首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Erectile dysfunction (ED) has been identified as one of the most frequent chronic complications of diabetes mellitus (DM). The prevalence of ED is estimated to be about 67.4% in all DM cases worldwide. The pathophysiological process leading to ED involves endothelial, neurological, hormonal, and psychological factors. In DM, endothelial and neurological factors play a crucial role. Damages in the blood vessels and erectile tissue due to insulin resistance are the hallmark of ED in DM. The current treatments for ED include phosphodiesterase-5 inhibitors and penile prosthesis surgery. However, these treatments are limited in terms of just relieving the symptoms, but not resolving the cause of the problem. The use of stem cells for treating ED is currently being studied mostly in experimental animals. The stem cells used are derived from adipose tissue, bone, or human urine. Most of the studies observed an improvement in erectile quality in the experimental animals as well as an improvement in erectile tissue. However, research on stem cell therapy for ED in humans remains to be limited. Nevertheless, significant findings from studies using animal models indicate a potential use of stem cells in the treatment of ED.  相似文献   

2.
3.
Oxidative stress appears to play a role in the pathogenesis of diabetes mellitus erectile dysfunction (DMED). This study aimed to investigate the effect of N‐acetylcysteine (NAC) on DMED in streptozotocin‐induced diabetic mice and to explore potential mechanisms. In the present study, we show that an erectile dysfunction is present in the streptozotocin‐induced mouse model of diabetes as indicated by decreases in intracavernous pressure responses to electro‐stimulation as well as from results of the apomorphine test of erectile function. After treatment of NAC, the intracavernous pressure was increased. In these DMED mice, oxidative stress and inflammatory responses were significantly reduced within the cavernous microenvironment, while activity of antioxidant enzymes in this cavernous tissue was enhanced after NAC treatment. These changes protected mitochondrial stress damage and a significant decreased in apoptosis within the cavernous tissue of DMED mice. This appears to involve activation of the nuclear factor erythroid 2‐like‐2 (Nrf2) signalling pathway, as well as suppression of the mitogen‐activated protein kinase (MAPK) p38/ NF‐κB pathway within cavernous tissue. In conclusion, NAC can improve erectile function through inhibiting oxidative stress via activating Nrf2 pathways and reducing apoptosis in streptozotocin‐induced diabetic mice. NAC might provide a promising therapeutic strategy for individuals with DMED.  相似文献   

4.
Previous studies have shown that intracavernous injection of vascular endothelial growth factor (VEGF) restored erectile function in diabetic rats. However, the mechanism of VEGF in diabetes-related erectile dysfunction (ED) has not been fully investigated. We hypothesize that intracavernous injection of VEGF may reverse diabetes-related ED through modulation of the insulin-like growth factor system and sex hormone receptors. To test this hypothesis the erectile function of treated and control rats was analyzed by measurement of intracavernous pressure (ICP) following electrostimulation of the cavernous nerves. Mean ICP was significantly lower in non-treated diabetic rats compared to controls. After VEGF injection, ICP was significantly higher than in non-treated diabetic rats. IGFBP-3 mRNA and protein expression was significantly higher in non-treated diabetic rat crura than controls, while VEGF-treated animals had control levels. ER-beta and PR mRNA and protein expression was significantly lower in non-treated diabetic rat crura. After VEGF injection, ER-beta and PR mRNA and protein expression was similar to control levels. Expression of AR and ER-alpha was the same in all groups. These findings suggest that orthotopic injection of VEGF may improve the functional recovery of diabetes-related ED through modulation of the insulin-like growth factor system and sex hormone receptors. To our knowledge, this is the first study demonstrating that VEGF treatment restores erectile function through restoration of the insulin-like growth factor system and sex hormone receptor genes at the mRNA and protein levels in diabetic rat crura. These results may be important in understanding the pathogenesis of diabetes-related ED and also in providing better strategies for management of this disease.  相似文献   

