首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Speciation may occur when the genomes of two populations accumulate genetic incompatibilities and/or chromosomal rearrangements that prevent inter-breeding in nature. Chromosome stability is critical for survival and faithful transmission of the genome, and hybridization can compromise this. However, the role of chromosomal stability on hybrid incompatibilities has rarely been tested in recently diverged populations. Here, we test for chromosomal instability in hybrids between nascent species, the ‘dwarf’ and ‘normal’ lake whitefish (Coregonus clupeaformis). We examined chromosomes in pure embryos, and healthy and malformed backcross embryos. While pure individuals displayed chromosome numbers corresponding to the expected diploid number (2n = 80), healthy backcrosses showed evidence of mitotic instability through an increased variance of chromosome numbers within an individual. In malformed backcrosses, extensive aneuploidy corresponding to multiples of the haploid number (1n = 40, 2n = 80, 3n = 120) was found, suggesting meiotic breakdown in their F1 parent. However, no detectable chromosome rearrangements between parental forms were identified. Genomic instability through aneuploidy thus appears to contribute to reproductive isolation between dwarf and normal lake whitefish, despite their very recent divergence (approx. 15–20 000 generations). Our data suggest that genetic incompatibilities may accumulate early during speciation and limit hybridization between nascent species.  相似文献   

2.
For proper chromosome segregation, the sister kinetochores must attach to microtubules extending from the opposite spindle poles. Any errors in microtubule attachment can induce aneuploidy. In this study, we identify a novel conserved Caenorhabditis elegans microtubule-associated protein, regulator of microtubule dynamics 1 (RMD-1), that localizes to spindle microtubules and spindle poles. Depletion of RMD-1 induces severe defects in chromosome segregation, probably through merotelic attachments between microtubules and chromosomes. Although rmd-1 embryos also have a mild defect in microtubule growth, we find that mutants of the microtubule growth regulator XMAP215/ZYG-9 show much weaker segregation defects. This suggests that the microtubule growth defect in rmd-1 embryos does not cause abnormal chromosome segregation. We also see that RMD-1 interacts with aurora B in vitro. Our results suggest that RMD-1 functions in chromosome segregation in C. elegans embryos, possibly through the aurora B–mediated pathway. Human homologues of RMD-1 could also bind microtubules, which would suggest a function for these proteins in chromosome segregation during mitosis in other organisms as well.  相似文献   

3.
Individuals carrying an aberrant number of chromosomes can vary widely in their expression of aneuploidy phenotypes. A major unanswered question is the degree to which an individual’s genetic makeup influences its tolerance of karyotypic imbalance. Here we investigated within-species variation in aneuploidy prevalence and tolerance, using Saccharomyces cerevisiae as a model for eukaryotic biology. We analyzed genotypic and phenotypic variation recently published for over 1,000 S. cerevisiae strains spanning dozens of genetically defined clades and ecological associations. Our results show that the prevalence of chromosome gain and loss varies by clade and can be better explained by differences in genetic background than ecology. The relationships between lineages with high aneuploidy frequencies suggest that increased aneuploidy prevalence emerged multiple times in S. cerevisiae evolution. Separate from aneuploidy prevalence, analyzing growth phenotypes revealed that some genetic backgrounds—such as the European Wine lineage—show fitness costs in aneuploids compared to euploids, whereas other clades with high aneuploidy frequencies show little evidence of major deleterious effects. Our analysis confirms that chromosome gain can produce phenotypic benefits, which could influence evolutionary trajectories. These results have important implications for understanding genetic variation in aneuploidy prevalence in health, disease, and evolution.  相似文献   

4.
The facial width-to-height ratio (fWHR) has been identified as a reliable predictor of men’s behavior, with researchers focusing on evolutionary selection pressures as the underlying mechanism explaining these relationships. In this paper, we complement this approach and examine the extent to which social processes also determine the extent to which men’s fWHR serves as a behavioral cue. Specifically, we propose that observers’ treatment of target men based on the targets’ fWHR subsequently affects behavior, leading the targets to behave in ways that are consistent with the observers’ expectations (i.e., a self-fulfilling prophecy). Results from four studies demonstrate that individuals behave more selfishly when interacting with men with greater fWHRs, and this selfish behavior, in turn, elicits selfish behavior in others.  相似文献   

