然而,由于原位观测有限,目前尚不清楚高寒沼泽土壤呼吸及其组分如何响应水位下降。在若尔盖高原纳勒乔沼泽建立了水位下降控制实验平台,定位监测土壤呼吸及其组分的变化,并初步探讨土壤呼吸及其组分与生物和非生物因素的潜在联系。结果发现,水位下降对高寒草本沼泽土壤呼吸(Rs)没有显著影响,但自养呼吸(Ra)和异氧呼吸(Rh)对水位下降表现出明显不同反应。其中,自养呼吸速率下降了67.2%,异养呼吸速率上升了67.3%。异养呼吸和自养呼吸在土壤呼吸中的占比发生显著变化,水位下降后,Rh/Rs较对照增加了88%,Ra/Rs减少了61%。水位下降引起的自养呼吸和异养呼吸变化的驱动因素不同,植株高度、地上及地下生物量解释了自养呼吸的变化,土壤温度、C:N则是异氧呼吸变化的关键影响因素。综上,在高寒草本沼泽生态系统中,水位下降对土壤呼吸组分的影响强度及其驱动因素存在明显差异,这需要在陆地表层碳循环模型中加以考虑,以便更好评估高寒草本沼泽碳循环对气候变化的反馈作用。  相似文献   

3.
青藏高原高寒灌丛生态系统草本层生物量分配格局   总被引:6,自引:2,他引:6  
青藏高原高寒灌丛生态系统生物量分配的研究相对较少,尤其是其草本层。为了探究高寒灌丛生态系统草本层生物量分配特征及其影响因素,分析了青藏高原东北部灌丛生态系统的49个高寒灌丛样地的草本层地上与地下生物量特征及其气候因子之间的关系。结果表明1)草本层地上生物量与地下生物量分别为121.1,342.8 g/m2均大于高寒草地的地上生物量与地下生物量。2)草本层的根冠比为3.6低于高寒草地的根冠比。3)地上生物量与地下生物量之间呈现幂函数的关系y=8.0x0.83(R2=0.48,P0.001)。4)根冠比与年均温度、年均降雨量之间没有显著的相关关系。  相似文献   

4.
刘美  马志良 《生态学报》2021,41(4):1421-1430
植物生物量分配特征的变化反映了不同环境条件下植物的适应策略,全球气候变暖正在改变青藏高原高寒生态系统植被动态和生物量分配格局。然而,到目前为止,有关青藏高原高寒灌丛生物量分配特征对气候变暖的响应研究较少。为了探究气候变暖对高寒灌丛生物量分配的影响,以青藏高原东部典型的窄叶鲜卑花高寒灌丛为研究对象,分析了高寒灌丛灌木层、草本层和群落水平生物量分配特征对开顶式生长室(OTC)模拟增温的响应。研究结果表明:整个生长季节,模拟增温使空气温度和表层土壤温度分别升高0.6℃和1.2℃,使表层土壤水分含量下降2.7%。模拟增温使草本层和群落地上生物量显著增加57.8%和7.2%,使灌木层、草本层和群落根系生物量显著增加42.5%、105.6%和45.6%。然而,模拟增温没有显著影响灌木层地上生物量。同时,模拟增温使灌木层、草本层和群落总生物量显著增加25.6%、85.7%和28.4%,使灌木层、草本层和群落根冠比显著增加33.2%、30.4%和36.0%。由此可见,模拟增温在促进高寒灌丛生物量生产的同时将显著提高向地下根系部分的分配比例。Pearson相关分析表明,高寒灌丛生物量分配与空气温度、土壤温度和土壤硝态氮含量呈显著正相关关系;多元线性回归分析结果也表明,空气温度、土壤温度和土壤硝态氮含量解释了高寒灌丛生物量分配变异的50.8%以上。这些结果表明,青藏高原东部高寒灌丛植被能够通过调节生物量分配模式应对未来气候变暖。  相似文献   

