首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A mathematical model that describes the replication of influenza A virus in animal cells in large-scale microcarrier culture is presented. The virus is produced in a two-step process, which begins with the growth of adherent Madin-Darby canine kidney (MDCK) cells. After several washing steps serum-free virus maintenance medium is added, and the cells are infected with equine influenza virus (A/Equi 2 (H3N8), Newmarket 1/93). A time-delayed model is considered that has three state variables: the number of uninfected cells, infected cells, and free virus particles. It is assumed that uninfected cells adsorb the virus added at the time of infection. The infection rate is proportional to the number of uninfected cells and free virions. Depending on multiplicity of infection (MOI), not necessarily all cells are infected by this first step leading to the production of free virions. Newly produced viruses can infect the remaining uninfected cells in a chain reaction. To follow the time course of virus replication, infected cells were stained with fluorescent antibodies. Quantitation of influenza viruses by a hemagglutination assay (HA) enabled the estimation of the total number of new virions produced, which is relevant for the production of inactivated influenza vaccines. It takes about 4-6 h before visibly infected cells can be identified on the microcarriers followed by a strong increase in HA titers after 15-16 h in the medium. Maximum virus yield Vmax was about 1x10(10) virions/mL (2.4 log HA units/100 microL), which corresponds to a burst size ratio of about 18,755 virus particles produced per cell. The model tracks the time course of uninfected and infected cells as well as virus production. It suggests that small variations (<10%) in initial values and specific rates do not have a significant influence on Vmax. The main parameters relevant for the optimization of virus antigen yields are specific virus replication rate and specific cell death rate due to infection. Simulation studies indicate that a mathematical model that neglects the delay between virus infection and the release of new virions gives similar results with respect to overall virus dynamics compared with a time delayed model.  相似文献   

2.
Maturation of dimeric viral RNA of Moloney murine leukemia virus.   总被引:31,自引:20,他引:11       下载免费PDF全文
W Fu  A Rein 《Journal of virology》1993,67(9):5443-5449
We have analyzed the dimeric RNA present in Moloney murine leukemia virus (MoMuLV) particles. We found that the RNA in newly released virions is in a conformation different from that in mature virions, since it has a different electrophoretic mobility in nondenaturing agarose gels and dissociates into monomers at a lower temperature. On the basis of these results, we suggest that the RNA initially packaged into nascent virions is already dimeric but that the dimer undergoes a maturation process after the virus is released from the cell. In further experiments, we tested the possibility that this maturation event is linked to the maturation cleavage of the virion proteins, which is catalyzed by the viral protease (PR). We found that the dimeric RNA isolated from PR- mutant virions resembles that from immature virions: it has a lower electrophoretic mobility and a lower sedimentation rate, and it also dissociates at a lower temperature than does RNA from mature wild-type virions. When Kirsten sarcoma virus is rescued by a PR- mutant or by a somewhat leaky cysteine array mutant of MoMuLV, its RNA also exhibits a electrophoretic mobility lower than that in the wild-type pseudotype. These results suggest that the maturation of dimeric RNA in released virus particles requires the cleavage of the Gag precursor and the presence of an intact cysteine array in the released nucleocapsid protein.  相似文献   

3.
The mathematical model of the integrated process of mercury contaminated wastewater bioremediation in a fixed-bed industrial bioreactor is presented. An activated carbon packing in the bioreactor plays the role of an adsorbent for ionic mercury and at the same time of a carrier material for immobilization of mercury-reducing bacteria. The model includes three basic stages of the bioremediation process: mass transfer in the liquid phase, adsorption of mercury onto activated carbon and ionic mercury bioreduction to Hg(0) by immobilized microorganisms. Model calculations were verified using experimental data obtained during the process of industrial wastewater bioremediation in the bioreactor of 1 m3 volume. It was found that the presented model reflects the properties of the real system quite well. Numerical simulation of the bioremediation process confirmed the experimentally observed positive effect of the integration of ionic mercury adsorption and bioreduction in one apparatus.  相似文献   

4.
5.
6.
Synthesis and maturation of frog virus 3 deoxyribonucleic acid (DNA) in BHK cells and selected variants, in chick fibroblasts, and in minnow cells were compared. Wide ranges in rates of DNA synthesis and assembly of virions were found. At least three variants of BHK cells can be obtained: (i) fully permissive, characterized by rapid DNA synthesis and assembly to give a high yield of infective virus; (ii) semipermissive, in which viral DNA is synthesized slowly for extended periods of time, and the yield of infective virus is poor; and (iii) nonpermissive, in which virus adsorbs to cells and arrests host functions but viral DNA is not synthesized. Kinetics of appearance of virions and procedures for their separation from cell extracts are described.  相似文献   