5.
In contrast to human embryos, there are very few studies published on the frequency of chromosomal aneuploidy in farm animals. The objectives of this study were to apply a three-color fluorescent in situ hybridization (FISH) method for evaluating aneuploidy in porcine embryos using chromosome-specific DNA probes, establish baseline frequencies of aneuploidy in embryos and compare the results with our previous findings of aneuploidy in spermatozoa and oocytes. The embryos were collected from superovulated gilts, which were slaughtered 48 h after insemination. FISH was performed using probes specific for the centromeric regions of porcine chromosomes 1, 10 and Y. Altogether 403 blastomeres from 114 porcine embryos were successfully investigated. Diploidy was observed in 101 (88.6%) embryos, triploidy in 2 (1.8%) embryos, mosaicism/mixoploidy in 9 (7.9%) embryos, and trisomy for chromosomes 1 or 10 in 2 (1.8%) embryos. No blastomere showed aneuploidy for chromosome Y. These findings correspond with the frequencies of aneuploidy we have found previously in porcine germ cells.  相似文献   

6.
Karyotypic studies of aborted fetuses have been used to draw the inference that the proportion of conceptuses with chromosome abnormalities is very high. Fluorescent in situ hybridization (FISH) studies of blastomeres from early cleavage embryos have provided some support for this inference but they are limited to the study of a few chromosomes. We describe the novel application of comparative genomic hybridization (CGH) to the study of numerical and structural abnormalities of single blastomeres from disaggregated 3-day-old human embryos. CGH results were obtained for 63 blastomeres from 12 embryos. Identification of all chromosomes with the exception of chromosomes 17, 19, 20 and 22 was possible. The embryos divided into four groups: (1) embryos with a normal CGH karyotype seen in all blastomeres; (2) embryos with consistent aneuploidy suggesting meiotic non-disjunction had occurred; (3) embryos that were mosaic generally with one or more cells showing aneuploidy for one or two chromosomes but some with cells showing extensive aneuploidy; and (4) one embryo with extensive aneuploidy in all blastomeres. The extensive aneuploidy in group 4 is interpreted as corresponding to the random aneuploidy seen in "chaotic" embryos reported by using interphase FISH. Partial chromosome loss and gain following chromosome breakage was observed in one embryo. Our analysis provides basic biological information on the occurrence of constitutional and post-zygotic chromosome abnormalities in early human embryos. Used in conjunction with embryo biopsy, diagnostic CGH should allow the exclusion of a proportion of embryos that appear normal but that have a poor probability of survival and, therefore, may improve the implantation rate after in vitro fertilization.  相似文献   

7.
Many animals respond to predation risk by forming groups. Evolutionary explanations for group formation in previously ungrouped, but loosely associated prey have typically evoked the selfish herd hypothesis. However, despite over 600 studies across a diverse array of taxa, the critical assumptions of this hypothesis have remained collectively untested, owing to several confounding problems in real predator–prey systems. To solve this, we manipulated the domains of danger of Cape fur seal (Arctocephalus pusillus pusillus) decoys to provide evidence that a selfish reduction in a seals'' domain of danger results in a proportional reduction in its predation risk from ambush shark attacks. This behaviour confers a survival advantage to individual seals within a group and explains the evolution of selfish herds in a prey species. These findings empirically elevate Hamilton''s selfish herd hypothesis to more than a ‘theoretical curiosity’.  相似文献   

