首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We proposed long ago the following sequence as one of the main pathways in the evolution of energy-yielding metabolism: fermentation→nitrate fermentation→nitrate respiration→oxygen respiration. In the present report our concept is presented in a more general form: (1) fermentation→ →(2) fermentation with H2 release→(3) inorganic types of fermentation→(4) anaerobic respirations →(5) oxygen respiration, based upon recent biological and physical information. The energy-yielding efficiency increased gradually together with the evolution. (2) is characterized by the participation of ferredoxin, (3) by the establishment of electron transfer chain, and (4) by the participation of cytochrome and oxidative phosphorylation. The close relationship between the primary structure of ferredoxins of anaerobic bacteria and that of a cytochrome (cytochromec 3) was demonstrated. It reveals that the transition from inorganic types of fermentation to anaerobic respirations was direct and accompanied by the transition from ferredoxins to cytochromes, and it further supports our concept that the cytochrome system, and consequently the oxidative phosphorylation, were induced at this evolutionary step. Our concept based upon biological observations is consistent with a physical theory recently proposed by M. Shimizu.  相似文献   

2.
[2Fe2S] ferredoxins isolated from various plants and algae comprise 93–99 amino acid residues and resemble each other not only in sequences, but also in physiological functions. One of them isolated from Spirulina platensis was subjected to X-ray analysis and its three dimensional structure is now known. [2Fe2S] ferredoxins of a different type are found in halobacteria and comprise 128 amino acid residues. Both types of the [2Fe2S] ferredoxins exhibit low redox potentials. By comparing the amino acid sequences of 28 [2Fe2S] ferredoxins and the tertiary structure of S. platensis ferredoxin we predicted a common three-dimensional structure to the [2Fe2S] ferredoxins and proposed a molecular surface area to be interacting with FNR. An artificial small molecule composed of 20 amino acid residues is designed on the basis of the tertiary structure of S. platensis ferredoxin. The amino acid sequence was predicted to be ProTyrSerCysArgAlaGlyAlaCysSerThrCysAlaGly ProLeuLeuThr CysVal which should have a [2Fe2S] cluster with a low redox potential  相似文献   

3.
The role of cytochromes in photosynthetic electron transfer system has been studied using the pale green mutant of Chlamydomonas reinhardi (ATCC 18302). The existence of cytochromes b563 and f is confirmed, while no significant amount of ascorbate-reducible cytochrome b559 is detected in this mutant. The presence of cytochrome c and a small amount of a-type cytochrome is determined in these cells.  相似文献   

4.
The ubihydroquinone:cytochrome (cyt) c oxidoreductase (or cyt bc1) is an important enzyme for photosynthesis and respiration. In bacteria like Rhodobacter capsulatus, this membrane complex has three subunits, the iron?sulfur protein (ISP) with its Fe2S2 cluster, cyt c1 and cyt b, forming two catalytic domains, the Qo (hydroquinone (QH2) oxidation) and Qi (quinone (Q) reduction) sites. At the Qo site, the electron transfer pathways originating from QH2 oxidation are known, but their associated proton release routes are less well defined. Earlier, we demonstrated that the His291 of cyt b is important for this latter process. In this work, using the bacterial cyt bc1 and site directed mutagenesis, we show that Lys329 of cyt b is also critical for electron and proton transfer at the Qo site. Of the mutants examined, Lys329Arg was photosynthesis proficient and had quasi-wild type cyt bc1 activity. In contrast, the Lys329Ala and Lys329Asp were photosynthesis-impaired and contained defective but assembled cyt bc1. In particular, the bifurcated electron transfer and associated proton(s) release reactions occurring during QH2 oxidation were drastically impaired in Lys329Asp mutant. Furthermore, in silico docking studies showed that in this mutant the location and the H-bonding network around the Fe2S2 cluster of ISP on cyt b surface was different than the wild type enzyme. Based on these experimental findings and theoretical considerations, we propose that the presence of a positive charge at position 329 of cyt b is critical for efficient electron transfer and proton release for QH2 oxidation at the Qo site of cyt bc1.  相似文献   