7.
The ionophore monensin has been shown previously to block the maturation of Sindbis virus as well as prevent the cleavage of pE2 to E2 when applied to cells in high concentration. We found that a moderate dose of monensin reduced virus titer and inhibited the cleavage of pE2 to E2. Under these conditions, pE2 appeared on the cell surface in a form susceptible to lactoperoxidase-mediated iodination. This pE2 was incorporated into virions, replacing E2. PE2-containing virions had a normal PFU-to-particle ratio, cosedimented with normal virus, and retained a normal morphology when negatively stained preparations were examined by electron microscopy. We conclude that the cleavage of pE2 to form E2 is not an absolute prerequisite for virus maturation. Recently, Russell et al. have reached a similar conclusion (D. L. Russell, J. M. Dalrymple, and R. E. Johnston, J. Virol. 63:1619-1629, 1989).  相似文献   

8.
West Nile virions incorporate 180 envelope (E) proteins that orchestrate the process of virus entry and are the primary target of neutralizing antibodies. The E proteins of newly synthesized West Nile virus (WNV) are organized into trimeric spikes composed of pre-membrane (prM) and E protein heterodimers. During egress, immature virions undergo a protease-mediated cleavage of prM that results in a reorganization of E protein into the pseudo-icosahedral arrangement characteristic of mature virions. While cleavage of prM is a required step in the virus life cycle, complete maturation is not required for infectivity and infectious virions may be heterogeneous with respect to the extent of prM cleavage. In this study, we demonstrate that virion maturation impacts the sensitivity of WNV to antibody-mediated neutralization. Complete maturation results in a significant reduction in sensitivity to neutralization by antibodies specific for poorly accessible epitopes that comprise a major component of the human antibody response following WNV infection or vaccination. This reduction in neutralization sensitivity reflects a decrease in the accessibility of epitopes on virions to levels that fall below a threshold required for neutralization. Thus, in addition to a role in facilitating viral entry, changes in E protein arrangement associated with maturation modulate neutralization sensitivity and introduce an additional layer of complexity into humoral immunity against WNV.  相似文献   

9.
The autophagic pathway acts as part of the immune response against a variety of pathogens. However, several pathogens subvert autophagic signaling to promote their own replication. In many cases it has been demonstrated that these pathogens inhibit or delay the degradative aspect of autophagy. Here, using poliovirus as a model virus, we report for the first time bona fide autophagic degradation occurring during infection with a virus whose replication is promoted by autophagy. We found that this degradation is not required to promote poliovirus replication. However, vesicular acidification, which in the case of autophagy precedes delivery of cargo to lysosomes, is required for normal levels of virus production. We show that blocking autophagosome formation inhibits viral RNA synthesis and subsequent steps in the virus cycle, while inhibiting vesicle acidification only inhibits the final maturation cleavage of virus particles. We suggest that particle assembly, genome encapsidation, and virion maturation may occur in a cellular compartment, and we propose the acidic mature autophagosome as a candidate vesicle. We discuss the implications of our findings in understanding the late stages of poliovirus replication, including the formation and maturation of virions and egress of infectious virus from cells.  相似文献   

10.
The C terminus of the HIV-1 Gag protein contains a proline-rich domain termed p6(Gag). This domain has been shown to play a role in efficient virus release and incorporation of Vpr into virions. In a previous study (X. F. Yu, L. Dawson, C. J. Tian, C. Flexner, and M. Dettenhofer, J. Virol. 72:3412-3417, 1998), we observed that the removal of the p6 domain of Gag as well as drastic mutations in the PTAP motif resulted in reduced virion-associated Pol proteins from transfected COS cells. In the present study, amino acid substitutions at residues 5 and 7 of p6(Gag) resulted in a cell type-dependent replication of the mutant virus in CD4(+) T cells; the virus was replication competent in Jurkat cells but restricted in H9 cells and primary blood-derived monocytes. Established Jurkat and H9 cell lines expressing p6(Gag) mutant and parental virus were used to further understand this defect. Mutant virions produced from H9 cells, which displayed no defect in extracellular virion production, showed an approximately 16-fold reduction in Pol protein levels, whereas the levels of Pol proteins were only marginally reduced in mutant virions produced from Jurkat cells. The reduction in the virion-associated Pol proteins could not be accounted for by differences in the levels of intracellular p160(Gag-Pol) or in the interaction between p55(Gag) and p160(Gag-Pol) precursors. Electron microscopic analysis of the p6(Gag) mutant virions showed a predominately immature morphology in the absence of significant defects in Gag proteolytic cleavage. Taken together, these data suggest that the proline-rich motif of p6(Gag) is involved in the late stages of virus maturation, which include the packaging of cleaved Pol proteins in viral particles, a process which may involve cell-type-specific factors.  相似文献   