8.
Meiosis in human oocytes is a highly error-prone process with profound effects on germ cell and embryo development. The synaptonemal complex protein 3 (SYCP3) transiently supports the structural organization of the meiotic chromosome axis. Offspring derived from murine Sycp3/ females die in utero as a result of aneuploidy. We studied the nature of the proximal chromosomal defects that give rise to aneuploidy in Sycp3/ oocytes and how these errors evade meiotic quality control mechanisms. We show that DNA double-stranded breaks are inefficiently repaired in Sycp3/ oocytes, thereby generating a temporal spectrum of recombination errors. This is indicated by a strong residual γH2AX labeling retained at late meiotic stages in mutant oocytes and an increased persistence of recombination-related proteins associated with meiotic chromosomes. Although a majority of the mutant oocytes are rapidly eliminated at early postnatal development, a subset with a small number of unfinished crossovers evades the DNA damage checkpoint, resulting in the formation of aneuploid gametes.  相似文献   

9.

Background

Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported.

Methodology/Principal Findings

Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line.

Conclusions/Significance

These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat.  相似文献   

10.

Background

Chromosomal rearrangements induced by wheat-rye hybridization is a very well investigated research topic. However, the structural alterations of wheat chromosomes in wheat-rye hybrids are seldom reported.

Methodology/Principal Findings

Octoploid triticale lines were derived from common wheat Triticum. aestivum L. ‘Mianyang11’×rye Secale cereale L. ‘Kustro’. Some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ and common wheat T. aestivum L. ‘Chuannong27’ followed by self-fertilization. Fluorescence in situ hybridization (FISH) and genomic in situ hybridization (GISH) using Oligo-pSc119.2-1, Oligo-pTa535-1 and rye genomic DNA as probes were used to analyze the mitotic chromosomes of these progeny. Alterations of wheat chromosomes including 5A, 6A, 1B, 2B, 6B, 7B, 1D, 3D and 7D were observed. 5AL arm carrying intercalary Oligo-pSc119.2-1, Oligo-pTa535-1 or both Oligo-pSc119.2-1 and Oligo-pTa535-1 signals, 6AS, 1BS and 1DL arms containing terminal Oligo-pSc119.2-1 signal, 6BS and 3DS arms without terminal Oligo-pSc119.2-1 signal, 7BS without subtelomeric Oligo-pSc119.2-1 signal and 7DL with intercalary Oligo-pSc119.2-1 signal have been observed. However, these changed wheat chromosomes have not been detected in ‘Mianyang11’ and Chuannong 27. The altered 5A, 6A, 7B and 7D chromosomes in this study have not been reported and represent several new karyotype structures of common wheat chromosomes.

Conclusions/Significance

These rearranged wheat chromosomes in the present study afford some new genetic variations for wheat breeding program and are valuable materials for studying the biological function of tandem repetitive DNA sequences.  相似文献   

11.
Citrus sinensis chromosomes present a morphological differentiation of bands after staining by the fluorochromes CMA and DAPI, but there is still little information on its chromosomal characteristics. In this study, the chromosomes in ‘Valencia’ C. sinensis were analyzed by fluorescence in situ hybridization (FISH) using telomere DNA and the 45S rDNA gene as probes combining CMA/DAPI staining, which showed that there were two fragile sites in sweet orange chromosomes co-localizing at distended 45S rDNA regions, one proximally locating on B-type chromosome and the other subterminally locating on D-type chromosome. While the chromosomal CMA banding and 45S rDNA FISH mapping in the doubled haploid line of ‘Valencia’ C. sinensis indicated six 45S rDNA regions, four were identified as fragile sites as doubled comparing its parental line, which confirmed the cytological heterozygosity and chromosomal heteromorphisms in sweet orange. Furthermore, Ag-NOR identified two distended 45S rDNA regions to be active nucleolar organizing regions (NORs) in diploid ‘Valencia’ C. sinensis. The occurrence of quadrivalent in meiosis of pollen mother cells (PMCs) in ‘Valencia’ sweet orange further confirmed it was a chromosomal reciprocal translocation line. We speculated this chromosome translocation was probably related to fragile sites. Our data provide insights into the chromosomal characteristics of the fragile sites in ‘Valencia’ sweet orange and are expected to facilitate the further investigation of the possible functions of fragile sites.  相似文献   