5.
The metabolic syndrome (MetS) is an insulin-resistant state characterized by a cluster of cardiovascular risk factors, including abdominal obesity, hyperglycemia, elevated blood pressure and combined dyslipidemia. In this review, we discuss the potential of farnesoid X receptor (FXR) agonists in the treatment of erectile dysfunction (ED), a multifactorial disorder often comorbid with MetS. FXR not only regulates lipid and glucose homeostasis but also influences endothelial function and atherosclerosis, suggesting a regulatory role for this hormone nuclear receptor in the cardiovascular complications associated with the MetS, including ED. MetS induces ED via several mechanisms, and in particular through endothelial dysfunction in penile vessels. In a high-fat diet rabbit model of MetS, a 3-month treatment with the potent and selective FXR agonist INT-747 restores endothelium-dependent relaxation in isolated cavernous tissue, normalizing responsiveness to acetylcholine and to electrical field stimulation. Accordingly, eNOS expression in the penis is greatly up-regulated by INT-747 treatment. Experiments in a rat model of chemically-induced type 1 diabetes further demonstrate that INT-747 treatment preserves erectile function induced by electrical stimulation of the cavernous nerve. These results add a new facet to the pleiotropic activities mediated by FXR, and reveal novel beneficial effects of FXR activation with potential clinical relevance. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.  相似文献   

6.
This study explored whether zinc supplementation alleviates diabetic endothelial dysfunction and the possible mechanisms underlying. We found that high glucose exposure significantly increased reactive oxygen species (ROS) and decreased guanosine 5′-triphosphate cyclohydrolase 1 (GTPCH1) and tetrahydrobiopterin (BH4) levels in bovine aortic endothelial cells (BAECs) in a time-dependent manner. High glucose increased zinc release from GTPCH1 in a similar trend. Zinc supplementation restored GTPCH1 and BH4 levels and blocked ROS accumulation in both BACEs and wild type GTPCH1 transfected HEK293 cells, but not in the zinc-free C141R mutant of GTPCH1 transfected ones. In vivo experiments showed that exogenous supplementation of zinc to streptozotocin (STZ)-induced diabetic mice partially improved the impaired maximal endothelium-dependent vasorelaxation, reversed the aberrant reduction of GTPCH1 and BH4, and suppressed the elevation of ROS in the aortas. In conclusion, our study demonstrated a novel mechanism that via GTPCH1 restoration zinc supplementation exerts a protective benefit on diabetic endothelial dysfunction.  相似文献   

7.
Grant MK  El-Fakahany EE 《Life sciences》2004,74(14):1701-1721
Nitric oxide is involved in a countless number of physiological processes and is known to have cytoprotective as well as cytotoxic effects. Increased knowledge about the multifaceted role of nitric oxide in a variety of disease states has led to the design of multiple treatment strategies involving the nitric oxide system. The current review focuses on recent research advances in the fields of obstetrics, bone disease and erectile dysfunction that have led to current or potential future therapies involving nitric oxide.  相似文献   

8.
Diabetes exacerbates neuronal injury induced by hyperglycemia mediated oxidative damage and mitochondrial dysfunction. The aim of the present study is to investigate the effects of curcuminoids, polyphenols of Curcuma longa (L.) on oxidative stress and mitochondrial impairment in the brain of streptozotocin (STZ)-induced diabetic rats. A marked increase in lipid peroxidation and nitrite levels with simultaneous decrease in endogenous antioxidant marker enzymes was observed in the diabetic rat brain, which was restored to normal levels on curcuminoids treatment. Down-regulation of mitochondrial complex I and IV activity caused by STZ induction was also up-regulated on oral administration of curcuminoids. Moreover, curcuminoids administration profoundly elevated the ATP level, which was earlier reduced in the diabetic brain. These results suggest that curcuminoids exhibit a protective effect by accelerating antioxidant defense mechanisms and attenuating mitochondrial dysfunction in the brain of diabetic rats. Curcuminoids thus may be used as a promising therapeutic agent in preventing and/or delaying the progression of diabetic complications in the brain.  相似文献   

