首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integrated functioning of two photosystems (I and II) whether in cyanobacteria or in chloroplasts is the outstanding sign of a common ancestral origin. Many variations on the basic theme are currently evident in oxygenic photosynthetic organisms whether they are prokaryotes, unicellular, or multicellular. By conservative estimates, oxygenic photosynthesis has been around for at least ca. 2.2–2.7 billions years, consistent with cyanobacteria-type microfossils, biomarkers, and an atmospheric rise in oxygen to less than 1.0% of the present concentration. The presumptions of chloroplast formation by the cyanobacterial uptake into a eukaryote prior to 1.6 BYa ago are confounded by assumptions of host type(s) and potential tolerance of oxygen toxicity. The attempted dating and interrelationships of particular chloroplasts in various plant or animal lineages has relied heavily on phylogenomic analysis and evaluations that have been difficult to confirm separately. Many variations occur in algal groups, involving the type and number of accessory pigments, and the number(s) of membranes (2–4) enclosing a chloroplast, which can both help and complicate inferences made about early or late origins of chloroplasts. Integration of updated phylogenomics with physiological and cytological observations remains a special challenge, but could lead to more accurate assumptions of initial and extant endosymbiotic event(s) leading toward stable chloroplast associations.  相似文献   

2.
Thylakoids are photosynthetically active membranes found in Cyanobacteria and chloroplasts. It is likely that they originated in photosynthetic bacteria, probably in close connection to the occurrence of photosystem II and oxygenic photosynthesis. In higher plants, chloroplasts develop from undifferentiated proplastids. These contain very few internal membranes and the whole thylakoid membrane system is built when chloroplast differentiation takes place. During cell and organelle division a constant synthesis of new thylakoid membrane material is required. Also, rapid adaptation to changes in light conditions and long term adaptation to a number of environmental factors are accomplished by changes in the lipid and protein content of the thylakoids. Thus regulation of synthesis and assembly of all these elements is required to ensure optimal function of these membranes.  相似文献   

3.
4.
The making of a chloroplast   总被引:3,自引:0,他引:3       下载免费PDF全文
Since its endosymbiotic beginning, the chloroplast has become fully integrated into the biology of the host eukaryotic cell. The exchange of genetic information from the chloroplast to the nucleus has resulted in considerable co‐ordination in the activities of these two organelles during all stages of plant development. Here, we give an overview of the mechanisms of light perception and the subsequent regulation of nuclear gene expression in the model plant Arabidopsis thaliana, and we cover the main events that take place when proplastids differentiate into chloroplasts. We also consider recent findings regarding signalling networks between the chloroplast and the nucleus during seedling development, and how these signals are modulated by light. In addition, we discuss the mechanisms through which chloroplasts develop in different cell types, namely cotyledons and the dimorphic chloroplasts of the C4 plant maize. Finally, we discuss recent data that suggest the specific regulation of the light‐dependent phases of photosynthesis, providing a means to optimize photosynthesis to varying light regimes.  相似文献   

5.
Maple J  Vojta L  Soll J  Møller SG 《EMBO reports》2007,8(3):293-299
In plants, chloroplast division is an integral part of development, and these vital organelles arise by binary fission from pre-existing cytosolic plastids. Chloroplasts arose by endosymbiosis and although they have retained elements of the bacterial cell division machinery to execute plastid division, they have evolved to require two functionally distinct forms of the FtsZ protein and have lost elements of the Min machinery required for Z-ring placement. Here, we analyse the plastid division component accumulation and replication of chloroplasts 3 (ARC3) and show that ARC3 forms part of the stromal plastid division machinery. ARC3 interacts specifically with AtFtsZ1, acting as a Z-ring accessory protein and defining a unique function for this family of FtsZ proteins. ARC3 is involved in division site placement, suggesting that it might functionally replace MinC, representing an important advance in our understanding of the mechanism of chloroplast division and the evolution of the chloroplast division machinery.  相似文献   

