首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cisplatin resistance in head and neck squamous cell carcinoma (HNSCC) reduces survival. In this study we hypothesized that methylation of key genes mediates cisplatin resistance. We determined whether a demethylating drug, decitabine, could augment the anti-proliferative and apoptotic effects of cisplatin on SCC-25/CP, a cisplatin-resistant tongue SCC cell line. We showed that decitabine treatment restored cisplatin sensitivity in SCC-25/CP and significantly reduced the cisplatin dose required to induce apoptosis. We then created a xenograft model with SCC-25/CP and determined that decitabine and cisplatin combination treatment resulted in significantly reduced tumor growth and mechanical allodynia compared to control. To establish a gene classifier we quantified methylation in cancer tissue of cisplatin-sensitive and cisplatin-resistant HNSCC patients. Cisplatin-sensitive and cisplatin-resistant patient tumors had distinct methylation profiles. When we quantified methylation and expression of genes in the classifier in HNSCC cells in vitro, we showed that decitabine treatment of cisplatin-resistant HNSCC cells reversed methylation and gene expression toward a cisplatin-sensitive profile. The study provides direct evidence that decitabine restores cisplatin sensitivity in in vitro and in vivo models of HNSCC. Combination treatment of cisplatin and decitabine significantly reduces HNSCC growth and HNSCC pain. Furthermore, gene methylation could be used as a biomarker of cisplatin-resistance.  相似文献   

3.

Introduction

Despite improvements in treatment strategies for head and neck squamous cell carcinoma (HNSCC), outcomes have not significantly improved; highlighting the importance of identifying novel therapeutic approaches to target this disease. To address this challenge, we proceeded to evaluate the role of iron in HNSCC.

Experimental Design

Expression levels of iron-related genes were evaluated in HNSCC cell lines using quantitative RT-PCR. Cellular phenotypic effects were assessed using viability (MTS), clonogenic survival, BrdU, and tumor formation assays. The prognostic significance of iron-related proteins was determined using immunohistochemistry.

Results

In a panel of HNSCC cell lines, hemochromatosis (HFE) was one of the most overexpressed genes involved in iron regulation. In vitro knockdown of HFE in HNSCC cell lines significantly decreased hepcidin (HAMP) expression and intracellular iron level. This in turn, resulted in a significant decrease in HNSCC cell viability, clonogenicity, DNA synthesis, and Wnt signalling. These cellular changes were reversed by re-introducing iron back into HNSCC cells after HFE knockdown, indicating that iron was mediating this phenotype. Concordantly, treating HNSCC cells with an iron chelator, ciclopirox olamine (CPX), significantly reduced viability and clonogenic survival. Finally, patients with high HFE expression experienced a reduced survival compared to patients with low HFE expression.

Conclusions

Our data identify HFE as potentially novel prognostic marker in HNSCC that promotes tumour progression via HAMP and elevated intracellular iron levels, leading to increased cellular proliferation and tumour formation. Hence, these findings suggest that iron chelators might have a therapeutic role in HNSCC management.  相似文献   

4.
Tumor-derived exosomes play a pivotal role in regulating tumor progression by mediating crosstalk between tumor cells and immune cells such as macrophages within the tumor microenvironment. Macrophages can adopt two distinct polarization statuses and switch between M1 or M2 activation phenotypes in response to the different external stimuli. However, the role of tumor derived exosomes in the macrophage phenotypic switch and tumor development have not been elucidated in renal cell carcinoma (RCC). Here we found that high macrophage infiltration was associated with worse prognosis in RCC patients, therefore we propose our hypothesis that RCC derived exosomes might directly influence macrophage polarization and thus promote tumor progression. Both cell-based in vitro models and orthotopic transplantation in vivo tumor models were constructed and ELISA, flow cytometry, and macrophage functional studies were performed to investigate whether and how RCC-derived exosomes regulate macrophage polarization and tumor growth. The results found that these exosomes promote macrophage polarization, cytokine release, phagocytosis, angiogenesis, and tumor development. Further study revealed high amount of a recently discovered lncRNA called lncARSR in RCC-derived exosomes. Overexpression of lncARSR induced phenotypic and functional changes of macrophages in vitro and promoted tumor growth in vivo, while knockdown of lncARSR by siRNA disrupted the exosomes-mediated macrophage polarization. LncARSR interacts directly with miR-34/miR- 449 to increase STAT3 expression and mediate macrophage polarization in RCC cells. Together, RCC-derived exosomes facilitate the development of tumor through inducing macrophage polarization via transferring lncARSR, suggesting that RCC-derived exosomes, lncARSR and STAT3 are the potential therapeutic targets for treatment of RCC.  相似文献   