9.
Erectile dysfunction (ED) worsens in patients with diabetes mellitus (DM) despite good control of blood glucose level with insulin. Recent studies imply that diabetic vascular stresses (e.g. oxidative stress) persist in spite of glucose normalization, which is defined as metabolic memory. Studies suggest that the interaction between advanced glycation end products (AGEs) and their receptor (RAGE) mediates the development of metabolic memory. To investigate the effects of the antioxidant icariside II plus insulin on erectile function in streptozotocin (STZ)‐ induced type 1 diabetic rats. Fifty 8‐week‐old Sprague‐Dawley rats were randomly distributed into five groups: normal control, diabetic, insulin‐treated diabetic, icariside II‐treated diabetic, and insulin plus icariside II‐treated diabetic. Diabetes was induced by a single intraperitoneal injection of STZ. Eight weeks after induction of diabetes, icariside II was administered by gastric lavage once a day (5 mg/kg) for 6 weeks; and 2–6 units of intermediate‐acting insulin were given to maintain normal glycemia for 6 weeks. The main outcome measures were the ratio of intracavernous pressure (ICP) to mean arterial pressure (MAP); histology of penile endothelial cells and smooth muscle cells; neural nitric oxide synthase, AGEs and RAGE expression; malondialdehyde concentration; superoxide dismutase activity; and apoptosis index. Diabetic rats demonstrated a significantly lower ICP/MAP ratio, reduced penile endothelial cells, reduced smooth muscle cells, increased AGEs and RAGE, and increased apoptosis. Insulin and icariside II monotherapy partially restored erectile function and histological changes. However, the combination therapy group showed significantly better erectile parameters, cytological components and biochemistry, similar to those in the normal control group. These results suggest that, although insulin can effectively control glycemic levels, it does not completely alter the pathological changes in erectile tissues. Better efficacy could be expected with tight glycemic control plus the antioxidant icariside II. The proposed combination therapy might have the potential to eliminate metabolic memory by down‐regulating the AGEs‐RAGE‐oxidative stress axis.  相似文献   

10.
Influenza virus infection frequently causes complications and some excess mortality in the patients with diabetes. Vaccination is an effective measure to prevent influenza virus infection. In this paper, antibody response and protection against influenza virus infection induced by vaccination were studied in mouse model of diabetes. Healthy and diabetic BALB/c mice were immunized once or twice with inactivated influenza virus vaccine at various dosages. Four weeks after the first immunization or 1 week after the second immunization, the mice were challenged with influenza virus at a lethal dose. The result showed that the antibody responses in diabetic mice were inhibited. Immunization once with high dose or twice with low dose of vaccine provided full protection against lethal influenza virus challenge in diabetic mice, however, in healthy mice, immunization only once with low dose provided a full protection.  相似文献   

11.
Peroxiredoxins, a group of antioxidant protein enzymes (PRDX1 to 6), are reported as antiatherogenic factors in animals; however, human studies are lacking. The present work aims to provide baseline data regarding the phenotype of PRDX1, 2, 4, and 6 in diabetic patients with peripheral atherosclerosis disease (PAD) and their relation to endothelial dysfunction (ED) and disease severity. Plasma levels of PRDX1, 2, 4, and 6 and markers of endothelial dysfunction (ICAM-1 and VCAM-1) were measured using ELISA in 55 type 2 diabetic patients having PAD and 25 healthy subjects. Ankle–brachial index (ABI), body mass index (BMI), triglycerides (TG), total cholesterol, HbA1c, and insulin resistance (HOMA IR) were measured. PRDX1, 2, 4, and 6 levels were significantly higher in patients compared to controls (PRDX1 21.9 ± 5.71 vs 16.8 ± 3.9 ng/ml, P < 0.001, PRDX2 36.5 ± 14.83 vs 20.4 ± 8.61 ng/ml, P < 0.001, PRDX4 3,840 ± 1,440 vs 2,696 ± 1,972 pg/ml, P < 0.005, PRDX6 311 ± 110 vs 287.9 ± 114 pg/ml, P < 0.05). PRDX1 and PRDX4 correlated negatively with ABI (r = −0.273, P < 0.05 and r = −0.28, P < 0.05, respectively), while PRDX1 and PRDX2 correlated positively with HOMA/IR and TG (r = 0.276, P < 0.01 and r = 0.295, P < 0.01, respectively). ICAM-1 was associated with PRDX2 and log PRDX6 (r = 0.345, P = 0.0037 and r = 0.344, P = 0.0038). Our results provide strong links among PRDXs, ED, and severity of PAD in diabetic patients which warrants further evaluation to clarify whether high circulating levels of PRDXs are a consequence of chronic atherosclerotic disease or a predisposing factor for later cardiovascular events.  相似文献   