6.
Plastid development in albescent maize   总被引:2,自引:1,他引:1       下载免费PDF全文
Troxler RF  Lester R  Craft FO  Albright JT 《Plant physiology》1969,44(11):1609-1611,1613,1615-1618
Plastid development in albescent (al/al) and wild-type (+/al) strains of Zea mays has been studied in the electron microscope. Etiolated seedlings of the mutant are severely deficient in colored carotenoid pigments and accumulate carotenoid precursors tentatively identified as phytoene and phytofluene. The fine structure of proplastids in etiolated wild-type and mutant leaves is similar with 1 notable exception. Osmiophilic bodies found in the wild-type were lacking in all sections of albescent proplastids examined suggesting that these structures may be storage centers for carotenoid pigments. Plastid pigments are destroyed, chlorophyll synthesizing potential is lost, and the ultrastructure of plastids is irreversibly altered when mutant seedlings are placed directly in high intensity light. However, synthesis of plastid pigments and development of the photosynthetic apparatus as seen in the electron microscope is normal, and indistinguishable from that in the wild-type, in seedlings of the albescent mutant preilluminated with low intensity light prior to high intensity illumination. During treatment in low intensity light carotenogenesis is initiated in the mutant and proceeds normally thereafter.  相似文献   

7.
Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause. This article was reviewed by Dan Graur, W. Ford Doolittle, Eugene V. Koonin and Christophe Malaterre.  相似文献   

8.
Since the discovery of plastid DNA the continuity of plastids has well been established. It is known that in plant cultures a form of plastid can differentiate into others. However, only a little has been made in studing chloroplast dedifferentiation in vitro. In the work present here, we reported on ultrastructural changes of chloroplasts dedifferentiation and the proplastid origin in the mesophyll cells of cultured tobacco leaf explant. Fully expanded leaves of haploid tobacco (cv. Ge Xin No. 1) were cut into pieces of 5–6 mm width. These were inoculated on MS medium supplemented with 1 mg/L 2,4-D and 1 mg/l kinetin. The cultures were maintained at (30±2) ℃ and illuminatied by a bank of fluorescent lamps. For electronmicroseopic investigation, after 0, 1, 2, 3, 6 days of culture small leaf fragments were cut off along the cut edges of the explants. The samples were fixed and processed in the manner as described earlier. The sections were examined with a Hitachi HU-11A or a JEM-100CX electronmicroscope. Electronmicroscopic observation shows that the uncultured mesophyll cells are highly vacuolete, with a thin peripheral layer of cytoplasm in which a nucleus and some chloroplasts and other organelles are found in it. But these cells do not contain proplastids (Fig. l). In the explants cultured for 1 day there are no obviously changes in mesophyll cells, except a few cytoplasmic strands extend from periphery to central vacuole. At 2 days of culture quite obvious changes can be detected. A increase in the amount of cytoplasm becomes apparent and transvacuolar cytoplasmic strands grow up. Following cytoplasmic growth, the nucleus and chloroplasts move away from the peripheral cytoplasm and enter the central vacuolate zone (Fig. 2). At this stage some of mesophyll cells have completed the first cell division. After 3 days of culture numerous mesophyll cells have undergone several divisions and formed multicellular masses. In those subdivided cells a more important change of the chloroplasts is the occurrence of protrusions which we call proplastid buds. This phenomenon has also been named as chloroplast budding. According to observations on a large amount of sections chloroplast budding is a common phenomenon in the dedifferentiating mesophyll cells of tobacco leaf explants. Fig ure 3 exhibits a typical profile of a chloroplast with a proplastid bud. The proplastid buds observed are generally long-oval in shape and 1.0–2.5 μm long and about 0.5–0.7 μm thick. These dimensions agree with those of proplastids in meristematie cells. Inside of proplastids ribosomes and electron opaque areas containing DNA fibrils can be seen (Fig. 3). Near the proplastid buds proplastids can often be found (Fig.5). According to above observations we can conclude that the proplastids in dedifferentiating mesophyll cells originate from the proplastid buds by chloroplast budding. The newly formed proplastids usually surround the nucleus and sometimes undergo equal division to increase their number (Figs.5, 6). There are no inner membranes in the newly formed proplastids except vesicles connected with inner membrane of the envelope (Fig.7). While the proplastids are continuously produced, the chloroplasts themselves are filled with starch and gradually turned to large amyloplasts (Fig.5). On the other hand, a few of chloroplasts can divide into equal parts following the chloroplast budding (Fig.4). Israel and Steward (1967) suggested that when cultured carrot cells developed into plantlets the chloroplasts turned into leucoplastids, chromoplastids or proplastids. However, they did not describe how chloroplast became a proplastid. Several investigators reported that the chloroplasts in the dedifferentiating cells gradually lost their grana and intergranal lamellae and then became eueoplasts or proplastids. But according to our observation in tobacco explants, the initiation of proplastids is due to unequal division of chloroplasts, i.e. “budding fission” as described by Malzan and Miihlethaler in Splachnum ampullaceum. Since the proplastid is an organelle characteristic of meristematie cells, the ontogeny of proplastids and its control mechanism should be very important in studing cell dedifferentiation.  相似文献   