5.
土壤活性有机碳及碳库管理指数对高寒湿地退化的响应   总被引:1,自引:0,他引:1  
探明高寒湿地土壤活性有机碳及碳库管理指数变化与湿地退化的关系,对退化湿地生态恢复具有重要意义。以若尔盖湿地自然保护区的相对原生沼泽(RPM)、轻度退化沼泽(LDM)、中度退化沼泽(MDM)、重度退化沼泽(HDM)和极重度退化沼泽(SDM)湿地土壤为对象,研究土壤总有机碳、活性有机碳组分含量及碳库管理指数对高寒湿地退化的响应。结果表明:0~100 cm范围内土层总有机碳(TOC)含量表现为RPM>LDM>MDM>HDM>SDM;与RPM相比,各退化湿地土壤的水溶性有机碳(WSOC)、溶解性有机碳(DOC)、易氧化有机碳(PXOC)含量均降低,尤以MDM、HDM和SDM降低显著,其WSOC、DOC和PXOC含量的降幅分别为25.79%~76.76%、35.90%~92.81%、32.07%~80.06%。随着湿地退化程度的加剧,3种活性有机碳的分配比例逐渐增加,碳库管理指数却逐渐减小。由此可见,高寒湿地退化可能会通过增加湿地土壤有机碳活性,降低土壤碳"汇"能力和湿地土壤质量。  相似文献   

6.
若尔盖高寒湿地干湿土壤条件下微生物群落结构特征   总被引:18,自引:4,他引:14  
牛佳  周小奇  蒋娜  王艳芬 《生态学报》2011,31(2):474-482
土壤水分含量的空间异质性是引起湿地生态系统结构和功能空间变异的关键因素。目前有关低纬度高寒湿地土壤水分对微生物群落结构影响的研究较少。于2007年4月(冷季)和8月(暖季)采集若尔盖高寒湿地常年淹水和无淹水两种水分条件的土壤样品,利用磷脂脂肪酸方法分析其微生物群落结构。结果表明,土壤微生物总生物量、细菌生物量、革兰氏阳性细菌及革兰氏阴性细菌生物量均表现为常年淹水土壤高于无淹水土壤,且4月份高于8月份;与土壤通气量关系密切的真菌、放线菌,其生物量表现为无淹水土壤显著高于常年淹水土壤;反映群落组成的真菌:细菌磷脂脂肪酸比值也表现为无淹水土壤显著高于常年淹水土壤。磷脂脂肪酸的主成分分析表明,水分条件不同的两种土壤中微生物群落结构显著不同,季节变化并未引起土壤微生物群落结构的改变。  相似文献   

7.
巴音布鲁克天鹅湖保护区湿地植物群落研究   总被引:1,自引:0,他引:1  
李文利  王英 《生态科学》2007,26(5):443-446
巴音布鲁克天鹅湖湿地植被类型在分类上属典型高寒沼泽草甸,可分为5个型。植被以湿生和水生植物为主构成,由5个层片结构组成。水沼泽植物群落的均匀度和优势度指数均高于丘状沼泽。植物群落物种重要性的大小依次为:黑穗苔草(Carex melanantha)>细刺苔草(Carex microglochn)>嵩草(Kobresia filifola)>囊状苔草(Carexvesicula)>马先蒿(Pedieularis albevti)>水麦冬(Triglochin plustre)>报春花(Primula sibirica)。在巴音布鲁克高寒沼泽草地植物群落中,水沼泽草地的鲜草产量高于丘状沼泽,分别为646.2g·m-2和496.7g·m-2,平均鲜草量571.5g·m-2。群落的地下生物量较大,为13608.8 g·m-2,0cm10cm土层中的地下生物量约占69.89%,10cm20cm的地下生物量约占15.9%,20cm30cm的地下生物量约占7.27%,30cm50cm的地下生物量仅占6.94%。植物种类以莎草科植物较多(占总生物量的78.7%),大部分属于下繁性草类。物种组成简单,平方米植物种为13种,一般8种~11种。  相似文献   