5.
Our understanding of coding gene functions in lung cancer leads to the development of multiple generations of targeted drugs. Noncoding RNAs, including circular RNAs (circRNAs), have been demonstrated to play a vital role in tumorigenesis. Uncovering the functions of circRNAs in tumorigenesis and their underlying regulatory mechanisms may shed new light on the development of novel diagnostic and therapeutic strategies for human cancer. Here we report the important role of circFAT1 in lung adenocarcinoma (LUAD) progression and the potential impact of circFAT1 on LUAD treatment. We found that circFAT1 was one of the top expressed circRNAs in A549 cells by circRNA-seq and was significantly upregulated in human LUAD tissues. Multiple cellular assays with A549 and PC9 LAUD cell lines under both gain-of-function and loss-of-function conditions demonstrated that circFAT1 promoted proliferation of LUAD cells in vitro and in vivo. At molecular level, circFAT1 sequestered miR-7 to upregulate IRS2, which in turn regulated downstream ERK1/2 phosphorylation and CCND1 expression, ultimately promoting tumor progression. In addition, we showed that DDP treatment was much more effective in circFAT1 knockdown tumor cells in vitro and in a xenograft tumor model. Our results indicate that circFAT1 promote tumorigenesis in LUAD through sequestering miR-7, consequently upregulating IRS2-ERK1/2-mediated CCND1 expression, and can be a valuable therapeutic target and an important parameter for precision treatment in LUAD patients.  相似文献   

6.
Infection with human papillomaviruses (HPVs) characterizes a distinct subset of head and neck squamous cell cancers (HNSCCs). HPV-positive HNSCC preferentially affect the oropharynx and tonsils. Localized HPV-positive HNSCCs have a favorable prognosis and treatment outcome. However, the impact of HPV in advanced or metastatic HNSCC remains to be defined. In particular, it is unclear whether HPV modulates the response to cetuximab, an antibody targeting the epidermal growth factor receptor (EGFR), which is a mainstay of treatment of advanced HNSCC. To this end, we have examined the sensitivity of HPV-positive and -negative HNSCC models to cetuximab and cytotoxic drugs in vitro and in vivo. In addition, we have stably expressed the HPV oncogenes E6 and E7 in cetuximab-sensitive cancer cell lines to specifically investigate their role in the antibody response. The endogenous HPV status or the expression of HPV oncogenes had no significant impact on cetuximab-mediated suppression of EGFR signaling and proliferation in vitro. Cetuximab effectively inhibited the growth of E6- and E7-expressing tumors grafted in NOD/SCID mice. In support, formalin-fixed, paraffin-embedded tumor samples from cetuximab-treated patients with recurrent or metastatic HNSCC were probed for p16INK4a expression, an established biomarker of HPV infection. Response rates (45.5% versus 45.5%) and median progression-free survival (97 versus 92 days) following cetuximab-based therapy were similar in patients with p16INK4A-positive and p16INK4A-negative tumors. In conclusion, HPV oncogenes do not modulate the anti-EGFR antibody response in HSNCC. Cetuximab treatment should be administered independently of HPV status.  相似文献   