9.
甜菊组织培养物中叶绿体的超微结构与脱分代   总被引:2,自引:1,他引:1  
含有叶绿体的甜菊(Steviarebaudiana)愈伤组织细胞转移至新鲜培养基后,导致光合片层的逐渐减少或消失,最后叶绿体脱分化形成原质体样的结构。超微结构观察表明,光合片层的减少或消失与降解及叶绿体分裂特别是不均等缢缩分裂而致基质组分和类囊体膜稀释有关。这一过程并不完全同步,一些质体含有少量正常的片展而另一些质体含有退化的片层甚至片展结构完全消失。细胞的一个明显特点是细胞器大多聚集在细胞核附近,细胞质增加并向细胞中央伸出细胞质丝。同时可观察到原质体。培养7d后,许多细胞呈分生状态,细胞质富含细胞器,充满了细胞的大部分空间。此时细胞中的质体大多呈原质体状态。在细胞生长的稳定期,质体内膜组织成基质基粒片层,同时质体核糖体增加。文中讨论了高度液泡化细胞脱分化与细胞中叶绿体脱分化的关系。  相似文献   

10.
The accumulation of steviol glycosides (SGs) in cells of Stevia rebaudiana Bertoni both in vivo and in vitro was related to the extent of the development of the membrane system of chloroplasts and the content of photosynthetic pigments. Chloroplasts of the in vitro plants, unlike those of the intact plants, had poorly developed membrane system. The callus cells grown in the light contained proplastids of almost round shape and their thylakoid system was represented by short thylakoids sometimes forming a little number of grana consisting of 2–3 thylakoids. In cells of the etiolated in vitro regenerants and the callus culture grown in the dark, only proplastids practically lacking the membrane system were observed. All the chloroplasts having developed thylakoids and forming at least a little number of grana were equipped with photochemically active reaction centers of photosystems 1 and 2. Leaves of in vivo plants accumulated greater amount of the pigments than leaves of the in vitro plants. In both the callus culture grown in the light and the etiolated in vitro regenerants, the content of the pigments was one order of magnitude lower than that in leaves of the intact plants. The callus tissue grown in the dark contained merely trace amounts of the pigments. Leaves of the intact and the in vitro plants did not exhibit any significant differences in photosynthetic O2 evolution rate. However, photosynthetic O2 evolution rate in the callus cells was much lower than that in the differentiated plant cells. The in vitro cell cultures containing merely proplastids did not practically produce SGs. However, after transferring these cultures in the light, both the formation of chloroplasts and the production of SGs in them were detected.  相似文献   

11.
Cells from a strain of carrot which was prone to form deep-seated chlorophyll in its storage organ have been cultured in a manner that promoted them to organize into plantlets. Whereas the free cells contained only chloroplasts, the plantlets derived from these cells formed all types of plastids (“proplastids,” leucoplasts, chromoplasts, and chloroplasts) in accordance with the location of the cells in question in the developing plant body. The developmental history of the plastids has been traced with the electron microscope. The events of chloroplast development, previously described by Israel and Steward (1967) for cultured carrot explants, have been verified. The bearing of this new evidence upon the control of plastid development and biochemistry is discussed and related to other recent studies. The conclusion is that all totipotent carrot cells have plastids as essential organelles but that their final form and content are sharply defined by the factors inherent in the location of the cells in the plant body as it emerges.  相似文献   