8.
应用静态箱/气相色谱法,测定了若尔盖高原沼泽N2O排放能量,测定期为该地植物生长期,即2004年4 月末至10月初。结果表明,若尔盖高原沼泽湿地N2O排放通量平均值为0.010 mg·m-2h-1,最大值为0.079 mg·m-2h-1, 最小值为-0.051mg·m-2h-1。高峰排放期为5月,最低排放期为地表水深最大的6月。沼泽湿地N2O排放通量季节变化与沼泽湿地水深呈负相关关系。沼泽湿地N2O排放通量日变化与大气温度呈正相关关系,排放高值出现在午后。若尔盖高原沼泽湿地在植物生长期的年排放总量约为0.159Gg·a-1。  相似文献   

9.
张倚浩  阎建忠  程先 《生态学报》2023,43(6):2180-2193
青藏高原是中国湿地分布最多的区域,其独特的高寒湿地对区域生态环境安全有着不可或缺的作用。梳理了青藏高原湿地变化的时空特征,基于此,重点分析了气候变化与人类活动对不同类型湿地的影响和作用机制。研究发现:(1)主导不同类型湿地变化的气候因素有差异,影响存在区域异质性。湖泊湿地主要受降水量影响,湖泊湿地在北部扩张、南部缩小的趋势与降水量的空间差异存在较强的一致性;沼泽湿地主要受气温影响,气温升高导致水分蒸发、植被群落演替,沼泽湿地向草地转化,江河源区和若尔盖高原等主要分布区域呈现退化趋势;河流湿地主要受气温影响,气温升高加速河源冰川消融、同时也增大河流蒸散发量,共同作用下河流湿地呈现北部减少、南部增加的趋势。(2)过度放牧、泥炭开采、水利建设等是影响湿地变化的主要人类活动。若尔盖高原同时存在过度放牧、泥炭开采和沟渠建设多重人类活动影响,当地沼泽湿地退化明显;柴达木盆地的人工湿地由于盐业开采迅速扩张。(3)当前研究存在数据可对比性不足、大区域尺度和野外定点持续监测数据缺乏等问题,导致对气候变化与人类活动影响机制研究不够深入。未来应加强高寒湿地定期监测与风险评估,完善高寒湿地生态系统与环境变化和...  相似文献   

10.
若尔盖高原湿地生态系统服务价值动态   总被引:10,自引:0,他引:10  
基于1975、2006年若尔盖高原湿地的卫星遥感资料,应用生态系统服务价值评价方法,对1975—2006年间若尔盖高原湿地生态系统的物质产品生产价值、气体调节价值和蓄水价值动态进行了研究.结果表明:研究期间,若尔盖高原湿地生态系统三项服务价值总和由195.90亿元降至123.85亿元,其中,物质产品价值增加了3.02亿元,而气体调节和蓄水价值共减少了75.07亿元.研究区由物质产品增加带来的收益远小于由生态退化造成的损失;过度的放牧行为致使若尔盖高原湿地生物量减少、土壤结构变化,造成生态系统总服务价值和服务水平下降.  相似文献   

11.
利用地表土壤动物与植物群落生物完整性指数评价若尔盖沼泽湿地受扰现状,为若尔盖沼泽湿地恢复提供依据。2018年7月与2019年7月对若尔盖10处典型湿地(参照区4个,受扰区6个)地表土壤动物与湿地植被群落进行调查。通过对74个候选指标的分布范围、判别能力及相关分析,确定中生性植物、一年生植物、龙胆科植物、一年生植物/多年生植物比4个植物核心指标,地表土壤动物总个体数量、中小型动物类群数量、蜘蛛目物种数量、菌食性土壤动物与腐食性土壤动物5个核心指标,构建若尔盖沼泽湿地地表土壤动物与植物完整性指数。以所有采样点95%分位数为最佳期望值,四分位法确定研究区域未受干扰、轻度干扰程度、中度干扰与重度干扰4个等级,作为判断若尔盖沼泽湿地受扰状况。结果显示,若尔盖沼泽湿地相对原始沼泽、花湖沼泽化草甸2、长期低强度排水疏干区、短期高强度排水疏干区分别处于未受干扰、轻度干扰、中度干扰与重度干扰状态。所调查的若尔盖典型湿地中,20%的湿地未受到干扰,30%的湿地受到轻度干扰,30%的湿地受到中度干扰,20%的湿地受到重度干扰。Pearson相关系数分析显示,地表土壤动物完整性指数与植物完整性指数存在显著正相...  相似文献   