7.
The progression and metastasis of solid tumors, including head and neck squamous cell carcinoma (HNSCC), have been related to the behavior of a small subpopulation of cancer stem cells. Here, we have established a highly malignant HNSCC cell line, SASVO3, from primary tumors using three sequential rounds of xenotransplantation. SASVO3 possesses enhanced tumorigenic ability both in vitro and in vivo. Moreover, SASVO3 exhibits properties of cancer stem cells, including that increased the abilities of sphere-forming, the number of side population cells, the potential of transplanted tumor growth and elevated expression of the stem cell marker Bmi1. Injection of SASVO3 into the tail vein of nude mice resulted in lung metastases. These results are consistent with the postulate that the malignant and/or metastasis potential of HNSCC cells may reside in a stem-like subpopulation.  相似文献   

8.
Treating metastasis has been challenging due to tumors complexity and heterogeneity. This complexity is partly related to the crosstalk between tumor and its microenvironment. Endothelial cells -the building blocks of tumor vasculature- have been shown to have additional roles in cancer progression than angiogenesis and supplying oxygen and nutrients. Here, we show an alternative role for endothelial cells in supporting breast cancer growth and spreading independent of their vascular functions. Using endothelial cells and breast cancer cell lines MDA-MB231 and MCF-7, we developed co-culture systems to study the influence of tumor endothelium on breast tumor development by both in vitro and in vivo approaches. Our results demonstrated that endothelial cells conferred survival advantage to tumor cells under complete starvation and enriched the CD44HighCD24Low/- stem cell population in tumor cells. Moreover, endothelial cells enhanced the pro-metastatic potential of breast cancer cells. The in vitro and in vivo results concordantly confirmed a role for endothelial Jagged1 to promote breast tumor through notch activation. Here, we propose a role for endothelial cells in enhancing breast cancer progression, stemness, and pro-metastatic traits through a perfusion-independent manner. Our findings may be beneficial in developing novel therapeutic approaches.  相似文献   

9.
The ability of cancer cells to invade underlies metastatic progression. One mechanism by which cancer cells can become invasive is through the formation of structures called invadopodia, which are dynamic, actin-rich membrane protrusions that are sites of focal extracellular matrix degradation. While there is a growing consensus that invadopodia are instrumental in tumor metastasis, less is known about whether they are involved in tumor growth, particularly in vivo. The adaptor protein Tks5 is an obligate component of invadopodia, and is linked molecularly to both actin-remodeling proteins and pericellular proteases. Tks5 appears to localize exclusively to invadopodia in cancer cells, and in vitro studies have demonstrated its critical requirement for the invasive nature of these cells, making it an ideal surrogate to investigate the role of invadopodia in vivo. In this study, we examined how Tks5 contributes to human breast cancer progression. We used immunohistochemistry and RNA sequencing data to evaluate Tks5 expression in clinical samples, and we characterized the role of Tks5 in breast cancer progression using RNA interference and orthotopic implantation in SCID-Beige mice. We found that Tks5 is expressed to high levels in approximately 50% of primary invasive breast cancers. Furthermore, high expression was correlated with poor outcome, particularly in those patients with late relapse of stage I/II disease. Knockdown of Tks5 expression in breast cancer cells resulted in decreased growth, both in 3D in vitro cultures and in vivo. Moreover, our data also suggest that Tks5 is important for the integrity and permeability of the tumor vasculature. Together, this work establishes an important role for Tks5 in tumor growth in vivo, and suggests that invadopodia may play broad roles in tumor progression.  相似文献   

10.
Osteosarcoma is the most common primary bone tumor in children and adults. Despite improved prognosis, resistance to chemotherapy remains responsible for failure of osteosarcoma treatment. The identification of the molecular signals that contribute to the aberrant osteosarcoma cell growth may provide clues to develop new therapeutic strategies for chemoresistant osteosarcoma. Here we show that the expression of ErbB3 is increased in human osteosarcoma cells in vitro. Tissue microarray analysis of tissue cores from osteosarcoma patients further showed that the ErbB3 protein expression is higher in bone tumors compared to normal bone tissue, and is further increased in patients with recurrent disease or soft tissue metastasis. In murine osteosarcoma cells, silencing ErbB3 using shRNA decreased cell replication, cell migration and invasion, indicating that ErbB3 contributes to tumor cell growth and invasiveness. Furthermore, ErbB3 silencing markedly reduced tumor growth in a murine allograft model in vivo. Immunohistochemal analysis showed that the reduced tumor growth induced by ErbB3 silencing in this model resulted from decreased cell osteosarcoma cell proliferation, supporting a role of ErbB3 in bone tumor growth in vivo. Taken together, the results reveal that ErbB3 expression in human osteosarcoma correlates with tumor grade. Furthermore, silencing ErbB3 in a murine osteosarcoma model results in decreased cell growth and invasiveness in vitro, and reduced tumor growth in vivo, which supports the potential therapeutic interest of targeting ErbB3 in osteosarcoma.  相似文献   