11.
Bureau M  Dea S  Sirard MA 《Theriogenology》2005,63(9):2343-2355
The objective of this study was to explore approaches to decontaminate embryos either contaminated naturally or under experimental conditions with different viruses. Embryos were obtained from in vitro maturation and fertilisation of porcine oocytes. After 7 days of development, morula and blastocyst stages were exposed for 1 h to the following viruses: encephalomyocarditis virus (EMCV), porcine circovirus type 2 (PCV2), porcine parvovirus (PPV), porcine reproductive and respiratory syndrome virus (PRRSV), and bovine viral diarrhea virus (BVDV) at an infectivity of 100 TCID50/mL. Embryos samples were treated with different washing procedures, which all included the following standard washing solutions: PBS+0.4% BSA (five times for 10 s), Hank's+0.25% trypsin (two times for 60-90 or 120-150 s, or one time of 5 min), Hank's+0.1 mg/mL DNase 1+20 U/mL RNase One (one time of 30 min) and PBS+0.4% BSA again (five times for 10s). Two new approaches were used to improve trypsin treatment, 0.1% hyaluronidase (one time for 5 min) instead of trypsin and a pre-incubation with oviductal cells. Therefore, in the first experiment, oocytes received standard maturation treatments and in the second, they were also co-incubated with oviductal cells for the last 3 h of maturation. The effectiveness of the different washing techniques in removing viruses was evaluated by polymerase chain reaction (PCR) analysis. In the first experiment, trypsin treatment did not eliminate PRRSV, PPV, PCV, and EMCV from contaminated embryos. Surprisingly, treatment with hyaluronidase eliminated all tested viruses. In the second experiment, all viruses tested were removed from the oocytes following the different enzymatic treatments. In conclusion, in vitro embryo decontamination was more effective following exposure to oviductal secretions and hyaluronidase eliminated more virions than trypsin in washing techniques.  相似文献   

12.
Elution curves in ionic exchange chromatography (IEC) for a three-protein mixture (alpha-lactoalbumin, ovalbumin, and beta-lactoglobulin), carried out under different flow rates and ionic strength conditions, were simulated using two different mathematical models. These models were the Plate Model and the more fundamentally based Rate Model. Relatively low protein concentrations were used to avoid protein-protein interactions. Simulated elution curves were compared with experimental data not used for parameter identification. Deviation between experimental data and the simulated curves using the Plate Model was less than 0.0189 (absorbance units); a slightly higher deviation [0.0252 (absorbance units)] was obtained when the Rate Model was used. A cost function was built that included the effect of the different production stages, namely fermentation, purification, and concentration. These considered the effect on the performance of IEC; yield, purity, concentration and the time needed to accomplish the separation. Operational conditions in the IEC such as flow rate, ionic strength gradient and the operational time can be selected using this model in order to find the minimum cost for the protein production process depending on the characteristics of the final product desired such as purity and yield. This cost function was successfully used for the selection of the operational conditions as well as the fraction of the product to be collected (peak cutting) in IEC. It can be used for protein products with different characteristics and qualities, such as purity and yield, by choosing the appropriate parameters.  相似文献   

13.
Following budding, HIV-1 virions undergo a maturation process where the Gag polyprotein in the immature virus is cleaved by the viral protease and rearranges to form the mature infectious virion. Despite the wealth of structures of isolated capsid domains and an in?vitro-assembled mature lattice, models of the immature lattice do not provide an unambiguous model of capsid-molecule orientation and no structural information is available for the capsid maturation pathway. Here we have applied hydrogen/deuterium exchange mass spectrometry to immature, mature, and mutant Gag particles (CA5) blocked at the final Gag cleavage event to examine the molecular basis of capsid assembly and maturation. Capsid packing arrangements were very similar for all virions, whereas immature and CA5 virions contained an additional intermolecular interaction at the hexameric, 3-fold axis. Additionally, the N-terminal β-hairpin was observed to form as a result of capsid-SP1 cleavage rather than driving maturation as previously postulated.  相似文献   

