首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osteosarcoma (OS) is the most common primary malignant bone tumor. Recently, increasing evidence has shown that the long noncoding RNA (lncRNA) DLX6-AS1 (distal-less homeobox 6 antisense 1) plays significant roles in various types of cancers. However, the functions and underlying mechanisms of DLX6-AS1 have not been explored in OS yet. In this study, we assessed the expression of DLX6-AS1 in OS tissues and cell lines and explored the underlying molecular mechanisms. DLX6-AS1 was found to be significantly upregulated in OS tissues and OS cell lines. High expression of DLX6-AS1 was significantly correlated with advanced TNM stage, high tumor grade, and distant metastasis of patients with OS. Knockdown of DLX6-AS1 suppressed OS cell proliferation, invasion, and migration, and induced cell apoptosis. Knockdown of DLX6-AS1 also suppressed in vivo tumor growth. Bioinformatics and luciferase assay analysis showed that DLX6-AS1 functioned as a competing endogenous RNA (ceRNA) to negatively regulate miR-641 expression. Furthermore, miR-641 was found to target the 3′ untranslated region of homeobox protein Hox-A9 (HOXA9) and suppressed the expression of HOXA9. Mechanistic studies showed that DLX6-AS1 regulated OS cell proliferation, invasion, and migration via regulating HOXA9 by acting as a ceRNA for miR-641. Our results suggested that DLX6-AS1 functions as a ceRNA by targeting miR-641/HOXA9 signal pathway to suppress OS cell proliferation and metastasis. Our study may provide novel insights into understanding pathogenesis and development of OS.  相似文献   

2.

Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1), a long non-coding RNA (lncRNA), has been reported to link with the progression of some cancers. However, its biological functions and underlying molecular mechanisms in pancreatic cancer are largely unknown. The aim of this study was to investigate the role of lncRNA OIP5-AS1 in pancreatic cancer. Quantitative real-time PCR analysis revealed that OIP5-AS1 is highly expressed in pancreatic cancer tissues versus adjacent non-tumor tissues. In vitro functional assays showed that downregulation of OIP5-AS1 or overexpression of miR-342-3p inhibited the proliferation, decreased Ki67 expression, and induced cell cycle arrest in pancreatic cancer cells. The expression of cyclinD1, CDK4, and CDK6 was decreased by knockdown of OIP5-AS1. Moreover, we found that OIP5-AS1 acted as a miR-342-3p sponge to suppress its expression and function. Dual-luciferase assay confirmed the interaction of OIP5-AS1 and miR-342-3p and verified anterior gradient 2 (AGR2) as a direct target of miR-342-3p. Results showed that depletion of miR-342-3p abolished the inhibitory effects of OIP5-AS1 knockdown on pancreatic cancer cell growth. The expression of Ki67, AGR2, cyclinD1, CDK4, CDK6, p-AKT, and p-ERK1/2 was reversed by silencing of miR-342-3p in pancreatic cancer cells with OIP5-AS1 knockdown. Further, knockdown of OIP5-AS1 suppressed tumor growth in a xenograft mouse model of pancreatic cancer. OIP5-AS1 induced pancreatic cancer progression via activation of AKT and ERK signaling pathways. Therefore, we demonstrate that OIP5-AS1 functions as oncogene in pancreatic cancer and its downregulation inhibits pancreatic cancer growth by sponging miR-342-3p via targeting AGR2 through inhibiting AKT/ERK signaling pathway.