5.
In green sulfur photosynthetic bacteria, the cytochrome cz (cyt cz) subunit in the reaction center complex mediates electron transfer mainly from menaquinol/cytochrome c oxidoreductase to the special pair (P840) of the reaction center. The cyt cz subunit consists of an N-terminal transmembrane domain and a C-terminal soluble domain that binds a single heme group. The periplasmic soluble domain has been proposed to be highly mobile and to fluctuate between oxidoreductase and P840 during photosynthetic electron transfer. We have determined the crystal structure of the oxidized form of the C-terminal functional domain of the cyt cz subunit (C-cyt cz) from thermophilic green sulfur bacterium Chlorobium tepidum at 1.3-Å resolution. The overall fold of C-cyt cz consists of four α-helices and is similar to that of class I cytochrome c proteins despite the low similarity in their amino acid sequences. The N-terminal structure of C-cyt cz supports the swinging mechanism previously proposed in relation with electron transfer, and the surface properties provide useful information on possible interaction sites with its electron transfer partners. Several characteristic features are observed for the heme environment: These include orientation of the axial ligands with respect to the heme plane, surface-exposed area of the heme, positions of water molecules, and hydrogen-bond network involving heme propionate groups. These structural features are essential for elucidating the mechanism for regulating the redox state of cyt cz.  相似文献   

6.
He-Wen Ma 《BBA》2008,1777(3):317-326
Protein domain movement of the Rieske iron-sulfur protein has been speculated to play an essential role in the bifurcated oxidation of ubiquinol catalyzed by the cytochrome bc1 complex. To better understand the electron transfer mechanism of the bifurcated ubiquinol oxidation at Qp site, we fixed the head domain of ISP at the cyt c1 position by creating an intersubunit disulfide bond between two genetically engineered cysteine residues: one at position 141 of ISP and the other at position 180 of the cyt c1 [S141C(ISP)/G180C(cyt c1)]. The formation of a disulfide bond between ISP and cyt c1 in this mutant complex is confirmed by SDS-PAGE and Western blot. In this mutant complex, the disulfide bond formation is concurrent with the loss of the electron transfer activity of the complex. When the disulfide bond is released by treatment with β-mercaptoethanol, the activity is restored. These results further support the hypothesis that the mobility of the head domain of ISP is functionally important in the cytochrome bc1 complex. Formation of the disulfide bond between ISP and cyt c1 shortens the distance between the [2Fe-2S] cluster and heme c1, hence the rate of intersubunit electron transfer between these two redox prosthetic groups induced by pH change is increased. The intersubunit disulfide bond formation also decreases the rate of stigmatellin induced reduction of ISP in the fully oxidized complex, suggesting that an endogenous electron donor comes from the vicinity of the b position in the cytochrome b.  相似文献   

7.
pH Dependences of steady-state kinetic parameters of cytochrome chains of submitochondrial particles have been studied. It has been shown that the lifetimes of activated states (τ) of the pairs of cytochromes bc1 and aa3 have different pH dependences; those for the c1c and ca cytochrome pairs being similar. The rate constants for the non-activated state of the respiratory chains decreased for the bc1 pair and increased for the aa3 pair when the pH value was increased.The values of pK calculated from these dependences for the pairs bc1 and aa3 were 7.2 and 8.9, respectively. It has been supposed that the ratio of activated to non-activated electron carriers may be controlled by the local pH value in the mitochondrial membrane, the latter being dependent upon the rate of electron transfer. The kinetic model based on this assumption allows one to explain the experimental dependences on pH of the rate constants for cytochromes bc, and aa3.The values of the diffusion rate constants for H+ and OH? ions in the mitochondrial membrane estimated from these kinetic data obtained in this study weree 104–105 s?1 and 102–103 s?1, respectively.  相似文献   