11.
12.
Semaphorin 3A suppresses tumor growth and metastasis in mice melanoma model   总被引:1,自引:0,他引:1  

Background

Recent understanding on cancer therapy indicated that targeting metastatic signature or angiogenic switch could be a promising and rational approach to combat cancer. Advancement in cancer research has demonstrated the potential role of various tumor suppressor proteins in inhibition of cancer progression. Current studies have shown that axonal sprouting inhibitor, semaphorin 3A (Sema 3A) acts as a potent suppressor of tumor angiogenesis in various cancer models. However, the function of Sema 3A in regulation of melanoma progression is not well studied, and yet to be the subject of intense investigation.

Methodology/Principal Findings

In this study, using multiple in vitro and in vivo approaches we have demonstrated that Sema 3A acts as a potent tumor suppressor in vitro and in vivo mice (C57BL/6) models. Mouse melanoma (B16F10) cells overexpressed with Sema 3A resulted in significant inhibition of cell motility, invasiveness and proliferation as well as suppression of in vivo tumor growth, angiogenesis and metastasis in mice models. Moreover, we have observed that Sema 3A overexpressed melanoma clone showed increased sensitivity towards curcumin and Dacarbazine, anti-cancer agents.

Conclusions

Our results demonstrate, at least in part, the functional approach underlying Sema 3A mediated inhibition of tumorigenesis and angiogenesis and a clear understanding of such a process may facilitate the development of novel therapeutic strategy for the treatment of cancer.  相似文献   

13.
Hsieh CH  Shyu WC  Chiang CY  Kuo JW  Shen WC  Liu RS 《PloS one》2011,6(9):e23945

Background

Cycling and chronic tumor hypoxia are involved in tumor development and growth. However, the impact of cycling hypoxia and its molecular mechanism on glioblastoma multiforme (GBM) progression remain unclear.

Methodology

Glioblastoma cell lines, GBM8401 and U87, and their xenografts were exposed to cycling hypoxic stress in vitro and in vivo. Reactive oxygen species (ROS) production in glioblastoma cells and xenografts was assayed by in vitro ROS analysis and in vivo molecular imaging studies. NADPH oxidase subunit 4 (Nox4) RNAi-knockdown technology was utilized to study the role of Nox4 in cycling hypoxia-mediated ROS production and tumor progression. Furthermore, glioblastoma cells were stably transfected with a retroviral vector bearing a dual reporter gene cassette that allowed for dynamic monitoring of HIF-1 signal transduction and tumor cell growth in vitro and in vivo, using optical and nuclear imaging. Tempol, an antioxidant compound, was used to investigate the impact of ROS on cycling hypoxia-mediated HIF-1 activation and tumor progression.

Principal Findings

Glioblastoma cells and xenografts were compared under cycling hypoxic and normoxic conditions; upregulation of NOX4 expression and ROS levels were observed under cycling hypoxia in glioblastoma cells and xenografts, concomitant with increased tumor cell growth in vitro and in vivo. However, knockdown of Nox4 inhibited these effects. Moreover, in vivo molecular imaging studies demonstrated that Tempol is a good antioxidant compound for inhibiting cycling hypoxia-mediated ROS production, HIF-1 activation, and tumor growth. Immunofluorescence imaging and flow cytometric analysis for NOX4, HIF-1 activation, and Hoechst 3342 in glioblastoma also revealed high localized NOX4 expression predominantly in potentially cycling hypoxic areas with HIF-1 activation and blood perfusion within the endogenous solid tumor microenvironment.