  相似文献   

3.
Li  Cuiping  Dong  Bing  Xu  Xiaomeng  Li  Yuewen  Wang  Yan  Li  Xingmei 《Cytotechnology》2021,73(3):363-372

Ovarian cancer is one of the leading lethal gynecological cancers, causing serious harm to the health of female populations. Growing studies emphasize that lncRNAs serve as significant regulators in the tumorigenesis and evolution of numerous malignancies, including ovarian cancer. Recently, the oncogenic activity of lncRNA ARAP1-AS1 has been justified in a variety of cancers. However, the potential function of ARAP1-AS1 in ovarian cancer development is still unclear. Herein, we firstly revealed the expression profile of ARAP1-AS1 in ovarian cancer. Compared to normal samples and cells, upregulation of ARAP1-AS1 was observed in tissues and cells of ovarian cancer. Therewith, it was disclosed that knockdown of ARAP1-AS1 alleviated the carcinogenicity of ovarian cancer cells. Besides, our findings delineated that ARAP1-AS1 silence inhibited the expression of oncogene PLAGL2. Considering that ARAP1-AS1 was principally expressed in the the cytoplasm of ovarian cancer cells, we speculated that ARAP1-AS1 facilitated ovarian cancer progression via functioning as a ceRNA. Further investigations indicated that ARAP1-AS1 promoted PLAGL2 expression by competitively binding with miR-4735-3p. Of note, ARAP1-AS1 contributed to the malignant phenotypes of ovarian cancer cells through modulation of miR-4735-3p/PLAGL2 axis, revealing ARAP1-AS1 as a promising therapeutic target for ovarian cancer patients.

  相似文献   

4.
Long non-coding RNA DLX6 antisense RNA 1 (DLX6-AS1) lists a critical position in thyroid carcinoma (TC) development. However, the overall comprehension about DLX6-AS1, microRNA (miR)-193b-3p and homeobox A1 (HOXA1) in TC is not thoroughly enough. Concerning to this, this work is pivoted on DLX6-AS1/miR-193b-3p/HOXA1 axis in TC cell growth and autophagy. TC tissues and adjacent normal thyroid tissues were collected, in which expression of DLX6-AS1, miR-193b-3p and HOXA1 was tested, together with their interactions. TC cells were transfected with DLX6-AS1/miR-193b-3p-related oligonucleotides or plasmids to test cell growth and autophagy. Tumorigenesis in nude mice was observed. DLX6-AS1 and HOXA1 were up-regulated, and miR-193b-3p was down-regulated in TC. Depleted DLX6-AS1 or restored miR-193b-3p disturbed cell growth and promoted autophagy. DLX6-AS1 targeted miR-193b-3p and positively regulated HOXA1. miR-193b-3p inhibition mitigated the impaired tumorigenesis induced by down-regulated DLX6-AS1. Tumorigenesis in nude mice was consistent with that in cells. It is clear that DLX6-AS1 depletion hinders TC cell growth and promotes autophagy via up-regulating miR-193b-3p and down-regulating HOXA1.  相似文献   

5.
6.
In the early stage of ovarian cancer (OC), molecular biomarkers are critical for its diagnosis and treatment. Nevertheless, there is little research on the mechanism underlying tumorigenesis in OC. Herein, we aimed to explore whether long noncoding RNA (lncRNA) HAND2-AS1 participated in the regulation of the cell proliferation, migration, and apoptosis of OC by regulating B-cell lymphoma 2 like 11 (BCL2L11) and microRNA-340-5p (miR-340-5p). Differentially expressed lncRNAs in OC were screened by microarray-based analysis. HAND2-AS1, BCL2L11, and miR-340-5p expression was assessed in normal ovarian and OC tissues and human OC cell lines. Then, the relationships among HAND2-AS1, BCL2L11, and miR-340-5p were explored. Ectopic expression and depletion experiments were applied to analyze the effects of HAND2-AS1, miR-340-5p and BCL2L11 on migration, invasion, and proliferation of OC cells, as well as apoptosis. Lastly, the tumor xenograft in nude mice was conducted to test the tumorigenesis in vivo. In silico analysis displayed poor expression of HAND2-AS1 in OC. HAND2-AS1 specifically sponged with miR-340-5p which was found to directly target BCL2L11. Importantly, HAND2-AS1 or BCL2L11 overexpression or miR-340-5p downregulation resulted in reduction of cell invasion and migration, together with decrease of cell proliferation and increase of cell apoptosis in OC. Besides, high-expressed HAND2-AS1 inhibited the tumorigenesis in nude mice. To sum up, these data suggests HAND2-AS1 as an anti-oncogene in OC through upregulation of BCL2L11 by competitively binding to miR-340-5p, which demonstrates that there are potential diagnosis and therapy values of HAND2-AS1 in OC.  相似文献   