8.
《BBA》2023,1864(2):148957
The electron transfer reactions within wild-type Rhodobacter sphaeroides cytochrome bc1 (cyt bc1) were studied using a binuclear ruthenium complex to rapidly photooxidize cyt c1. When cyt c1, the iron?sulfur center Fe2S2, and cyt bH were reduced before the reaction, photooxidation of cyt c1 led to electron transfer from Fe2S2 to cyt c1 with a rate constant of ka = 80,000 s?1, followed by bifurcated reduction of both Fe2S2 and cyt bL by QH2 in the Qo site with a rate constant of k2 = 3000 s?1. The resulting Q then traveled from the Qo site to the Qi site and oxidized one equivalent each of cyt bL and cyt bH with a rate constant of k3 = 340 s?1. The rate constant ka was decreased in a nonlinear fashion by a factor of 53 as the viscosity was increased to 13.7. A mechanism that is consistent with the effect of viscosity involves rotational diffusion of the iron?sulfur protein from the b state with reduced Fe2S2 close to cyt bL to one or more intermediate states, followed by rotation to the final c1 state with Fe2S2 close to cyt c1, and rapid electron transfer to cyt c1.  相似文献   

9.
Intramolecular and intermolecular direct (unmediated) electron transfer was studied by electrochemical techniques in a flavohemoprotein cytochrome P450 BM3 (CYP102A1 from Bacillius megaterium) and between cytochromes b 5 and c. P450 BM3 was immobilized on a screen printed graphite electrode modified with a biocompatible nanocomposite material based on didodecyldimethylammonium bromide (DDAB) and gold nanoparticles. Analytical characteristics of SPG/DDAB/Au/P450 BM3 electrodes were studied with cyclic voltammetry and square wave voltammetry. The electron transport chain in P450 BM3 immobilized on the nanostructured electrode is: electrode → FAD → FMN → heme; i.e., electron transfer takes place inside the cytochrome, in evidence of functional interaction between its diflavin and heme domains. The effects of substrate (lauric acid) or inhibitor (metyrapone or imidazole) binding on the electro-chemical parameters of P450 BM3 were assessed. Electrochemical analysis has also demonstrated intermolecular electron transfer between electrode-immobilized and soluble cytochromes properly differing in redox potentials.  相似文献   

10.
Research on photosynthetic electron transfer closely parallels that of other electron transfer pathways and in many cases they overlap. Thus, the first bacterial cytochrome to be characterized, called cytochrome c 2, is commonly found in non-sulfur purple photosynthetic bacteria and is a close homolog of mitochondrial cytochrome c. The cytochrome bc 1 complex is an integral part of photosynthetic electron transfer yet, like cytochrome c 2, was first recognized as a respiratory component. Cytochromes c 2 mediate electron transfer between the cytochrome bc 1 complex and photosynthetic reaction centers and cytochrome a-type oxidases. Not all photosynthetic bacteria contain cytochrome c 2; instead it is thought that HiPIP, auracyanin, Halorhodospira cytochrome c551, Chlorobium cytochrome c555, and cytochrome c 8 may function in a similar manner as photosynthetic electron carriers between the cytochrome bc 1 complex and reaction centers. More often than not, the soluble or periplasmic mediators do not interact directly with the reaction center bacteriochlorophyll, but require the presence of membrane-bound intermediates: a tetraheme cytochrome c in purple bacteria and a monoheme cytochrome c in green bacteria. Cyclic electron transfer in photosynthesis requires that the redox potential of the system be delicately poised for optimum efficiency. In fact, lack of redox poise may be one of the defects in the aerobic phototrophic bacteria. Thus, large concentrations of cytochromes c 2 and c′ may additionally poise the redox potential of the cyclic photosystem of purple bacteria. Other cytochromes, such as flavocytochrome c (FCSD or SoxEF) and cytochrome c551 (SoxA), may feed electrons from sulfide, sulfur, and thiosulfate into the photosynthetic pathways via the same soluble carriers as are part of the cyclic system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The organization of the electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays was investigated. Grana-containing mesophyll chloroplasts (chlorophyll a to chlorophyll b ratio of about 3.0) possessed the full complement of the various electron transport components, comparable to chloroplasts from C3 plants. Agranal bundle sheath chloroplasts (Chl aChl b > 5.0) contained the full complement of photosystem (PS) I and of cytochrome (cyt) f but lacked a major portion of PS II and its associated Chl ab light-harvesting complex (LHC), and most of the cyt b559. The kinetic analysis of system I photoactivity revealed that the functional photosynthetic unit size of PS I was unchanged and identical in mesophyll and bundle sheath chloroplasts. The results suggest that PS I is contained in stroma-exposed thylakoids and that it does not receive excitation energy from the Chl ab LHC present in the grana. A stoichiometric parity between PS I and cyt f in mesophyll and bundle sheath chloroplasts indicates that biosynthetic and functional properties of cyt f and P700 are closely coordinated. Thus, it is likely that both cyt f and P700 are located in the membrane of the intergrana thylakoids only. The kinetic analysis of PS II photoactivity revealed the absence of PS IIαfrom the bundle sheath chloroplasts and helped identify the small complement of system II in bundle sheath chloroplasts as PS IIβ. The distribution of the main electron transport components in grana and stroma thylakoids is presented in a model of the higher plant chloroplast membrane system.  相似文献   

