首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
A spectrophotometric method for simultaneous analysis of glycine and lysine is proposed by application of neural networks on the spectral kinetic data. The method is based on the reaction of glycine and lysine with 1,2-naphthoquinone-4-sulfonate (NQS) in slightly basic medium. On the basis of the difference in the rate between the two reactions, these two amino acids can be determined simultaneously in binary mixtures. Feed-forward neural networks have been trained to quantify considered amino acids in mixtures under optimum conditions. In this way, a one-layer network was trained. Sigmoidal and linear transfer functions were used in the hidden and output layers, respectively. Linear calibration graphs were obtained in the concentration range of 1 to 25microgml(-1) for glycine and 1 to 19microgml(-1) for lysine. The analytical performance of this method was characterized by the relative standard error. The proposed method was applied to the determination of considered amino acids in synthetic samples.  相似文献   

2.
N epsilon-(Carboxymethyl)lysine (CML) has been identified as a product of oxidation of glucose adducts to protein in vitro and has been detected in human tissue proteins and urine [Ahmed, M. U., Thorpe, S. R., & Baynes, J. W. (1986) J. Biol. Chem. 261, 4889-4894; Dunn, J. A., Patrick, J. S., Thorpe, S. R., & Baynes, J. W. (1989) Biochemistry 28, 9464-9468]. In the present study we show that CML is also formed in reactions between ascorbate and lysine residues in model compounds and protein in vitro. The formation of CML from ascorbate and lysine proceeds spontaneously at physiological pH and temperature under air. Kinetic studies indicate that oxidation of ascorbic acid to dehydroascorbate is required. Threose and N epsilon-threuloselysine, the Amadori adduct of threose to lysine, were identified in the ascorbate reaction mixtures, suggesting that CML was formed by oxidative cleavage of N epsilon-threuloselysine. Support for this mechanism was obtained by identifying CML as a product of reaction between threose and lysine and by analysis of the relative rates of formation of threuloselysine and CML in reactions of ascorbate or threose with lysine. The detection of CML as a product of reaction of ascorbate and threose with lysine suggests that other sugars, in addition to glucose, may be sources of CML in proteins in vivo. The proposed mechanism for formation of CML from ascorbate is an example of autoxidative glycosylation of protein and suggests that CML may also be an indicator of autoxidative glycosylation of proteins in vivo.  相似文献   

3.
The reaction of Fe(CN)5NO2? with glycine, α-alanine, β-alanine, γ-aminobutyric acid, ornithine and lysine were gas-volumetrically studied in a weakly-alkaline medium. The kinetic data show that the reactivity of the amino group depends on the basicity of the amine, on the behaviour of nucleophilic centers of the carbon chain, and on their steric positions.The kinetic results are compared to the data of the reactions of amino acids with nitrous acid and of the complex with aliphatic amines.  相似文献   

4.
Addition of hydroxypropyl-beta-cyclodextrin to o-phthalaldehyde (OPA)-amino acid-thiol reaction mixtures is shown to cause significant enhancement of the fluorescence of the isoindole product for a wide range of amino acids, with the largest effects observed in the cases of glycine and lysine. The largest enhancement observed was a factor of 2.67 in the case of the derivative of glycine. This fluorescence enhancement is the result of the formation of a 1:1 host:guest inclusion complex between the isoindole and the cyclodextrin. Relatively small association constants of 44 and 130 M(-1) were obtained for the inclusion of the derivatives of glycine and lysine, respectively. Inclusion of the isoindole derivative into hydroxypropyl-beta-cyclodextrin was also found to result in a significant stabilization of the isoindole derivatives, contrary to what has been previously reported for inclusion into beta-cyclodextrin. For example, the lifetime of the lysine derivative was found to increase from 42 to 222 min, a factor of 5.3. These results have potential applications in fluorescence-based HPLC and high-performance capillary electrophoresis amino acid analysis methods using OPA derivation. Addition of hydroxypropyl-beta-cyclodextrin to the reaction mixture results in an increase in both the fluorescence and the stability of the isoindole product, providing potentially significant improvements to the method.  相似文献   

5.
A novel diacridine has been prepared in which two acridines are linked by a flexible peptide chain composed of gamma-aminobutyric acid, tyrosine, lysine and glycine. Synthesis of N-[9-acridinyl)-4-aminobutanoyl-tyrosyl-lysyl-lysyl-glycyl)-N'-(9- acridinyl)-1, 3-diaminopropane (VII) was achieved in 8% overall yield by a solution phase stepwise procedure. This compound binds to DNA by intercalation of both chromophores with at least a 140-fold enhancement of affinity compared to 9-aminoacridine.  相似文献   