12.
近40年来若尔盖高原高寒湿地景观格局变化   总被引:16,自引:0,他引:16  
白军红    欧阳华  崔保山  王庆改  陈辉 《生态学报》2008,28(5):2245-2245~2252
基于Apack软件,通过选取景观面积指数、景观多样性指数和景观破碎化指数等景观格局指数,从景观水平上研究了近40a来若尔盖高原高寒湿地景观空间分布格局特征的动态变化过程.结果表明:(1)高寒湿地景观空间格局以自然湿地景观为主要特征,自然湿地景观的斑块数和平均斑块面积均明显高于人工湿地景观.沼泽湿地景观斑块数最多,面积最大,所占比例高于95%;(2)高寒湿地景观具有高度的空间异质性.若尔盖县湿地景观的面积最大,占该区湿地景观总面积的近50%,湿地率也居五县之首;红原县和玛曲县次之;阿坝县和碌曲县最小;(3)高寒湿地景观面积呈先减少后增加的变化趋势.但与20世纪60年代相比,2000年湿地景观面积仍呈萎缩状态,总面积减少59857.83 hm2;(4)近40a来,若尔盖高原湿地景观呈集中连片分布,聚集度均高于0.95;优势度水平较高,但多样性指数水平较低.湿地景观的斑块数呈先下降后持平的变化趋势,而平均斑块面积则表现为增加的变化趋势;湿地景观分布质心也发生了明显的空间位移,经历了先向西北方向偏移12.54km;再向东南方向偏移了11.33km;最后又向北偏移了1.1km.  相似文献   

13.
若尔盖高原沼泽湿地N2O排放通量研究   总被引:6,自引:0,他引:6  
应用静态箱/气相色谱法,测定了若尔盖高原沼泽N2O排放能量,测定期为该地植物生长期,即2004年4月末至10月初。结果表明,若尔盖高原沼泽湿地N2O排放通量平均值为0.010mg·m-2h-1,最大值为0.079mg·m-2h-1,最小值为-0.051mg·m-2h-1。高峰排放期为5月,最低排放期为地表水深最大的6月。沼泽湿地N2O排放通量季节变化与沼泽湿地水深呈负相关关系。沼泽湿地N2O排放通量日变化与大气温度呈正相关关系,排放高值出现在午后。若尔盖高原沼泽湿地在植物生长期的年排放总量约为0.159Gg·a-1。  相似文献   

14.
黄河源区丘-洼微生境对高寒沼泽草甸植物群落的影响 黄河源区高寒沼泽草甸中有许多不均匀的小丘和洼地,形成了独特的微生境,深刻影响着植物特性和土壤养分含量。通过研究高寒湿地冻融丘和洼地空间异质性对植物群落和土壤性质的影响,可以深入了解微地形水文条件对丘-洼微生境空间波动的影响。本研究在黄河源区高寒沼泽湿地的冻融丘 (淹水和无淹水)和洼地(蓄水和无蓄水)共设置36个样地(1 m × 1 m),采集了45个植物样和225个土壤样, 并采用比较法评价高寒沼泽湿地是否存在“肥岛效应”。研究结果显示,冻融丘的存在增加了微生境的 空间异质性,促进了藏嵩草群落的物种多样性和土壤肥力。淹水和无淹水的冻融丘生境下的植物高度、 盖度、地上生物量、物种丰富度和多样性均显著高于湿地外围的高寒草甸。与高寒草甸相比,高寒沼泽 湿地丘-洼复合体为莎草科植物的生长提供了有利的微生境。另外,湿地丘-洼微生境与周围高寒草甸 在0–50 cm土层之间的比较表明,土壤有机碳和全氮距离地表越近含量越高。在深层次土壤中,丘洼微生 境与高寒草甸土壤养分之间的差距变小。因此,湿地丘-洼微生境形成了一个富饶的“肥沃岛”格局。这些研究结果有助于加深对高寒沼泽草甸生态系统恢复的认识。  相似文献   