12.
Chloroplasts are organelles essential for the photoautotrophic growth of plants. Their biogenesis from undifferentiated proplastids is triggered by light and requires the import of hundreds of different precursor proteins from the cytoplasm. Cleavable N-terminal transit sequences target the precursors to the chloroplast where translocon complexes at the outer (Toc complex) and inner (Tic complex) envelope membranes enable their import. In pea, the Toc complex is trimeric consisting of two surface-exposed GTP-binding proteins (Toc159 and Toc34) involved in precursor recognition and Toc75 forming an aequeous protein-conducting channel. Completion of the Arabidopsis genome has revealed an unexpected complexity of predicted components of the Toc complex in this plant model organism: four genes encode homologs of Toc159, two encode homologs of Toc34, but only one encodes a likely functional homolog of Toc75. The availability of the genomic sequence data and powerful molecular genetic techniques in Arabidopsis set the stage to unravel the mechanisms of chloroplast protein import in unprecedented depth.  相似文献   

13.
The plant organelles, chloroplast and nucleus, change their position in response to light. In Arabidopsis thaliana leaf cells, chloroplasts and nuclei are distributed along the inner periclinal wall in darkness. In strong blue light, they become positioned along the anticlinal wall, while in weak blue light, only chloroplasts are accumulated along the inner and outer periclinal walls. Blue-light dependent positioning of both organelles is mediated by the blue-light receptor phototropin and controlled by the actin cytoskeleton. Interestingly, however, it seems that chloroplast movement requires short, fine actin filaments organized at the chloroplast edge, whereas nuclear movement does cytoplasmic, thick actin bundles intimately associated with the nucleus. Although there are many similarities between photo-relocation movements of chloroplasts and nuclei, plant cells appear to have evolved distinct mechanisms to regulate actin organization required for driving the movements of these organelles.Key words: actin, Arabidopsis, blue light, chloroplast positioning, phototropin, nuclear positioning  相似文献   

14.
During the course of terrestrial evolution, some organisms developed the capability of capturing and utilizing solar radiation. Colored compounds were undoubtedly incorporated within living forms from the earliest times, but during the transition from heterotrophic to a photoautotrophic metabolism only those pigments were selected that were components of the evolving photosynthetic apparatus and were able to catalyze reactions involving storage of light energy in chemical bonds. In this communication, some properties of tetrapyrroles with a closed porphyrin ring containing a metal ion in the center are discussed. These compounds are present in all principal contemporary photosynthetic pigments, and their synthesis has been demonstrated from simpler compounds under prebiotic conditions. It is probable that during intermediate stages in the evolution of photosynthesis, pigments with oxidizing potentials lower than that of chlorophyll were utilized to store light energy although they were not capable of removing electrons from water. The evolution and function of multiple forms of a given photosynthetic pigmentin vivo are discussed. ‘Accessory’ pigments may be regarded as rudiments of the evolutionary development of the photosynthetic apparatus.  相似文献   

15.
During the course of terrestrial evolution, some organisms developed the capability of capturing and utilizing solar radiation. Colored compounds were undoubtedly incorporated within living forms from the earliest times, but during the transition from heterotrophic to a photoautotrophic metabolism only those pigments were selected that were components of the evolving photosynthetic apparatus and were able to catalyze reactions involving storage of light energy in chemical bonds. In this communication, some properties of tetrapyrroles with a closed porphyrin ring containing a metal ion in the center are discussed. These compounds are present in all principal contemporary photosynthetic pigments, and their synthesis has been demonstrated from simpler compounds under prebiotic conditions. It is probable that during intermediate stages in the evolution of photosynthesis, pigments with oxidizing potentials lower than that of chlorophyll were utilized to store light energy although they were not capable of removing electrons from water. The evolution and function of multiple forms of a given photosynthetic pigment in vivo are discussed. 'Accessory' pigments may be regarded as rudiments of the evolutionary development of the photosynthetic apparatus.  相似文献   

16.
A comparison is made between pigment accumulation in pigment-deficient genotypes of soybean ( Glycine max ) at any one sampling time (genotype control) and pigment accumulation for any one genotype as a function of development (development control). Plots of accessory chloroplast pigments against chlorophyl a show various linear and non-linear relationships that are similar whether generated by genetic differences or by the development process. These relationships are related to the formation and development of pigment-protein complexes especially the relationship of carotenoids to these complexes.  相似文献   