Conclusions

Cycling hypoxia-induced ROS via Nox4 is a critical aspect of cancer biology to consider for therapeutic targeting of cycling hypoxia-promoted HIF-1 activation and tumor progression in GBM.  相似文献   

14.
Thromboxane synthase (TXSA), an enzyme of the arachidonic acid metabolism, is upregulated in human glial tumors and is involved in glioma progression. Here, we analyzed the in vitro and in vivo effects of pharmacological inhibition of TXSA activity on human glioblastoma cells. Furegrelate, a specific inhibitor of TXSA, significantly inhibited tumor growth in an orthotopic glioblastoma model by inducing proapoptotic, antiproliferative, and antiangiogenic effects. Inhibition of TXSA induced a proapoptotic disposition of glioma cells and increased the sensitivity to the chemotherapeutic agent 1,3-bis(2-chloroethyl)-1-nitrosourea, significantly prolonging the survival time of intracerebral glioma-bearing mice. Our data demonstrate that the targeted inhibition of TXSA activity improves the efficiency of conventional alkylation chemotherapy in vivo. Our study supports the role of TXSA activity for the progression of malignant glioma and the potential utility of its therapeutic modulation for glioma treatment.  相似文献   

15.
Cervical cancer is one of the most common cancers in women worldwide, being high-risk group the HPV infected, the leading etiological factor. The raf kinase inhibitory protein (RKIP) has been associated with tumor progression and metastasis in several human neoplasms, however its role on cervical cancer is unclear. In the present study, 259 uterine cervix tissues, including cervicitis, cervical intraepithelial lesions and carcinomas, were analyzed for RKIP expression by immunohistochemistry. We found that RKIP expression was significantly decreased during malignant progression, being highly expressed in non-neoplastic tissues (54% of the samples; 73/135), and expressed at low levels in the cervix invasive carcinomas (∼15% (19/124). Following in vitro downregulation of RKIP, we observed a viability and proliferative advantage of RKIP-inhibited cells over time, which was associated with an altered cell cycle distribution and higher colony number in a colony formation assay. An in vitro wound healing assay showed that RKIP abrogation is associated with increased migratory capability. RKIP downregulation was also associated with an increased vascularization of the tumors in vivo using a CAM assay. Furthermore, RKIP inhibition induced cervical cancer cells apoptotic resistance to cisplatin treatment. In conclusion, we described that RKIP protein is significantly depleted during the malignant progression of cervical tumors. Despite the lack of association with patient clinical outcome, we demonstrate, in vitro and in vivo, that loss of RKIP expression can be one of the factors that are behind the aggressiveness, malignant progression and chemotherapy resistance of cervical cancer.  相似文献   

16.
Side Population (SP) cells, a subset of Hoechst-low cells, are enriched with stem cells. Originally, SP cells were isolated from bone marrow but recently have been found in various solid tumors and cancer cell lines that are clonogenic in vitro and tumorigenic in vivo. In this study, SP cells from lymph node metastatic head and neck squamous cell carcinoma (HNSCC) cell lines were examined using flow cytometry and Hoechst 3342 efflux assay. We found that highly metastatic HNSCC cell lines M3a2 and M4e contained more SP cells compared to the low metastatic parental HNSCC cell line 686LN. SP cells in HNSCC were highly invasive in vitro and tumorigenic in vivo compared to non-SP cells. Furthermore, SP cells highly expressed ABCG2 and were chemoresistant to Bortezomib and etoposide. Importantly, we found that SP cells in HNSCC had abnormal activation of Wnt/β-catenin signaling as compared to non-SP cells. Together, these findings indicate that SP cells might be a major driving force of head and neck tumor formation and metastasis. The Wnt/β-catenin signaling pathway may be an important target for eliminating cancer stem cells in HNSCC.  相似文献   