6.
The chemistry of Maillard or browning reactions of glycated proteins was studied using the model compound, N alpha-formyl-N epsilon-fructoselysine (fFL), an analog of glycated lysine residues in protein. Incubation of fFL (15 mM) at physiological pH and temperature in 0.2 M phosphate buffer resulted in formation of N epsilon-carboxymethyllysine (CML) in about 40% yield after 15 days. CML was formed by oxidative cleavage of fFL between C-2 and C-3 of the carbohydrate chain and erythronic acid (EA) was identified as the split product formed in the reaction. Neither CML nor EA was formed from fFL under a nitrogen atmosphere. The rate of formation of CML was dependent on phosphate concentration in the incubation mixture and the reaction was shown to occur by a free radical mechanism. CML was also identified by amino acid analysis in hydrolysates of both poly-L-lysine and bovine pancreatic ribonuclease glycated in phosphate buffer under air. CML was also detected in human lens proteins and tissue collagens by HPLC and the identification was confirmed by gas chromatography/mass spectroscopy. The presence of both CML and EA in human urine suggests that they are formed by degradation of glycated proteins in vivo. The browning of fFL incubation mixtures proceeded to a greater extent under a nitrogen versus an air atmosphere, suggesting that oxidative degradation of Amadori adducts to form CML may limit the browning reactions of glycated proteins. Since the reaction products, CML and EA, are relatively inert, both chemically and metabolically, oxidative cleavage of Amadori adducts may have a role in limiting the consequences of protein glycation in the body.  相似文献   

7.
Formaldehyde is a well known cross-linking agent that can inactivate, stabilize, or immobilize proteins. The purpose of this study was to map the chemical modifications occurring on each natural amino acid residue caused by formaldehyde. Therefore, model peptides were treated with excess formaldehyde, and the reaction products were analyzed by liquid chromatography-mass spectrometry. Formaldehyde was shown to react with the amino group of the N-terminal amino acid residue and the side-chains of arginine, cysteine, histidine, and lysine residues. Depending on the peptide sequence, methylol groups, Schiff-bases, and methylene bridges were formed. To study intermolecular cross-linking in more detail, cyanoborohydride or glycine was added to the reaction solution. The use of cyanoborohydride could easily distinguish between peptides containing a Schiff-base or a methylene bridge. Formaldehyde and glycine formed a Schiff-base adduct, which was rapidly attached to primary N-terminal amino groups, arginine and tyrosine residues, and, to a lesser degree, asparagine, glutamine, histidine, and tryptophan residues. Unexpected modifications were found in peptides containing a free N-terminal amino group or an arginine residue. Formaldehyde-glycine adducts reacted with the N terminus by means of two steps: the N terminus formed an imidazolidinone, and then the glycine was attached via a methylene bridge. Two covalent modifications occurred on an arginine-containing peptide: (i) the attachment of one glycine molecule to the arginine residue via two methylene bridges, and (ii) the coupling of two glycine molecules via four methylene bridges. Remarkably, formaldehyde did not generate intermolecular cross-links between two primary amino groups. In conclusion, the use of model peptides enabled us to determine the reactivity of each particular cross-link reaction as a function of the reaction conditions and to identify new reaction products after incubation with formaldehyde.  相似文献   

8.
1. The reaction of phenylglyoxal (PGO), glyoxal (GO), and methylglyoxal (MGO) with amino acids were investigated at mild pH values at 25 degrees. These aldehydes reacted most rapidly with arginine and the rate of reaction increased with increasing pH values. Histidine, cystine, glycine, tryptophan, asparagine, glutamine, and lysine reacted with these aldehydes at significant but various rates, depending on the pH and the kind of the reagent used. The reactions with these amino acids seemed to involve both the alpha-amino groups and the side chain groups, and no significant reaction appeared to occur with the side chain alone except with those of arginine, lysine, and cysteine. These reagents were similarly reactive with the guanidinium group of arginine, but PGO appeared to be much less reactive with the epsilone-amino group of lysine than MGO and GO. The other ordinary amino acids were very much less reactive or did not react at all with these reagents, with the exception of cysteine. 2. Di-PGO-L-arginine was prepared from Nalpha-benzyloxycarbonyl-L-arginine, and di-PGO-methylguanidine from methylguanidine, and the stoichiometry of the reaction of two PGO molecules with one guanidino group was confirmed. A glyoxal derivative of L-arginine (GO-arginine) was prepared by reaction of glyoxal with arginine. GO-arginine was fairly unstable, especially at higher pH values. A similar derivative (MGO-arginine) was also found to be formed by reaction of MGO with L-arginine, and was similarly unstable. These derivatives, however, did not regenerate arginine upon acid hydrolysis.  相似文献   