7.
LncRNAs play essential regulatory roles in pancreatic cancer (PC) tumorigenesis and progression. We aimed to investigate the role of lncRNA CERS6-AS1 in PC. CERS6-AS1 expression was determined in PC tissues and cell lines by PCR analysis. The roles of CERS6-AS1 on proliferation, migration, invasion, and epithelial to mesenchymal transition (EMT) were confirmed via CCK-8 assay, EDU assay, transwell assay, wound healing assay, and western blot assay. Besides, the interaction between CERS6-AS1 and their target genes was verified by luciferase report assays and RIP assays. Animal assays and clinical data analysis were performed to validate the functions in vivo. We found that lncRNA CERS6-AS1 was highly expressed in PC tissues and cells. Additionally, high expression of CERS6-AS1 was obviously associated with poor prognosis. Functional assays demonstrated that CERS6-AS1 downregulation significantly inhibited PC cell growth and migration. Moreover, CERS6-AS1 exerted as a molecular sponge for miR-217-5p (miR-217), and miR-217 was confirmed as a potential target of CERS6-AS1. Subsequently, miR-217 suppressed PC cell proliferation and metastasis by directly targeting YWHAG, which interacted with RAF1 and promoted its phosphorylation, leading to RAF1-mediated ERK signaling activation and translocation of phosphorylated ERK from the cytoplasm to the nucleus. Mechanically, CERS6-AS1 silencing significantly inhibited PC cell proliferation and metastasis via a miR-217/YWHAG/RAF1 signaling axis. CERS6-AS1 exerts as a carcinogen in PC to promote malignant features and behaves as a competitive endogenous RNA for miR-217. We identified CERS6-AS1 as a potential biomarker or therapeutic target to improve PC diagnosis and treatment outcomes.Subject terms: Oncogenes, Tumour biomarkers  相似文献   

8.
Cucurbitacin B (CuB) is a natural tetracyclic triterpene product that displays antitumor activity against a wide variety of cancers. In this study, we explored the antipancreatic cancer activity of CuB via the inhibition of expression of the cancer-related long noncoding RNA, actin filament-associated protein 1-antisense RNA 1 (AFAP1-AS1). CuB arrested pancreatic cancer (PC) cells in the G2/M cell cycle phase by suppressing the expression of AFAP1-AS1. Insights into the mechanisms of competing endogenous RNAs (ceRNAs) gained from bioinformatics analysis and luciferase activity assays showed that the epidermal growth factor receptor (EGFR) and AFAP1-AS1 directly compete for miR-146b-5p binding. CuB-induced high miR-146b-5p expression and inhibited the expression of AFAP1-AS1. In summary, reducing the expression of endogenous AFAP1-AS1 effectively increased the available concentration of miR-146b-5p in PC, whereas miR-146b-5p overexpression prevented the expression of endogenous AFAP1-AS1. In particular, we hypothesized that AFAP1-AS1 might act as a ceRNA, effectively becoming a sponge for miR-146b-5p, thereby activating the expression of the EGFR. Thus, CuB suppresses the proliferation, in vitro and in vivo, of PC cells through the ceRNA effect of AFAP1-AS1 on miR-146b-5p.  相似文献   

9.
Recently, long noncoding RNAs (lncRNAs) have been reported as a new kind of controllers about cancer processes in biology. In spite of the dysregulation of lncRNAs in various kinds of cancers, only a little of the information was effective on the expression configuration and inner effects of lncRNAs in triple-negative breast cancer (TNBC). This study valued the expression of lncRNA SOX21-AS1 and the biological role it played in TNBC. In our research, SOX21-AS1 had a high expression in TNBC cell lines. The functional experiments showed that knockdown of SOX21-AS1 obviously restrained cell proliferation, migration, invasion, and epithelial-mesenchymal transition process and promoted cell apoptosis. Mechanistically, SOX21-AS1 was found to bind with miR-520a-5p. Besides, ORMDL3 was identified as a downstream target of miR-520a-5p, and the suppressed ORMDL3 expression induced by silenced SOX21-AS1 could be restored by miR-520a-5p inhibition. Further, data from rescue assays revealed that SOX21-AS1 could regulate the malignancy of TNBC via miR-520a-5p/ORMDL3 axis. All in all, we identified that SOX21-AS1 regulated the cellular process of TNBC cells via antagonizing miR-520a-5p availability to upregulate ORMDL3 expression.  相似文献   