17.
T Cavalier-Smith 《Bio Systems》1992,28(1-3):91-106; discussion 107-8
Mitochondria and chloroplasts both originated from bacterial endosymbionts. The available evidence strongly supports a single origin for mitochondria and only somewhat less strongly a single, slightly later, origin for chloroplasts. The arguments and evidence that have sometimes been presented in favor of the alternative theories of the multiple or polyphyletic origins of these two organelles are evaluated and the kinds of data that are needed to test more rigorously the monophyletic theory are discussed. Although chloroplasts probably originated only once, eukaryotic algae are polyphyletic because chloroplasts have been secondarily transferred to new lineages by the permanent incorporation of a photosynthetic eukaryotic algal cell into a phagotrophic protozoan host. How often this has happened is much less clear. It is particularly unclear whether or not the chloroplasts of typical dinoflagellates and euglenoids originated in this way from a eukaryotic symbiont: their direct divergence from the ancestral chloroplast cannot be ruled out and indeed has several arguments in its favor. The evidence for and against the view that the chloroplast of the kingdom Chromista was acquired in a single endosymbiotic event is discussed. The possibility that even the chloroplast of Chlorarachnion might have been acquired during the same symbiosis that created the cryptomonad cell, if the symbiont was a primitive alga that had chlorophyll a, b and c as well as phycobilins, is also considered. An alga with such a combination of pigments might have been ancestral to all eukaryote algae.  相似文献   

18.
Controversy exists over the origins of photosynthetic organelles in that contradictory trees arise from different sequence, biochemical and ultrastructural data sets. We propose a testable hypothesis which explains this inconsistency as a result of the differing GC contents of sequences. We report that current methods of tree reconstruction tend to group sequences with similar GC contents irrespective of whether the similar GC content is due to common ancestry or is independently acquired. Nuclear encoded sequences (high GC) give different trees from chloroplast encoded sequences (low GC). We find that current data is consistent with the hypothesis of multiple origins for photosynthetic organelles and single origins for each type of light harvesting complex.  相似文献   

19.
The light reactions of oxygenic photosynthesis almost invariably take place in the thylakoid membranes, a highly specialized internal membrane system located in the stroma of chloroplasts and the cytoplasm of cyanobacteria. The only known exception is the primordial cyanobacterium Gloeobacter violaceus, which evolved before the appearance of thylakoids and harbors the photosynthetic complexes in the plasma membrane. Thus, studies on G. violaceus not only shed light on the evolutionary origin and the functional advantages of thylakoid membranes but also might include insights regarding thylakoid formation during chloroplast differentiation. Based on biochemical isolation and direct in vivo characterization, we report here structural and functional domains in the cytoplasmic membrane of a cyanobacterium. Although G. violaceus has no internal membranes, it does have localized domains with apparently specialized functions in its plasma membrane, in which both the photosynthetic and the respiratory complexes are concentrated. These bioenergetic domains can be visualized by confocal microscopy, and they can be isolated by a simple procedure. Proteomic analysis of these domains indicates their physiological function and suggests a protein sorting mechanism via interaction with membrane-intrinsic terpenoids. Based on these results, we propose specialized domains in the plasma membrane as evolutionary precursors of thylakoids.  相似文献   

20.
Chloroplasts are the primary energy suppliers for plants, and much of the total leaf nitrogen is distributed to these organelles. During growth and reproduction, chloroplasts in turn represent a major source of nitrogen to be recovered from senescing leaves and used in newly-forming and storage organs. Chloroplast proteins also can be an alternative substrate for respiration under suboptimal conditions. Autophagy is a process of bulk degradation and nutrient sequestration that is conserved in all eukaryotes. Autophagy can selectively target chloroplasts as whole organelles and or as Rubisco-containing bodies that are enclosed by the envelope and specifically contain the stromal portion of the chloroplast. Although information is still limited, recent work indicates that chloroplast recycling via autophagy plays important roles not only in developmental processes but also in organelle quality control and adaptation to changing environments. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号