12.
The complete primary structure of a Streptomyces griseus (ATCC 13273) 7Fe ferredoxin, which can couple electron transfer between spinach ferredoxin reductase and S. griseus cytochrome P-450soy for NADPH-dependent substrate oxidation, has been determined by Edman degradation of the whole protein and peptides derived by Staphylococcus aureus V8 proteinase and trypsin digestion. The protein consists of 105 amino acids and has a calculated molecular weight, including seven irons and eight sulfurs, of 12291. The ferredoxin sequence is highly homologous (73%) to that of the 7Fe ferredoxin from Mycobacterium smegmatis. The N-terminal half of the sequence, which is the FeS clusters binding domain, has more than 50% homology with other 7Fe ferredoxins. In particular, the seven cysteines known from the crystal structure of Azotobacter vinelandii ferredoxin I to be involved in binding the two FeS clusters are conserved.  相似文献   

13.
Membrane fragments from the phytopathogenic bacteria Pseudomonas cichorii and Pseudomonas aptata have been examined. A branched respiratory chain is operative in P. cichorii whereas a linear electron transport system characterizes the related bacterium P. aptata. Both species contain several b type cytochromes resolved by redox titration analysis, but no a type components may be detected. In contrast, only P. cichorii is endowed with c type cytochromes and hence with cytochrome c oxidase activity. Among the b type cytochromes, two high-potential components, with Em7.0 at +250 mV and +380 mV, have been kinetically characterized and tentatively associated with cyanideresistant and cytochrome c oxidase activities, respectively. Cytochrome b-250 should correspond to the spectrally detectable cytochrome o whereas cytochrome b-380 is functionally similar to cytochrome b-410 described in Rhodopseudomonas capsulata. This conclusion seems to blur previous reported data on other obligate aerobes in which cytochrome o has been generally associated with cytochrome c oxidase and also suggests that a more accurate reconsideration of the actual physiological role of cyt. o in bacterial respiration is necessary. Furthermore the question arises whether cyt. b-410 like oxidases, i. e. high-potential b's similar to cyt. b-410 of R. capsulata, may be widely distributed among aerobes rather than restricted to facultative photosynthetic prokaryotes.  相似文献   

14.
1. The effects of varying the ambient oxidation/reduction potential on the redox changes of cytochromes c, cytochromes b and P605 induced by a laser flash in chromatophores from Rhodopseudomonas capsulata Ala Pho+ have been investigated.2. The appearance and attenuation of the changes with varying ambient redox potential show that, of the cytochromes present, cytochromes c with Em7 = 340 mV and 0 mV, and cytochrome b, Em7 = 60 mV were concerned with photosynthetic electron flow.3. The site of action of antimycin was shown to be between cytochrome b60 and a component, as yet unidentified, called Z.4. The appearance or attenuation of laser-induced changes of cytochromes c0 and b60 on redox titration was dependent on pH, but no effect of pH on the cytochrome c340 titration was observed.5. The dependence on ambient redox potential of the laser-induced bleaching at 605 nm enabled identification of the mid-point potentials of the primary electron donor (Em7 = 440 mV) and acceptor (Em7 = ?25 mV).6. The interrelationship of these electron carriers is discussed with respect to the pathway of cyclic electron flow.  相似文献   