12.
13.
Majority of current treatment strategies against erectile dysfunction (ED) has been consisted of only a supportive care to sustain enough erection during a sexual intercourse. In this study, we investigated whether the cultured conditioned medium of human exfoliated deciduous dental pulp stem cells (SHED‐CM) had an ability to treat ED through fundamentally repairing the pathological damage of vascular endothelial cells of the corpus cavernosum. An open‐label pilot study was performed from April 2016 to October 2020. SHED‐CM was injected directly into the corpus cavernosum of penis of 38 ED patients who visited our clinic and fulfilled the inclusion criteria. Efficacy was assessed using the simplified International Index of Erectile Function (IIEF‐5) questionnaire. The average age and initial IIEF‐5 score of the patients enrolled in this study was 56 (31–79) years old and 13.1 (5–20) points, respectively. Medical history revealed 7 patients with diabetes, 7 patients with hypertension and 1 patient with priapism undergone shunt operation. Of these, 37 patients (97.4%) showed an improvement in IIEF‐5 of an average of 19.3 (7–25) points or 64.4 (10–300) % increase after three injections of SHED‐CM. Eighteen patients (47.4%) achieved more than 21 points (no ED) in IIEF‐5. No adverse events were encountered. This is the first clinical report of ED treatment in the literatures evaluating the efficacy of SHED‐CM. Treatment with SHED‐CM is expected to repair vascular damages of the corpus cavernosum, which are the main cause of ED, and to be widely spread as a fundamental clinical application for ED.  相似文献   

14.
Previous studies have shown that the expression of inwardly rectifying potassium channel 6.1 (Kir6.1) in heart mitochondria is significantly reduced in type 1 diabetes. However, whether its expression and function are changed and what role it plays in type 2 diabetic cardiomyopathy (DCM) have not been reported. This study investigated the role and mechanism of Kir6.1 in DCM. We found that the cardiac function and the Kir6.1 expression in DCM mice were decreased. We generated mice overexpressing or lacking Kir6.1 gene specifically in the heart. Kir6.1 overexpression improved cardiac dysfunction in DCM. Cardiac-specific Kir6.1 knockout aggravated cardiac dysfunction. Kir6.1 regulated the phosphorylation of AKT and Foxo1 in DCM. We further found that Kir6.1 overexpression also improved cardiomyocyte dysfunction and up-regulated the phosphorylation of AKT and FoxO1 in neonatal rat ventricular cardiomyocytes with insulin resistance. Furthermore, FoxO1 activation down-regulated the expression of Kir6.1 and decreased the mitochondrial membrane potential (ΔΨm) in cardiomyocytes. FoxO1 inactivation up-regulated the expression of Kir6.1 and increased the ΔΨm in cardiomyocytes. Chromatin immunoprecipitation assay demonstrated that the Kir6.1 promoter region contains a functional FoxO1-binding site. In conclusion, Kir6.1 improves cardiac dysfunction in DCM, probably through the AKT-FoxO1 signalling pathway.  相似文献   