10.
Ovarian cancer (OC) is a fatal cancer in women, mainly due to its aggressive nature and poor survival rate. The lncRNA-miRNA-mRNA (long noncoding RNA-microRNA-messenger RNA) interaction is promising biomarkers for the improving prognosis of OC. Therefore, we explored the regulatory mechanism of WDFY3-AS2/miR-18a/RORA axis involved in the biological activities of OC cells. Microarray analysis predicted differentially expressed lncRNA, miRNA, and mRNA related to OC, followed by investigating the relationship among them. The expression patterns of the identified lncRNA WDFY3-AS2, miR-18a, and RORA were measured in OC tissue and cells. Gain- and loss-of-function experiments were performed to characterize the effect of lncRNA WDFY3-AS2 on OC cells, as well as the involvement of miR-18a and RAR related orphan receptor A (RORA). The in vitro assays were validated by in vivo experiments. According to bioinformatics analysis, WDFY3-AS2 was speculated to affect OC by sponging miR-18a and modulating RORA. WDFY3-AS2 and RORA were underexpressed in OC, while miR-18a was highly expressed. Notably, WDFY3-AS2 acts as a competing endogenous RNA to sponge miR-18a and upregulate RORA. Upon overexpressing WDFY3-AS2 or inhibiting miR-18a, RORA expression was increased, thereby the OC cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) were suppressed, accompanied by enhanced apoptosis. In vivo experiments confirmed that the tumor growth was reduced in response to overexpressed WDFY3-AS2 or inhibited miR-18a. Taken together, the lncRNA WDFY3-AS2/miR-18a axis regulates the tumor progression of OC by targeting RORA, providing new insights for prevention and control of OC.  相似文献   

11.
The long noncoding RNA MNX1-AS1 has been reported to facilitate the progression of glioblastoma and ovarian cancer. Nevertheless, the biological roles and underlying mechanisms of MNX1-AS1 in colon adenocarcinoma have not been studied until now. In the current study, MNX1-AS1 was upregulated in colon adenocarcinoma. JASPAR prediction tool showed that E2F1 could bind to the promoter region of MNX1-AS1. The chromatin immunoprecipitation assay and luciferase reporter assay were used to verify the interactions between MNX1-AS1 and E2F1. Then functional assays revealed that downregulation of MNX1-AS1 decreased cell proliferation, migration, and invasion in colon adenocarcinoma, but upregulation of E2F1 reversed the effects. Moreover, subcellular fractionation assay manifested that MNX1-AS1 was enriched in the cytoplasm of colon adenocarcinoma cells, thus we speculated whether MNX1-AS1 could function as a competing endogenous RNA (ceRNA) to play roles in colon adenocarcinoma. Bioinformatics analysis and luciferase reporter assay indicated that MNX1-AS1 could sponge microRNA-218-5p (miR-218-5p). Furthermore, we discovered that SEC61A1 was downstream target of miR-218-5p, and MNX1-AS1 acted as a ceRNA to upregulate the expression of SEC61A1 through sponging miR-218-5p. Finally, rescue assays confirmed that MNX1-AS1 facilitated the progression of colon adenocarcinoma through regulating miR-218-5p/SEC61A1 axis. Taken together, we concluded that E2F1-mediated MNX1-AS1-miR-218-5p-SEC61A1 feedback loop contributed to the progression of colon adenocarcinoma.  相似文献   

12.
Evidence, demonstrating long noncoding RNAs (lncRNAs) as critical players in cancer, remains to increase. lncRNA SBF2-AS1 was reported to be involved in several cancers, such as hepatocellular carcinoma. However, the role of SBF2-AS1 in colorectal cancer (CRC) is unknown. We showed lncRNA SBF2-AS1 expression was growing in CRC samples, especially in advanced cases. Accordingly, SBF2-AS1 possesses higher expression in CRC cell lines than in normal cell line. Moreover, SBF2-AS1 high expression indicated a low survival rate. Functionally, SBF2-AS1 knockdown suppressed the proliferation, migration, and invasion of CRC cells. In terms of mechanism, SBF2-AS1 upregulation restrained the activity of miR-619-5p and led to overexpression of HDAC3. Importantly, downregulation of miR-619-5p or HDAC3 overexpression reversed SBF2-AS1-silencing-caused suppression on proliferation and metastasis. Summarily, our findings elucidated a crucial role of SBF2-AS1 as a miR-619-5p sponge, shedding novel light on lncRNA-related prognostics.  相似文献   