14.
Cells mixedly infected with parainfluenza virus SV5 and vesicular stomatitis virus (VSV) yield phenotypically mixed virions, in addition to both parental types. Two types of phenotypically mixed virions have been identified: 0.6 to 1.2% of the VSV plaque formers were neutralized by SV5 antiserum, but not by VSV antiserum, suggesting the presence of a VSV genome in an SV5 envelope; 9 to 45% of the VSV plaque formers were neutralized by both antisera, indicating the presence of both SV5 and VSV antigens in their envelopes. The presence of SV5 antigen in virions with the typical bullet-shaped appearance of VSV was confirmed with ferritin-labeled anti-SV5 antibody. In contrast to standard VSV, phenotypically mixed virions adsorbed to and eluted from chicken erythrocytes, indicating that these virions contained in their envelopes SV5 hemagglutinin, and possibly neuraminidase. Thus, the VSV nucleocapsid can interact with membranes which contain SV5 proteins in the manner which leads to virus maturation, and the production of a high yield of phenotypically mixed virions with the morphology of VSV indicates that this process can function efficiently. No evidence of genetic recombination between the two viruses was found. These results raise the possibility of an evolutionary relatedness between the paramyxoviruses and the rhabdoviruses.  相似文献   

15.
Flavivirus-infected cells secrete a structurally heterogeneous population of viruses because of an inefficient virion maturation process. Flaviviruses assemble as noninfectious, immature virions composed of trimers of envelope (E) and precursor membrane (prM) protein heterodimers. Cleavage of prM is a required process during virion maturation, although this often remains incomplete for infectious virus particles. Previous work demonstrated that the efficiency of virion maturation could impact antibody neutralization through changes in the accessibility of otherwise cryptic epitopes on the virion. In this study, we show that the neutralization potency of monoclonal antibody (MAb) E33 is sensitive to the maturation state of West Nile virus (WNV), despite its recognition of an accessible epitope, the domain III lateral ridge (DIII-LR). Comprehensive epitope mapping studies with 166 E protein DIII-LR variants revealed that the functional footprint of MAb E33 on the E protein differs subtly from that of the well-characterized DIII-LR MAb E16. Remarkably, aromatic substitutions at E protein residue 306 ablated the maturation state sensitivity of E33 IgG, and the neutralization efficacy of E33 Fab fragments was not affected by changes in the virion maturation state. We propose that E33 IgG binding on mature virions orients the Fc region in a manner that impacts subsequent antibody binding to nearby sites. This Fc-mediated steric constraint is a novel mechanism by which the maturation state of a virion modulates the efficacy of the humoral immune response to flavivirus infection.  相似文献   

16.
Herpes simplex virus (HSV) nucleocapsids acquire an envelope by budding through the inner nuclear membrane, but it is uncertain whether this envelope is retained during virus maturation and egress or whether mature progeny virions are derived by deenvelopment at the outer nuclear membrane followed by reenvelopment in a cytoplasmic compartment. To resolve this issue, we used immunogold electron microscopy to examine the distribution of glycoprotein D (gD) in cells infected with HSV-1 encoding a wild-type gD or a gD which is retrieved to the endoplasmic reticulum (ER). In cells infected with wild-type HSV-1, extracellular virions and virions in the perinuclear space bound approximately equal amounts of gD antibody. In cells infected with HSV-1 encoding an ER-retrieved gD, the inner and outer nuclear membranes were heavily gold labeled, as were perinuclear enveloped virions. Extracellular virions exhibited very little gold decoration (10- to 30-fold less than perinuclear virions). We conclude that the envelope of perinuclear virions must be lost during maturation and egress and that mature progeny virions must acquire an envelope from a post-ER cytoplasmic compartment. We noted also that gD appears to be excluded from the plasma membrane in cells infected with wild-type virus.  相似文献   