12.
13.
The evolution of drug resistance is an important process that affects clinical outcomes. Resistance to fluconazole, the most widely used antifungal, is often associated with acquired aneuploidy. Here we provide a longitudinal study of the prevalence and dynamics of gross chromosomal rearrangements, including aneuploidy, in the presence and absence of fluconazole during a well-controlled in vitro evolution experiment using Candida albicans, the most prevalent human fungal pathogen. While no aneuploidy was detected in any of the no-drug control populations, in all fluconazole-treated populations analyzed an isochromosome 5L [i(5L)] appeared soon after drug exposure. This isochromosome was associated with increased fitness in the presence of drug and, over time, became fixed in independent populations. In two separate cases, larger supernumerary chromosomes composed of i(5L) attached to an intact chromosome or chromosome fragment formed during exposure to the drug. Other aneuploidies, particularly trisomies of the smaller chromosomes (Chr3–7), appeared throughout the evolution experiment, and the accumulation of multiple aneuploid chromosomes per cell coincided with the highest resistance to fluconazole. Unlike the case in many other organisms, some isolates carrying i(5L) exhibited improved fitness in the presence, as well as in the absence, of fluconazole. The early appearance of aneuploidy is consistent with a model in which C. albicans becomes more permissive of chromosome rearrangements and segregation defects in the presence of fluconazole.  相似文献   

14.

Context

Mutations of the fragile X mental retardation 1 (FMR1) gene are associated with distinct ovarian aging patterns.

Objective

To confirm in human in vitro fertilization (IVF) that FMR1 affects outcomes, and to determine whether this reflects differences in ovarian aging between FMR1 mutations, egg/embryo quality or an effect on implantation.

Design, Setting, Patients

IVF outcomes were investigated in a private infertility center in reference to patients'' FMR1 mutations based on a normal range of CGGn = 26–34 and sub-genotypes high (CGGn>34) and low (CGG<26). The study included 3 distinct sections and study populations: (i) A generalized mixed-effects model of morphology (777 embryos, 168 IVF cycles, 125 infertile women at all ages) investigated whether embryo quality is associated with FMR1; (ii) 1041 embryos in 149 IVF cycles in presumed fertile women assessed whether the FMR1 gene is associated with aneuploidy; (iii) 352 infertile patients (< age 38; in 1st IVF cycles) and 179 donor-recipient cycles, assessed whether the FMR1 gene affects IVF pregnancy chances via oocyte/embryo quality or non-oocyte maternal factors.

Interventions

Standardized IVF protocols.

Main Outcome Measures

Morphologic embryo quality, ploidy and pregnancy rates.

Results

(i) Embryo morphology was reduced in presence of a low FMR1 allele (P = 0.032). In absence of a low allele, the odds ratio (OR) of chance of good (vs. fair/poor) embryos was 1.637. (ii) FMR1 was not associated with aneuploidy, though aneuploidy increased with female age. (iii) Recipient pregnancy rates were neither associated with donor age or donor FMR1. In absence of a low FMR1 allele, OR of clinical pregnancy (vs. chemical or no pregnancy) was 2.244 in middle-aged infertility patients.

Conclusions

A low FMR1 allele (CGG<26) is associated with significantly poorer morphologic embryo quality and pregnancy chance. As women age, low FMR1 alleles affect IVF pregnancy chances by reducing egg/embryo quality by mechanisms other than embryo aneuploidy.  相似文献   