15.
Saccharomyces cerevisiae flavocytochrome b 2 couples the oxidation of L-lactate to the reduction of cytochrome c. The second-order rate constant for cytochrome c reduction by flavocytochrome b 2 depends on the rate of complex formation and is sensitive to ionic strength. Mutations in the heme domain of flavocytochrome b 2 (Glu63→Lys, Asp72→Lys and the double mutation Glu63→Lys:Asp72→Lys) have significant effects on the reaction with cytochrome c, implicating these residues in complex formation. This kinetic information has been used to guide molecular modelling studies, which are consistent with there being no one single best-configuration. Rather, there is a set of possible complexes in which the docking-face of cytochrome c can approach flavocytochrome b 2 in a variety of orientations. Four cytochromes c can be accommodated on the flavocytochrome b 2 tetramer, with each cytochrome c forming interactions with only one flavocytochrome b 2 subunit. All the models involve residues 72 and 63 on flavocytochrome b 2 but in addition predict that Glu237 may also be important for complex formation. These acidic residues interact with the basic residues 13, 27 and 79 on cytochrome c. Through this triangle of interactions runs a possible σ-tunnelling pathway for electron transfer. This pathway starts with the imidazole ring of His66 (a ligand to the heme-iron of flavocytochrome b 2) and ends with the ring of Pro68, which is in van der Waals contact with the cytochrome c heme. In total, the edge-to-edge "through space" distance from the imidazole ring of His66 to the C3C pyrrole ring of cytochrome c is 13.1?Å.  相似文献   

16.
Chang-An Yu  Xiaowei Cen  He-Wen Ma  Ying Yin  Linda Yu  Lothar Esser  Di Xia 《BBA》2008,1777(7-8):1038-1043
Intensive biochemical, biophysical and structural studies of the cytochrome (cyt) bc1 complex in the past have led to the formulation of the “protonmotive Q-cycle” mechanism for electron and proton transfer in this vitally important complex. The key step of this mechanism is the separation of electrons during the oxidation of a substrate quinol at the QP site with both electrons transferred simultaneously to ISP and cyt bL when the extrinsic domain of ISP (ISP-ED) is located at the b-position. Pre-steady state fast kinetic analysis of bc1 demonstrates that the reduced ISP-ED moves to the c1-position to reduce cyt c1 only after the reduced cyt bL is oxidized by cyt bH. However, the question of how the conformational switch of ISP-ED is initiated remains unanswered. The results obtained from analysis of inhibitory efficacy and binding affinity of two types of QP site inhibitors, Pm and Pf, under various redox states of the bc1 complex, suggest that the electron transfer from heme bL to bH is the driving force for the releasing of the reduced ISP-ED from the b-position to c1-position to reduce cyt c1.  相似文献   

17.
Cytochromes c are soluble electron carriers of relatively low molecular weight, containing single heme moiety. In cyanobacteria cytochrome c6 participates in electron transfer from cytochrome b6f complex to photosystem I. Recent phylogenetic analysis revealed the existence of a few families of proteins homologous to the previously mentioned. Cytochrome c6A from Arabidopsis thaliana was identified as a protein responsible for disulfide bond formation in response to intracellular redox state changes and c550 is well known element of photosystem II. However, function of cytochromes marked as c6B, c6C and cM as well as the physiological process in which they take a part still remain unidentified. Here we present the first structural and biophysical analysis of cytochrome from the c6B family from mesophilic cyanobacteria Synechococcus sp. WH 8102. Purified protein was crystallized and its structure was refined at 1.4 Å resolution. Overall architecture of this polypeptide resembles typical I-class cytochromes c. The main features, that distinguish described protein from cytochrome c6, are slightly red-shifted α band of UV–Vis spectrum as well as relatively low midpoint potential (113.2 ± 2.2 mV). Although, physiological function of cytochrome c6B has yet to be determined its properties probably exclude the participation of this protein in electron trafficking between b6f complex and photosystem I.  相似文献   