17.
Glioblastoma (GBM) is a highly vascularized malignant tumor that depends on new blood vessel formation. Small molecules targeting the angiogenic process may be an effective anti-GBM therapeutic strategy. We previously demonstrated that RhoJ promoted the progression and invasion of GBM. RhoJ has also been shown to be expressed in endothelial cells and plays an important role in regulating endothelial cell migration and tumor angiogenesis. Therefore, we aimed to evaluate the role and mechanism of actions of RhoJ in GBM angiogenesis. We analyzed the expression of RhoJ in different grade gliomas and investigated its role in GBM angiogenesis in vivo and in vitro. Furtherly, RNA sequencing (RNA-seq), Western blotting and immunofluorescence were performed to identify the molecular mechanism of RhoJ in regulating endothelial cell behavior and GBM angiogenesis. Here, we found that silencing RhoJ resulted in inhibition of HUVEC cell migration and blood vessel formation. Overexpression of RhoJ promoted the expression of CD31, EpCAM and moesin, suggesting RhoJ facilitated angiogenesis and the malignant progression of GBM. RNA-seq data showed that VEGF/TNF signaling pathway positively regulated RhoJ. The expression levels of RhoJ was upregulated with the stimulation of VEGF, and reduced by the treatment of JNK inhibitor SP600125. It was also found that the activity of PAK-BRAF-ERK was down-regulated upon RhoJ and JNK knockdown. In conclusion, these results suggested that RhoJ plays an essential role in regulating GBM angiogenesis through the JNK/VEGFR2-PAK-ERK signaling pathway and there might exist a VEGF-JNK/ERK-VEGF circuitry. Thus, RhoJ may be a candidate therapeutic target for anti-angiogenesis treatment in GBM.  相似文献   

18.
Colorectal cancer (CRC) is one of the most prevalent cancers globally and is one of the leading causes of cancer-related deaths due to therapy resistance and metastasis. Understanding the mechanism underlying colorectal carcinogenesis is essential for the diagnosis and treatment of CRC. microRNAs (miRNAs) can act as either oncogenes or tumor suppressors in many cancers. A tumor suppressor role for miR-27b has recently been reported in neuroblastoma, while no information about miR-27b in CRC is available. In this study, we demonstrated that miR-27b expression is decreased in most CRC tissues and determined that overexpression of miR-27b represses CRC cell proliferation, colony formation and tumor growth in vitro and in vivo. We identified vascular endothelial growth factor C (VEGFC) as a novel target gene of miR-27b and determined that miR-27b functioned as an inhibitor of tumor progression and angiogenesis through targeting VEGFC in CRC. We further determined that DNA hypermethylation of miR-27b CpG islands decreases miR-27b expression. In summary, an anti-tumor role for miR-27b and its novel target VEGFC in vivo could lead to tumor necrosis and provide a rationale for developing miR-27b as a therapeutic agent.  相似文献   

19.
20.
Endoglin is a transforming growth factor-β (TGF- β) co-receptor that participates in the activation of a signaling pathway that mediates endothelial cell proliferation and migration in angiogenic tumor vasculature. Therefore, silencing of endoglin expression is an attractive approach for antiangiogenic therapy of tumors. The aim of our study was to evaluate the therapeutic potential of small interfering RNA (siRNA) molecules against endoglin in vitro and in vivo. Therapeutic potential in vitro was assessed in human and murine endothelial cells (HMEC-1, 2H11) by determining endoglin expression level, cell proliferation and tube formation. In vivo, the therapeutic potential of siRNA molecules was evaluated in TS/A mammary adenocarcinoma growing in BALB/c mice. Results of our study showed that siRNA molecules against endoglin have a good antiangiogenic therapeutic potential in vitro, as expression of endoglin mRNA and protein levels in mouse and human microvascular endothelial cells after lipofection were efficiently reduced, which resulted in the inhibition of endothelial cell proliferation and tube formation. In vivo, silencing of endoglin with triple electrotransfer of siRNA molecules into TS/A mammary adenocarcinoma also significantly reduced the mRNA levels, number of tumor blood vessels and the growth of tumors. The obtained results demonstrate that silencing of endoglin is a promising antiangiogenic therapy of tumors that could not be used as single treatment, but as an adjunct to the established cytotoxic treatment approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号