15.
Reactive oxygen species (ROS) may play key roles in vascular inflammation and atherogenesis in patients with diabetes. In this study, xanthine oxidase (XO) system was examined as a potential source of superoxide in mice with streptozotocin (STZ)-induced experimental diabetes. Plasma XO activity increased 3-fold in diabetic mice (50±33 μU/ml) 2 weeks after the onset of diabetes, as compared with non-diabetic control mice (15±6 μU/ml). In vivo superoxide generation in diabetic mice was evaluated by an in vivo electron spin resonance (ESR)/spin probe method. Superoxide generation was significantly enhanced in diabetic mice, and the enhancement was restored by the administration of superoxide dismutase (SOD) and 4,5-dihydroxy-1,3-benzene disulfonic acid (Tiron), which was reported to scavenge superoxide. Pretreatment of diabetic mice with XO inhibitors, allopurinol and its active metabolite oxipurinol, normalized the increased superoxide generation. In addition, there was a correlation (r=0.78) between the level of plasma XO activity and the relative degree of superoxide generation in diabetic and non-diabetic mice. Hence, the results of this study strongly suggest that superoxide should be generated through the increased XO seen in the diabetic model mice, which may be involved in the pathogenesis of diabetic vascular complications.  相似文献   

16.
Angiopoietin-like protein family 4 (Angptl4) has been shown to regulate lipoprotein metabolism through the inhibition of lipoprotein lipase (LPL). In familial hypercholesterolemia (FH), individuals lacking low-density lipoprotein receptor (LDLR) present not only hypercholesterolemia, but also increased plasma triglyceride (TG)-rich lipoprotein remnants, and develop atherosclerosis. In addition, the most common type of dyslipidemia in individuals with diabetes is increased TG levels.We first generated LDLR−/−Angptl4−/− mice to study the effect of Angptl4 deficiency on the lipid metabolism. Fasting total cholesterol, VLDL-C, LDL-C, HDL-C and TG levels were decreased in LDLR−/−Angptl4−/− mice compared with LDLR−/−Angptl4+/+ mice. In particular, post olive oil-loaded TG excursion were largely attenuated in LDLR−/−Angptl4−/− mice compared with LDLR−/−Angptl4+/+ mice. We next introduced diabetes by streptozotocin (STZ) treatment in Angptl4−/− mice and examined the impacts of Angptl4 deficiency. Compared with diabetic Angptl4+/+ mice, diabetic Angptl4−/− mice showed the improvement of fasting and postprandial hypertriglyceridemia as well. Thus, targeted silencing of Angptl4 offers a potential therapeutic strategy for the treatment of dyslipidemia in individuals with FH and insulin deficient diabetes.  相似文献   

17.
Our research aims to evaluate the function of the STAMP2 gene, an important trigger in insulin resistance (IR), and explore its role in macrophage apoptosis in diabetic atherosclerotic vulnerable plaques. The characteristics of diabetic mice were measured by serial metabolite and pathology tests. The level of STAMP2 was measured by RT‐PCR and Western blot. The plaque area, lipid and collagen content of brachiocephalic artery plaques were measured by histopathological analyses, and the macrophage apoptosis was measured by TUNEL. Correlation of STAMP2/Akt signaling pathway and macrophage apoptosis was validated by Ad‐STAMP2 transfection and STAMP2 siRNA inhibition. The diabetic mice showed typical features of IR, hyperglycaemia. Overexpression of STAMP2 ameliorated IR and decreased serum glucose level. In brachiocephalic lesions, lipid content, macrophage quantity and the vulnerability index were significantly decreased by overexpression of STAMP2. Moreover, the numbers of apoptotic cells and macrophages in lesions were both significantly decreased. In vitro, both mRNA and protein expressions of STAMP2 were increased under high glucose treatment. P‐Akt was highly expressed and caspase‐3 was decreased after overexpression of STAMP2. However, expression of p‐Akt protein was decreased and caspase‐3 was increased when STAMP2 was inhibited by siRNA. STAMP2 overexpression could exert a protective effect on diabetic atherosclerosis by reducing IR and diminishing macrophage apoptosis.  相似文献   