15.
It was previously shown that more than half of the human oocytes obtained from IVF patients of advanced reproductive age are aneuploid, due to meiosis I and meiosis II errors. The present paper further confirms that 61.8% of the oocytes tested by fluorescent probes specific for chromosomes 13, 16, 18, 21 and 22 are abnormal, representing predominantly chromatid errors, which are the major source of aneuploidy in the resulting embryos. Almost half of the oocytes with meiosis I errors (49.3%) are prone to sequential meiosis II errors, which may lead to aneuploidy rescue in 30.8% of the cases. Half of the detected aneuploidies (49.8%) are of complex nature with involvement of two or more chromosomes, or the same chromosome in both meiotic divisions. The aneuploidy rates for individual chromosomes are different, with a higher prevalence of chromosome 21 and 22 errors. The origin of aneuploidy for the individual chromosomes is also not random, with chromosome 16 and 22 errors originating more frequently in meiosis II, and chromosome 18, 13 and 21 errors in meiosis I. There is an age dependence not only for the overall frequency of aneuploidies, but also for each chromosome error, aneuploidies originating from meiosis I, meiosis II, and both meiosis I and meiosis II errors, as well as for different types of aneuploidies. The data further suggest the practical relevance of oocyte aneuploidy testing for detection and avoidance from transfer of the embryos deriving from aneuploid oocytes, which should contribute significantly to the pregnancy outcomes of IVF patients of advanced reproduction age.  相似文献   

16.

Background

The incidence of esophageal adenocarcinoma (EAC) has increased nearly five-fold over the last four decades in the United States. Barrett’s esophagus, the replacement of the normal squamous epithelial lining with a mucus-secreting columnar epithelium, is the only known precursor to EAC. Like other parts of the gastrointestinal (GI) tract, the esophagus hosts a variety of bacteria and comparisons among published studies suggest bacterial communities in the stomach and esophagus differ. Chronic infection with Helicobacter pylori in the stomach has been inversely associated with development of EAC, but the mechanisms underlying this association remain unclear.

Methodology

The bacterial composition in the upper GI tract was characterized in a subset of participants (n=12) of the Seattle Barrett’s Esophagus Research cohort using broad-range 16S PCR and pyrosequencing of biopsy and brush samples collected from squamous esophagus, Barrett’s esophagus, stomach corpus and stomach antrum. Three of the individuals were sampled at two separate time points. Prevalence of H. pylori infection and subsequent development of aneuploidy (n=339) and EAC (n=433) was examined in a larger subset of this cohort.

Results/Significance

Within individuals, bacterial communities of the stomach and esophagus showed overlapping community membership. Despite closer proximity, the stomach antrum and corpus communities were less similar than the antrum and esophageal samples. Re-sampling of study participants revealed similar upper GI community membership in two of three cases. In this Barrett’s esophagus cohort, Streptococcus and Prevotella species dominate the upper GI and the ratio of these two species is associated with waist-to-hip ratio and hiatal hernia length, two known EAC risk factors in Barrett’s esophagus. H. pylori-positive individuals had a significantly decreased incidence of aneuploidy and a non-significant trend toward lower incidence of EAC.  相似文献   

17.
Carl Veller 《Heredity》2022,129(1):48
Mendel’s First Law requires explanation because of the possibility of ‘meiotic drivers’, genes that distort fair segregation for selfish gain. The suppression of drive, and the restoration of fair segregation, is often attributed to genes at loci unlinked to the drive locus—such genes cannot benefit from drive but do suffer its associated fitness costs. However, selection can also favour suppressors at loci linked to the drive locus, raising the question of whether suppression of drive usually comes from linked or unlinked loci. Here, I study linked and unlinked suppression in a two-locus model with initial stable polymorphism at the drive locus. I find that the invasion rate of suppressors is a decreasing function of the recombination fraction between the drive and suppressor loci. Surprisingly, the relative likelihood of unlinked vs. linked suppression increases with the strength of drive and is insensitive to the fitness costs of the driver allele. I find that the chromosomal position of the driver influences how rapidly it is suppressed, with a driver in the middle of a chromosome suppressed more rapidly than a driver near the tip. When drive is strong, only a small number of chromosomes are required for suppression usually to derive from unlinked loci. In contrast, when drive is weak, and especially when suppressor alleles are associated with fitness costs, suppression will usually come from linked loci unless the genome comprises many chromosomes.Subject terms: Evolutionary genetics, Population genetics  相似文献   