13.
Acute lung injury (ALI) is a common lung pathology that is accompanied by alveolar macrophage (AM) activation and inflammatory response. This study investigated the role of the long non-coding RNA NONRATT004344 (hereafter named lncRNA NLRP3) in regulating the Nod-like receptor protein 3 (NLRP3)-triggered inflammatory response in early ALI and the underlying mechanism as well. We established LPS-induced ALI models to explore their interactive mechanisms in vitro and in vivo. Luciferase reporter assays were performed to determine that miR-138-5p could bind to lncRNA NLRP3 and NLRP3. We observed increased lncRNA NLRP3 expression, decreased miR-138-5p expression, NLRP3 inflammasome activation, and upregulated caspase-1, IL-1β, and IL-18 expression in the LPS-induced ALI model. Furthermore, lncRNA NLRP3 overexpression activated the NLRP3 inflammasome and promoted IL-1β and IL-18 secretion; the miR-138-5p mimic abolished these effects in vivo and in vitro. Consistently, miR-138-5p inhibition reversed the effects of lncRNA NLRP3 silencing on the expression of NLRP3-related molecules and inhibition of the NLRP3/caspase-1/IL-1β signalling pathway. Mechanistically, lncRNA NLRP3 sponging miR-138-5p facilitated NLRP3 activation through a competitive endogenous RNA (ceRNA) mechanism. In summary, our results suggested that lncRNA NLRP3 binding miR-138-5p promotes NLRP3-triggered inflammatory response via lncRNA NLRP3/miR-138-5p/NLRP3 ceRNA network (ceRNET) and provides insights into the treatment of early ALI.Subject terms: Bacterial infection, Inflammasome  相似文献   

14.
15.
16.
Long noncoding RNAs (lncRNAs) have been proven to play critical roles in cancer progression. Recently, lncRNA MAGI2-AS3 has been revealed to be a tumor suppressor and inhibit cell growth by targeting the Fas/FasL signalling pathway in breast cancer. However, the role and underlying mechanism of MAGI2-AS3 in hepatocellular carcinoma (HCC) remain largely unknown. In the current study, we found that MAGI2-AS3 expression is downregulated in HCC tissues and closely associated with some clinical characteristics (tumor size, lymph node metastasis, and TNM stage) and poor overall survival. Overexpression of MAGI2-AS3 inhibits HCC cell proliferation and migration in vitro, while impedes tumor growth in vivo accordantly. In addition, our data suggest that MAGI2-AS3 could function as an endogenous sponge of miR-374b-5p by directly binding to it and suppressing its expression. Furthermore, miR-374b-5p upregulation could restore the inhibitory effect of MAGI2-AS3 on HCC cells processes. Moreover, suppressor with morphogenetic effect on genitalia family member 1 (SMG1) is positively regulated by MAGI2-AS3 via absorbing miR-374b-5p in HCC cells. More important, SMG1 knockdown reverses the suppressive function of MAGI2-AS3 in HCC cell processes. Taken together, we reveal a functional MAGI2-AS3/miR-374b-5p/SMG1 axis that suppresses HCC progression, potently suggesting a new road for HCC treatment.  相似文献   

17.
ILF3反义 RNA 1(ILF3 antisense RNA 1,ILF3-AS1)是一条定位于染色体 19p13.2的lncRNA,它是白介素增强子结合因子3(interleukin enhancer binding factor 3,ILF3)的反义 RNA.ILF3-AS1在多种肿瘤发生发展中发挥关键作用,但其...  相似文献   