18.
Diabetic cardiomyopathy (DCM) is a condition associated with significant structural changes including cardiac tissue necrosis, localized fibrosis, and cardiomyocyte hypertrophy. This study sought to assess whether and how FBXL10 can attenuate DCM using a rat streptozotocin (STZ)‐induced DCM model system. In the current study, we found that FBXL10 expression was significantly decreased in diabetic rat hearts. FBXL10 protected cells from high glucose (HG)‐induced inflammation, oxidative stress, and apoptosis in vitro. In addition, FBXL10 significantly activated PKC β2 signaling pathway in H9c2 cells and rat model. The cardiomyocyte‐specific overexpression of FBXL10 at 12 weeks after the initial STZ administration attenuated oxidative stress and inflammation, thereby reducing cardiomyocyte death and preserving cardiac function in these animals. Moreover, FBXL10 protected against DCM via activation of the PKC β2 pathway. In conclusion, FBXL has the therapeutic potential for the treatment of DCM.  相似文献   

19.
目的观察胰岛素对糖尿病大鼠下颌下腺内凋亡相关蛋白Bcl-2和Caspase-3表达的影响。方法 SD大鼠30只,随机分为3组,10只大鼠作为对照组(C);10只大鼠用链尿佐菌素复制糖尿病模型作为DM组;10只大鼠用链尿佐菌素复制糖尿病模型,予以胰岛素治疗作为INS组。2个月后取血检测血糖、血脂;取大鼠下颌下腺,分别进行免疫组织化学显色(SP法)和计算机图像分析系统测平均光密度。结果①血糖检测结果:C组和INS组的血糖分别与DM组血糖比较,均有差异(P0.05);②血脂检测结果:C组和INS组的TG分别与DM组TG比较,均有显著性差异(P0.05);DM组TC分别与C组和INS组TC比较,均有显著性差异(P0.05)。③免疫组化结果:与C组比较,DM组大鼠下颌下腺导管上皮细胞内Bcl-2表达显著下降(P0.05),Caspase-3表达显著增加(P0.05);与DM组比较,胰岛素组Bcl-2表达显著增加(P0.05),Caspase-3表达显著下降(P0.05)。结论 DM大鼠下颌下腺内Bcl-2表达降低和Caspase-3表达增加,可能在糖尿病时下颌下腺细胞凋亡过程中发挥重要作用,而胰岛素具有对抗糖尿病下颌下腺细胞凋亡的作用。  相似文献   

20.
Accumulating evidence demonstrates that hypoxia‐inducible factor (HIF‐α) hydroxylase system has a critical role in vascular remodelling. Using an endothelial‐specific prolyl hydroxylase domain protein‐2 (PHD2) knockout (PHD2ECKO) mouse model, this study investigates the regulatory role of endothelial HIF‐α hydroxylase system in the development of renal fibrosis. Knockout of PHD2 in EC up‐regulated the expression of HIF‐1α and HIF‐2α, resulting in a significant decline of renal function as evidenced by elevated levels of serum creatinine. Deletion of PHD2 increased the expression of Notch3 and transforming growth factor (TGF‐β1) in EC, thus further causing glomerular arteriolar remodelling with an increased pericyte and pericyte coverage. This was accompanied by a significant elevation of renal resistive index (RI). Moreover, knockout of PHD2 in EC up‐regulated the expression of fibroblast‐specific protein‐1 (FSP‐1) and increased interstitial fibrosis in the kidney. These alterations were strongly associated with up‐regulation of Notch3 and TGF‐β1. We concluded that the expression of PHD2 in endothelial cells plays a critical role in renal fibrosis and vascular remodelling in adult mice. Furthermore, these changes were strongly associated with up‐regulation of Notch3/TGF‐β1 signalling and excessive pericyte coverage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号