9.
Fixation by periodate/lysine/paraformaldehyde, a method purported to cross-link specifically plasma membrane glycoproteins, was evaluated using Novikoff rat ascites hepatocellular carcinoma cells. Cells were treated with periodate/lysine, periodate/glycine, and periodate/lysine/paraformaldehyde and subsequently reduced with NaB3H4. The glycoproteins labeled with 3H were resolved by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and visualized by fluorography. The effects of reactant concentrations on 3H-labeling of cellular components, cell viability, and cross-linkage of 3H-labeled proteins were examined. The effect of increasing the localized density of plasma membrane glycoproteins on the extent of cross-linkage by periodate and lysine was investigated using cells in which patching of the plasma membrane glycoproteins had been induced by ferritin-conjugated concanavalin A/rabbit antiferritin antiserum. Also investigated was the periodate-independent to mixtures of periodate and lysine or glycine. Results of these studies did not support a mechanism of cross-linking involving reaction between the free base lysin and aldehyde groups on periodate oxidized carbohydrate residues but suggested a complex interaction between periodate oxidized plasma membrane glycoproteins and polymeric complexes of lysine and formaldehyde.U  相似文献   

10.
A model for abiotic photophosphorylation of adenosine diphosphate by orthophosphate with the formation of adenosine triphosphate was studied. The model was based on the photochemical activity of the abiogenic conjugates of pigments with the polymeric material formed after thermolysis of amino acid mixtures. The pigments formed showed different fluorescence parameters depending on the composition of the mixture of amino acid precursors. Thermolysis of the mixture of glutamic acid, glycine, and lysine (8:3:1) resulted in a predominant formation of a pigment fraction which had the fluorescence maximum at 525 nm and the excitation band maxima at 260, 375, and 450 nm and was identified as flavin. When glycine in the initial mixture was replaced with alanine, a product formed whose fluorescence parameters were typical to pteridines (excitation maximum at 350 nm, emission maximum at 440 nm). When irradiated with the quasi-monochromatic light (over the range 325–525 nm), microspheres in which flavin pigments were prevailing showed a maximum photophosphorylating activity at 375 and 450 nm, and pteridine-containing chromoproteinoid microspheres were most active at 350 nm. The positions and the relative height of maxima in the action spectra correlate with those in the excitation spectra of the pigments, which point to the involvement of abiogenic flavins and pteridines in photophosphorylation.  相似文献   

11.
The effect of various amino acid metabolites on glycine oxidation by rat liver homogenate was investigated. Three compounds, α-ketoisovaleric acid, α-ketoisocaproic acid, and α-keto-β-methylvaleric acid, were found to inhibit glycine oxidation by 40–60%. In addition, these compounds also inhibited the glycine-CO2 exchange reaction, a partial reaction of glycine synthase. The reverse reaction, glycine synthesis, was stimulated 4-fold by these α-keto acids. Pyruvate and α-ketoglutarate had no effect on any of these reactions. The parent amino acids, valine, isoleucine, and leucine, also had no effect on the reactions nor did any of their other metabolites with the exception of the branched-chain α-keto acids. The concentration dependence of the inhibition of glycine oxidation and stimulation of glycine synthesis by these branched-chain α-keto acids suggested that the inhibition of glycine oxidation by these compounds was the result of their further oxidation by branched-chain α-keto acid dehydrogenase. However, the products of the branched-chain α-keto acid dehydrogenase, isobutyryl CoA, isovaleryl CoA, or α-methylbutyryl CoA had no effect on glycine oxidation. Thus, it appeared that either the branched-chain α-keto acids altered glycine oxidation by direct binding to glycine synthase or that electrons derived from the oxidation of branched-chain α-keto acids were transferred to the glycine synthase system. It is proposed that glycine synthase and branched-chain α-keto acid dehydrogenase either share a common subunit, possibly lipoamide dehydrogenase, or are so arranged on the mitochondrial membrane that electron transfer between these two enzymes occurs.  相似文献   