18.
More and more documents have proved that the abnormal expression of long noncoding RNAs (lncRNAs) are correlated with the initiation and progression of colorectal cancer (CRC). lncRNA FOXD3-AS1 has been reported in glioma for its oncogenic property. According to the survival analysis of The Cancer Genome Atlas database, FOXD3-AS1 upregulation implied lower survival rate of patients with CRC. Quantitative real-time polymerase chain reaction showed the overexpression of FOXD3-AS1 in both CRC tissues and cells. The Kaplan–Meier method demonstrated the prognostic value of FOXD3-AS1 for patients with CRC. To explore the effect of FOXD3-AS1 on CRC progression, loss-of-function experiments were carried out, whose results indicated that knockdown of FOXD3-AS1 suppressed cell proliferation, migration, and invasion, inhibited cell cycle and promoted cell apoptosis in vitro. In vivo experiments affirmed that FOXD3-AS1 affected tumor growth. FOXD3-AS1 expression was enriched in the cytoplasm of CRC cells. Mechanism experiments revealed that FOXD3-AS1 served as a competing endogenous RNA to upregulate SIRT1 by sponging miR-135a-5p. In addition, SIRT1 silencing also restrained cell proliferation and motility. Rescue assays revealed the biological function of FOXD3-AS1/miR-135a-5p/SIRT1 axis in CRC progression. In conclusion, FOXD3-AS1 promotes CRC progression by regulating miR-135a-5p/SIRT1 axis, shedding lights on the way to CRC treatments.  相似文献   

19.
Thyroid cancer is a common malignant tumour of the endocrine system and ranks ninth in cancer incidence worldwide. An extensive body of evidence has demonstrated that lncRNAs play a critical role in the progression of thyroid cancer. The lncRNA MAPKAPK5-AS1 has been reported to be abnormally expressed and to play a role in the development of various human cancers. However, MAPKAPK5-AS1’s potential role in thyroid cancer progression remains unknown. The objective of our study was to explore the role and mechanism of MAPKAPK5-AS1 in thyroid cancer cells and provide a potential target for its biological diagnosis and treatment. We transfected sh-MAPKAPK5-AS1 and sh-NC into BCPAP and TPC-1 cells for loss-of-function assays. Results of RT-qPCR analysis demonstrated that MAPKAPK5-AS1 was more highly expressed in thyroid cancer cells compared to normal cells. Functional assays demonstrated that interfering with the expression of MAPKAPK5-AS1 notably repressed proliferation and invasion and accelerated apoptosis of BCPAP and TPC-1 cells. Mechanistically, we found that miR-519e-5p was negatively regulated by MAPKAPK5-AS1 and that tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein eta (YWHAH) was a target of miR-519e-5p. Additionally, rescue assays demonstrated that downregulation of MAPKAPK5-AS1 expression inhibited cell proliferation, migration, and invasion and promoted apoptosis by sponging miR-519e-5p, thereby increasing YWHAH expression. Ultimately, our study revealed that MAPKAPK5-AS1 promotes proliferation and migration of thyroid cancer cells by targeting the miR-519e-5p/YWHAH axis, which provides novel insight into the development and progression of thyroid cancer.Key words: IncRNA MAPKAPK5-AS1, MiR-519e-5p, YWHAH, thyroid cancer cell  相似文献   

20.
Lung cancer belongs to a leading popular and malignant cancer around the world. However, the root mechanism underlying lung cancer progression remains unclear. Recently, long noncoding RNA (lncRNA) has been identified as important for tumorigenesis. LncRNA MNX1-AS1 is proven to regulate colon adenocarcinoma, cervical cancer, glioblastoma, and ovarian cancer. Whether MNX1-AS1 participates in lung cancer needs investigation. In our research, we found that MNX1-AS1 was dramatically upregulated in lung cancer. MNX1-AS1 upregulation indicated poor prognosis in lung cancer patients. Functionally, MNX1-AS1 promoted lung cancer progression through regulating proliferation, migration, and invasion. Mechanistically, MNX1-AS1 was found to locate in the cytoplasm and interact with miR-527. Through inhibiting miR-527 availability, MNX1-AS1 facilitated BRF2 expression. Restoration of BRF2 rescued defects of proliferation, migration, and invasion caused by MNX1-AS1 knockdown. Taken together, our study found a novel signaling pathway, namely MNX1-AS1/miR-527/BRF2 axis, involved in lung cancer progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号