15.
基于2006—2015年青海海北站10年生物量及气候因子监测数据,分析了青藏高原高寒矮嵩草草甸生物量的季节及年际动态,并探讨了气候因子对其影响。结果表明:(1)季节尺度上,高寒矮嵩草草甸地上生物量表现为单峰变化曲线,8月为其峰值点,为(345.72±27.01) g/m~2,代表了高寒草甸的地上净初级生产力。而地下根系的现存量变化较为复杂,其中5—7月呈现持续上升趋势,8月快速下降,之后9月份急剧,且各月份之间未达到显著水平(P0.05);年际尺度上,10年间高寒矮嵩草草甸地上生物量整体呈现波动增加趋势,2014年为其峰值点,达(437.12±32.01) g/m~2。地下生物量呈现波动性变化,变异较大,10年间平均值为(2566.99±138.11) g/m~2;(2)高寒草甸光合产物分配主要分布在地下,80%地下根系生物量分布于地表0—10 cm土层,且不同土层根系生物量占总地下生物量的比值在不同月份较为稳定。(3)气候因子中,大气相对湿度是影响高寒草甸地上生物量大小的主要因素;而气候因子对地下根系生物量的影响极为微弱。研究表明,高寒嵩草草甸对环境变化具有较高的自我调节能力,且高寒草甸的演化受制于人类干扰,而非气候变化。  相似文献   

16.
不同海拔梯度高寒草地地下生物量与环境因子的关系   总被引:8,自引:0,他引:8  
以新疆天山南坡的巴音布鲁克高寒草地为对象, 研究了不同海拔梯度高寒草地地下生物量的变化及其与环境因子的关系.结果表明: 随着海拔的升高, 高寒草原、高寒草原化草甸和高寒草甸的地下生物量逐渐增大, 二者呈极显著正相关( P<0.01 ).地下生物量从表层至底层逐渐递减,呈“T”形分布.高寒草原、高寒草原化草甸和高寒草甸0~10 cm土层的地下生物量分别占总地下生物量的68.1%、84.1%和86.7%.地下生物量与大气温度呈极显著负相关, 与相对湿度和土壤含水量呈极显著正相关(P<0.01 ), 而与有机质、速效氮和pH等无显著相关.  相似文献   

17.
三峡库区马尾松人工林细根生产和周转   总被引:2,自引:0,他引:2  
2011年3-12月,采用连续根钻法和分解袋法,研究了三峡库区20年生马尾松人工林细根的季节动态,计算了细根的年生产量和周转率.结果表明:三峡库区马尾松人工林细根(<2 mm)年均生物量为146.98 g·m-2,其中活细根年均生物量(102.92 g·m-2)远大于死细根生物量(44.06 g·m-2);不同径级细根现存量的时间动态不同,<1 mm根系季节动态较为明显,整体呈单峰型曲线;马尾松人工林细根(<2 mm)的年生产量为104.12 g·m-2·a-1,年周转率为1.05 a-1,其中<1 mm和1~2 mm的年生产量分别为58.35和45.77 g·m-2·a-1,周转率为1.41和0.69 a-1.  相似文献   