17.
During normal maturation and majority of pulse-labeled simian virus 40 DNA progresses from chromatin to previrions and virions within 5 h. UV light inhibits this progression. In heavily irradiated cultures (108 J m-2) most of the simian virus 40 DNA synthesized immediately before irradiation remains as chromatin for at least 5 h. This inhibition of maturation seems to be a result of the inhibition of protein synthesis. The data suggest that the pool of proteins required for maturation is sufficient to convert one-third of the simian virus 40 DNA molecules labeled in a 10-min pulse (at 33 h postinfection) from chromatin to previrions and virions and is exhausted within 1 h.  相似文献   

18.
BACKGROUND: Insights in the herpesvirus-cell interactions are of general cell biology interest, especially to studies of intracellular transport, and of considerable significance in the efforts to generate drugs, vaccines, and gene therapy. However, the pathway of virus particle egress and maturation is a contentious issue. MATERIALS AND METHODS: The intracellular transport was inhibited in cultured herpes simplex virus type 1 (HSV-1) infected human fibroblasts by brefeldin A (BFA). The virus-cell interactions including the viral envelopment, transport of HSV-1 virions, and transport of viral glycoprotein D (gD-1) and glycoprotein C (gC-1) were studied by titration assay, immunoblot, immunofluorescence light microscopy, and immunogold electron microscopy of cryosections. RESULTS: gD-1 and gC-1 were synthesized and normally transported to the plasma membranes of untreated HSV-1 infected host cells. BFA (1 microg/ml medium) effectively blocked the transport of the glycoproteins to the plasma membranes and affected the tubulin and vimentin of the cytoskeleton. Viral particles and glycoproteins accumulated in the perinuclear space and the endoplasmic reticulum of BFA treated cells. Withdrawal of BFA influence up to 9 hr resulted in restored tubulin and vimentin, transport of glycoproteins to the plasma membranes, and steady release of infectious viral particles to the extracellular space superior to the cellular assembly of new virions. The ultrastructural data presented support that the primary envelopment of viral particles occur at the nuclear membranes containing immature glycoproteins followed by multiple de-envelopments and re-envelopments of the virions during the transport and maturation in the endoplasmic reticulum and the Golgi complex. CONCLUSIONS: BFA-induced changes include the cytoskeleton with significant effect on HSV-1 maturation and egress. The data support a multiple-step envelopment of HSV-1 in a common pathway of glycoprotein synthesis and virion egress.  相似文献   

19.
The intracellular assembly site for flaviviruses in currently not known but is presumed to be located within the lumen of the rough endoplasmic reticulum (RER). Building on previous studies involving immunofluorescence (IF) and cryoimmunoelectron microscopy of Kunjin virus (KUN)-infected cells, we sought to identify the steps involved in the assembly and maturation of KUN. Thus, using antibodies directed against envelope protein E in IF analysis, we found the accumulation of E within regions coincident with the RER and endosomal compartments. Immunogold labeling of cryosections of infected cells indicated that E and minor envelope protein prM were localized to reticulum membranes continuous with KUN-induced convoluted membranes (CM) or paracrystalline arrays (PC) and that sometimes the RER contained immunogold-labeled virus particles. Both proteins were also observed to be labeled in membranes at the periphery of the induced CM or PC structures, but the latter were very seldom labeled internally. Utilizing drugs that inhibit protein and/or membrane traffic throughout the cell, we found that the secretion of KUN particles late in infection was significantly affected in the presence of brefeldin A and that the infectivity of secreted particles was severely affected in the presence of monensin and N-nonyl-deoxynojirimycin. Nocodazole did not appear to affect maturation, suggesting that microtubules play no role in assembly or maturation processes. Subsequently, we showed that the exit of intact virions from the RER involves the transport of individual virions within individual vesicles en route to the Golgi apparatus. The results suggest that the assembly of virions occurs within the lumen of the RER and that subsequent maturation occurs via the secretory pathway.  相似文献   

20.
Although survival analysis is a well-established mathematical discipline, there seem to be almost no attempts in survival modeling for experimentally virus-infected laboratory animals. We have taken up a stochastic approach originally developed by Shortley in the sixties and have applied it to three different types of experimental data: to virus titer determination, to the dose dependence of the mean survival time and to single survival curves. Experience concerning parameter estimation is reported and new ways of working with the model parameters are proposed. A standard mean survival time is defined and suggested as a new quantitative measure of virulence. Moreover, for the comparison of two experiments for which the amount of virions inoculated is kept fixed, but for which other parameters may vary, a new scheme of systematizing survival data from experimentally virus-infected laboratory animals is proposed. It is very likely that the model can be also applied to cancer survival data or any other infectious pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号