18.
Medium-to-large mammals within tropical forests represent a rich and functionally diversified component of this biome; however, they continue to be threatened by hunting and habitat loss. Assessing these communities implies studying species’ richness and composition, and determining a state variable of species abundance in order to infer changes in species distribution and habitat associations. The Tropical Ecology, Assessment and Monitoring (TEAM) network fills a chronic gap in standardized data collection by implementing a systematic monitoring framework of biodiversity, including mammal communities, across several sites. In this study, we used TEAM camera trap data collected in the Udzungwa Mountains of Tanzania, an area of exceptional importance for mammal diversity, to propose an example of a baseline assessment of species’ occupancy. We used 60 camera trap locations and cumulated 1,818 camera days in 2009. Sampling yielded 10,647 images of 26 species of mammals. We estimated that a minimum of 32 species are in fact present, matching available knowledge from other sources. Estimated species richness at camera sites did not vary with a suite of habitat covariates derived from remote sensing, however the detection probability varied with functional guilds, with herbivores being more detectable than other guilds. Species-specific occupancy modelling revealed novel ecological knowledge for the 11 most detected species, highlighting patterns such as ‘montane forest dwellers’, e.g. the endemic Sanje mangabey (Cercocebus sanjei), and ‘lowland forest dwellers’, e.g. suni antelope (Neotragus moschatus). Our results show that the analysis of camera trap data with account for imperfect detection can provide a solid ecological assessment of mammal communities that can be systematically replicated across sites.  相似文献   

19.
In cultivated tetraploid potato (Solanum tuberosum), reduction to diploidy (dihaploidy) allows for hybridization to diploids and introgression breeding and may facilitate the production of inbreds. Pollination with haploid inducers (HIs) yields maternal dihaploids, as well as triploid and tetraploid hybrids. Dihaploids may result from parthenogenesis, entailing the development of embryos from unfertilized eggs, or genome elimination, entailing missegregation and the loss of paternal chromosomes. A sign of genome elimination is the occasional persistence of HI DNA in some dihaploids. We characterized the genomes of 919 putative dihaploids and 134 hybrids produced by pollinating tetraploid clones with three HIs: IVP35, IVP101, and PL-4. Whole-chromosome or segmental aneuploidy was observed in 76 dihaploids, with karyotypes ranging from 2n = 2x − 1 = 23 to 2n = 2x + 3 = 27. Of the additional chromosomes in 74 aneuploids, 66 were from the non-inducer parent and 8 from the inducer parent. Overall, we detected full or partial chromosomes from the HI parent in 0.87% of the dihaploids, irrespective of parental genotypes. Chromosomal breaks commonly affected the paternal genome in the dihaploid and tetraploid progeny, but not in the triploid progeny, correlating instability to sperm ploidy and to haploid induction. The residual HI DNA discovered in the progeny is consistent with genome elimination as the mechanism of haploid induction.

A large potato progeny population produced by crossing tetraploid cultivated clones to diploid Phureja lines displays rare instances of haploid inducer chromosomes, which are frequently damaged.  相似文献   

20.
Cellular asymmetry plays a major role in the ageing and evolution of multicellular organisms. However, it remains unknown how the cell distinguishes ‘old’ from ‘new’ and whether asymmetry is an attribute of highly specialized cells or a feature inherent in all cells. Here, we investigate the segregation of three asymmetric features: old and new DNA, the spindle pole body (SPB, the centrosome analogue) and the old and new cell ends, using a simple unicellular eukaryote, Schizosaccharomyces pombe. To our knowledge, this is the first study exploring three asymmetric features in the same cells. We show that of the three chromosomes of S. pombe, chromosome I containing the new parental strand, preferentially segregated to the cells inheriting the old cell end. Furthermore, the new SPB also preferentially segregated to the cells inheriting the old end. Our results suggest that the ability to distinguish ‘old’ from ‘new’ and to segregate DNA asymmetrically are inherent features even in simple unicellular eukaryotes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号