12.
The reaction schemes suggested earlier for thermal transformation of glycine into amino acids and carboxylic acids are considered in detail. Close analogy with some wide-spread biochemical reactions of amino acids is observed. The pathway suggested has some common stages with the tricarboxylic acid cycle and other metabolic processes. The possible role of alpha-imino or alpha-keto acids as prebiological analogs of pyridoxal-phosphate-containing enzymes is discussed. The thermal transformations of glycine under primitive Earth conditions could be considered as evolutionary precursors of some present-day metabolic pathways.  相似文献   

13.
Browning reactions of amino sugars were observed in a variety of sterile pH buffers at 25-37 degrees C. These reactions were signaled by an increase in absorbance at 273 nm, followed by an increase in absorbance at 320-360 nm. The reactions were maximal at pH 7.0 in phosphate buffer. Acidic solutions (pH less than 2.2) of 50 mM D-glucosamine hydrochloride gave only a negligible reaction and 2-acetamido-2-deoxy-D-glucose was unreactive. Half of the D-glucosamine in a 100 mM solution in sterile 0.2 M sodium phosphate buffer, pH 7.4, at 37 degrees C decomposed or was transformed in 27 h. A comparison of reactivity in generating A273 and A340 chromophores showed D-mannosamine greater than D-galactosamine greater than D-glucosamine. Permanganate oxidation of incubated glucosamine solutions afforded a compound which chromatographed like 2,5-pyrazinedicarboxylic acid and gave the same ultraviolet absorption spectrum. This, together with fractionating and thin-layer chromatography of the products of glucosamine incubation, suggests that 2,5-bis(tetrahydroxybutyl)pyrazine is formed as one of the products of autocondensation of D-glucosamine in accord with the report of Candiano et al. (1988, Carbohydr. Res. 184, 67-75) on products formed in glucosamine-lysine incubation mixtures. Formation of products absorbing at 325-360 nm was inhibited by the chelator diethylene-triaminepentaacetic acid. This suggests that the later reactions may be mediated by a metal-stimulated free radical mechanism. After 4 days incubation high molecular weight products with absorbance maxima at 273 nm and 325-360 nm were detected. Some of these were retained by dialysis membranes of molecular weight cut-off greater than 3500 and greater than 12,000.  相似文献   

14.
Evaporation cycles applied to dilute solutions of amino acids, Cu(II) and NaCl lead to peptides within 1–3 days. This simulation of possible coastal or laguna processes in a primitive earth environment gives further indications towards the relevance of the salt-induced peptide formation reaction in chemical evolution. The experiments were successfully applied to glycine, alanine, aspartic and glutamic acid. Besides isolated amino acids, also their mixtures with glycine as reaction partner were studied, leading to peptides for all of the aforementioned substances, as well as for valine and proline, which do not dimerize alone. Sequence preferences and some conservation of optical purity were observed.  相似文献   

15.
The radicals produced by reactions of hydroxyl radicals with amino acids in aqueous solutions have been investigated. Hydroxyl radicals were formed by U.V.-photolysis of hydrogen peroxide and the short-lived amino acid radicals were spin-trapped by tert-nitrosobutane and identified by electron spin resonance spectroscopy. Nineteen amino acids were studied, and several radicals were identified which have not been observed previously by other methods. Only side-chain radicals were identified for alanine, threonine, aspartic acid, asparagine, lysine, phenylalanine, tyrosine, proline and hydroxyproline; whereas for glycine the C(2) carbon radical was spin-trapped. Both C(2) carbon radicals and side-chain radicals were assigned to valine, leucine, isoleucine, serine, glutamic acid, glutamine, arginine and methionine.  相似文献   

16.
Methyleneaminoacetonitrile(MAAN) resulting from the interaction of formaldehyde, ammonia and hydrogen cyanide on hydrolysis under mildly alkaline conditions gives a number of amino acids and peptides. Various aldehydes react with glycine to give corresponding hydroxyalkyl amino acids, which on reduction with formic acid are converted to reduced amino acids. Formaldehyde reacts with uracil to give 5-hydroxymethyl uracil which on reduction with formic acid yields thymine. Pyrrole formed by heating serine reacts with aldehydes to form porphyrins. Clays do not seem to influence most of these reactions, except the uracil-formaldehyde — formic acid reaction which results in enhanced yield of thymine.  相似文献   