18.
Electron transfer pathways in photosynthesis involve interactions between membrane-bound complexes such as reaction centres with an extrinsic partner. In this study, the biological specificity of electron transfer between the reaction centre-light-harvesting 1-PufX complex and its extrinsic electron donor, cytochrome c 2, formed the basis for mapping the location of surface-attached RC-LH1-PufX complexes using atomic force microscopy (AFM). This nano-mechanical mapping method used an AFM probe functionalised with cyt c 2 molecules to quantify the interaction forces involved, at the single-molecule level under native conditions. With surface-bound RC-His12-LH1-PufX complexes in the photo-oxidised state, the mean interaction force with cyt c 2 is approximately 480 pN with an interaction frequency of around 66 %. The latter value lowered 5.5-fold when chemically reduced RC-His12-LH1-PufX complexes are imaged in the dark to abolish electron transfer from cyt c 2 to the RC. The correspondence between topographic and adhesion images recorded over the same area of the sample shows that affinity-based AFM methods are a useful tool when topology alone is insufficient for spatially locating proteins at the surface of photosynthetic membranes.  相似文献   

19.
Stable and well coupled Photosystem (PS) I-enriched vesicles, mainly derived from the chloroplast stroma lamellae, have been obtained by mild digitonin treatment of spinach chloroplasts. Optimal conditions for chloroplast solubilization are established at a digitonin/chlorophyll ratio of 1 (ww) and a chlorophyll concentration of 0.2 mM, resulting in little loss of native components. In particular, plastocyanin is easily released at higher digitonin/chlorophyll ratios. On the basis of chlorophyll content, the vesicles show a 2-fold enrichment in ATPase, chlorophyll-protein Complex I, P-700, plastocyanin and ribulose-1,5-bisphosphate carboxylase as compared to chloroplasts, in line with the increased activities of cyclic photophosphorylation and PS I-associated electron transfer as shown previously (Peters, A.L.J., Dokter, P., Kooij, T. and Kraayenhof, R. (1981) in Photosynthesis I (Akoyunoglou, G., ed.), pp. 691–700, Balaban International Science Services, Philadelphia). The vesicles have a low content of the light-harvesting chlorophyll-protein complex and show no PS II-associated electron transfer. Characterization of cytochromes in PS I-enriched vesicles and chloroplasts at 25°C and 77 K is performed using an analytical method combining potentiometric analysis and spectrum deconvolution. In PS I-enriched vesicles three cytochromes are distinguished: c-554 (E0 = 335 mV), b-559LP (E0 = 32 mV) and b-563 (E0 = ? 123 mV); no b-559HP is present (LP, low-potential; HP, high-potential). Comparative data from PS I vesicles and chloroplasts are consistent with an even distribution of the cytochrome b-563- cytochrome c-554 redox complex in the lateral plane of exposed and appressed thylakoid membranes, an exclusive location of plastocyanin in the exposed membranes and a dominant location of plastoquinone in the appressed membranes. The results are discussed in view of the lateral heterogeneity of redox components in chloroplast membranes.  相似文献   

20.
Terry N 《Plant physiology》1980,65(1):114-120
The possibility of using Fe stress as an experimental tool in the study of limiting factors was explored. Results show that Fe stress decreased the chlorophyll (Chl) a, Chl b, carotene, and xanthophyll content of leaves of sugar beets (Beta vulgaris L.) and that the maximum rate of photosynthetic CO2 uptake (Pmax) per unit area was linearly related to Chl (a + b) per unit area. Measurements of noncyclic ATP formation by isolated chloroplasts at light saturation indicate that photosynthetic electron transport capacity decreased concomitantly with pigment content under Fe stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号