18.
基于2006—2015年青海海北站10年生物量及气候因子监测数据,分析了青藏高原高寒矮嵩草草甸生物量的季节及年际动态,并探讨了气候因子对其影响。结果表明:(1)季节尺度上,高寒矮嵩草草甸地上生物量表现为单峰变化曲线,8月为其峰值点,为(345.72±27.01)g/m2,代表了高寒草甸的地上净初级生产力。而地下根系的现存量变化较为复杂,其中5—7月呈现持续上升趋势,8月快速下降,之后9月份急剧,且各月份之间未达到显著水平(P0.05);年际尺度上,10年间高寒矮嵩草草甸地上生物量整体呈现波动增加趋势,2014年为其峰值点,达(437.12±32.01)g/m2。地下生物量呈现波动性变化,变异较大,10年间平均值为(2566.99±138.11)g/m2;(2)高寒草甸光合产物分配主要分布在地下,80%地下根系生物量分布于地表0—10 cm土层,且不同土层根系生物量占总地下生物量的比值在不同月份较为稳定。(3)气候因子中,大气相对湿度是影响高寒草甸地上生物量大小的主要因素;而气候因子对地下根系生物量的影响极为微弱。研究表明,高寒嵩草草甸对环境变化具有较高的自我调节能力,且高寒草甸的演化受制于人类干扰,而非气候变化。  相似文献   

19.
基于2006—2015年青海海北站10年生物量及气候因子监测数据,分析了青藏高原高寒矮嵩草草甸生物量的季节及年际动态,并探讨了气候因子对其影响。结果表明:(1)季节尺度上,高寒矮嵩草草甸地上生物量表现为单峰变化曲线,8月为其峰值点,为(345.72±27.01)g/m2,代表了高寒草甸的地上净初级生产力。而地下根系的现存量变化较为复杂,其中5—7月呈现持续上升趋势,8月快速下降,之后9月份急剧,且各月份之间未达到显著水平(P0.05);年际尺度上,10年间高寒矮嵩草草甸地上生物量整体呈现波动增加趋势,2014年为其峰值点,达(437.12±32.01)g/m2。地下生物量呈现波动性变化,变异较大,10年间平均值为(2566.99±138.11)g/m2;(2)高寒草甸光合产物分配主要分布在地下,80%地下根系生物量分布于地表0—10 cm土层,且不同土层根系生物量占总地下生物量的比值在不同月份较为稳定。(3)气候因子中,大气相对湿度是影响高寒草甸地上生物量大小的主要因素;而气候因子对地下根系生物量的影响极为微弱。研究表明,高寒嵩草草甸对环境变化具有较高的自我调节能力,且高寒草甸的演化受制于人类干扰,而非气候变化。  相似文献   

20.
邵珍珍  吴鹏飞 《生态学报》2019,39(19):6990-7001
为查明小型表栖节肢动物群落对高寒湿地退化的响应,2014年7月和9月利用吸虫器法对若尔盖高寒湿地的沼泽草甸、草原草甸、中度退化草甸3种生境的小型表栖节肢动物群落进行调查。结果为:共采集到小型表栖节肢动物18661只,隶属于3纲15目85类(科或属),优势类群为球圆跳属(Sphaeridia)、长跳属(Entomobrya)和莓螨科(Rhagidiidae),其中长跳属仅出现在草原草甸。小型表栖节肢动物群落结构在不同生境间差异明显,主成分分析(PCA)结果表明影响群落结构的主要类群是长跳属(Entomobrya)、球圆跳属(Sphaeridia)、齿步甲螨属(Odontocepheus)、瘤蚜科(Pemphigidae)和叶蝉科(Jassidae),但不同月份间存在差异。小型表栖节肢动物的群落密度及类群数均以草原草甸最高,中度退化草甸最低,3种生境间有显著差异(P0.01)。3种生境的小型表栖节肢动物群落密度均是7月显著低于9月(P0.01),Shannon-Wiener指数和Simpson优势度指数则是7月显著高于9月(P0.01);类群数在沼泽草甸中7月显著低于9月(P0.05),在草原草甸和中度退化草甸则是7月显著高于9月(P0.05)。典范对应分析(CCA)及多元回归分析结果表明植物种类、生物量、土壤有机质含量是影响小型表栖节肢动物群落组成结构、密度及多样性的主要因子。研究结果表明高寒湿地退化能够显著影响小型表栖节肢动物群落的组成结构、密度和多样性及其季节动态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号