17.
Threonine content of brain decreases in young rats fed a threonine-limiting, low protein diet containing a supplement of small neutral amino acids (serine, glycine and alanine), which are competitors of threonine transport in other systems (Tews et al., 1977). Threonine transport by brain slices was inhibited more by a complex amino acid mixture resembling plasma from rats fed the small neutral amino acid supplement than by mixtures resembling plasma from control rats or from rats fed a supplement of large neutral amino acids. Greater inhibition was seen with mixtures containing only the small neutral amino acids than with mixtures containing only large neutral amino acids. On an equimolar basis, serine and alanine were the most inhibitory; large neutrals were moderately so; and glycine and lysine were without effect. Threonine transport was also strongly inhibited by α-amino-n-butyric acid and homoserine, less so by α-aminoisobutyric acid, and not at all by GABA. The complex amino acid mixtures strongly inhibited α-aminoisobutyric acid transport by brain or liver slices but, in contrast to effects in brain, the extent of the inhibition in liver was not much affected by altering the composition of the mixture. Tryptophan accumulation by brain slices was effectively inhibited by other large neutral amino acids in physiologically occurring concentrations. Threonine, or a mixture of serine, glycine and alanine only slightly inhibited tryptophan uptake; basic amino acids were without effect and histidine stimulated tryptophan transport slightly. These results support the conclusion that a diet-induced decrease in the concentration in brain of a specific amino acid may be related to increased inhibition of its transport into brain by increases in the concentrations of transport-related, plasma amino acids.  相似文献   

18.
Gao X  Liu Y  Xu PX  Cai YM  Zhao YF 《Amino acids》2008,34(1):47-53
Summary. The condensation reactions of sodium trimetaphosphate with single amino acids, namely glycine, L-alanine, β-alanine and γ-aminobutyric acid or pairs of these amino acids were reinvestigated by electrospray ion-trap mass spectrometry and high performance liquid chromatography. It was found when mixtures were treated by sodium trimetaphosphate only in the presence of α-amino acid dipeptides were formed. Without addition of α-amino acids, the β-amino acid or γ-aminobutyric acid could not form peptide either by themselves or with their mixtures under the same conditions. From the data it is concluded that phosphate might select α-amino acids to produce the peptides being important precursors for the origin of life. Authors’ address: Dr. Pengxiang Xu, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemistry, Xiamen University, Xiamen 361005, China  相似文献   

19.
1. The reactions between chlorogenoquinone, the o-quinone formed during the oxidation of chlorogenic acid, and bovine serum albumin depend on the ratio of reactants. 2. When the serum albumin is in excess, oxygen is not absorbed and the products are colourless. This reaction probably involves the thiol group of bovine serum albumin; it does not occur with bovine serum albumin which has been treated with p-chloromercuribenzoate, iodoacetamide or Ellman's reagent. 3. When bovine serum albumin reacts with excess of chlorogenoquinone, oxygen is absorbed and the products are red. The red colour is probably formed by reaction of the lysine in-amino groups of bovine serum albumin, as it is prevented by treating the protein with formaldehyde, succinic anhydride or O-methylisourea. 4. Bovine serum albumin modified by a 1.5-fold (BSA-Q) and a fivefold (BSA-Q2) excess of chlorogenoquinone were separated by chromatography on DEAE-Sephadex A-50, and some of their properties observed. 5. Reaction of BSA-Q2 with fluorodinitrobenzene suggests that the terminal alpha-amino group, as well as lysine in-amino groups, are combined with chlorogenoquinone.  相似文献   

20.
A product with molecular mass of 500–550 Da was isolated from a pigmented material formed by thermolysis (185°C) of a mixture of glutamic acid, glycine, and lysine (the optimal molar ratio of 8:3:1). After purification by chromatography the spectra of absorption and luminescence as well as IR- and PMR-spectra of the isolated pigment were studied. Based on the obtained data, the pigment was identified as a structural analogue of biological flavins: isoalloxazine heterocycle with two hydroxyl groups as well as a substitute of the amino acid nature. Like natural flavins, the abiogenic pigment photosensitized in solution both anaerobic and aerobic reactions of electron transfer from donors (ascorbate, Na2-EDTA) to acceptors (redox- sensitive dyes, nicotinamide, Mo(IV) ), with the rate practically identical to that in the case of use of riboflavin. The ability of abiogenic flavin and riboflavin to photosensitize redox reactions was preserved after absorption of their molecules on particles of clay minerals (kaolinite, bentonite, celite) ; however, the absorption affected the rate of individual photochemical reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号