首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The application of expressed sequence tag (EST) technology has proven to be an effective tool for gene discovery and the generation of gene expression profiles. The generation of an EST resource for the cardiovascular system has revealed significant insights into the changes in gene expression that guide heart development and disease. Furthermore, an important genetic resource has been developed for cardiovascular biology that is valuable for data mining and disease gene discovery.  相似文献   

5.

Background  

Intoxication from the psychostimulant methamphetamine (METH) because of cardiovascular collapse is a common cause of death within the abuse population. For obvious reasons, the heart has been taken as the primary target for this METH-induced toxicity. The demonstration that failure of brain stem cardiovascular regulation, rather than the heart, holds the key to cardiovascular collapse induced by the pesticide mevinphos implicates another potential underlying mechanism. The present study evaluated the hypothesis that METH effects acute cardiovascular depression by dampening the functional integrity of baroreflex via an action on brain stem nuclei that are associated with this homeostatic mechanism.  相似文献   

6.
7.
8.
Autophagy is a major cytoprotective pathway that eukaryotic cells use to degrade and recycle cytoplasmic contents. Recent evidence indicates that autophagy under baseline conditions represents an important homeostatic mechanism for the maintenance of normal cardiovascular function and morphology. By contrast, excessive induction of the autophagic process by environmental or intracellular stress has an important role in several types of cardiomyopathy by functioning as a death pathway. As a consequence, enhanced autophagy represents one of the mechanisms underlying the cardiomyocyte dropout responsible for the worsening of heart failure. Successful therapeutic approaches that regulate autophagy have been reported recently, suggesting that the autophagic machinery can be manipulated to treat heart failure or to prevent rupture of atherosclerotic plaques and sudden death.  相似文献   

9.
10.
In this paper, results from four countermeasure procedures that have been tested in groundbased studies and/or during spaceflight will be reviewed and discussed in an effort to examine their effectiveness and physiological basis. The integration of these results provide practical implications for the present use and future development of countermeasures against postflight orthostatic instability.  相似文献   

11.
12.
Endocannabinoids as cardiovascular modulators   总被引:8,自引:0,他引:8  
Cannabinoids, the bioactive constituents of the marijuana plant and their synthetic and endogenous analogs cause not only neurobehavioral, but also cardiovascular effects. The most important component of these effects is a profound decrease in blood pressure and heart rate. Although multiple lines of evidence indicate that the hypotensive and bradycardic effects of anandamide and other cannabinoids are mediated by peripherally located CB1 cannabinoid receptors, anandamide can also elicit vasodilation in certain vascular beds, which is independent of CB1 or CB2 receptors. Possible cellular mechanisms underlying these effects and the cellular sources of vasoactive anandamide are discussed.  相似文献   

13.
14.
15.
16.
17.
Swine in cardiovascular research   总被引:6,自引:0,他引:6  
Swine are being chosen with increasing frequency as subjects for cardiovascular research. Similarities to humans in their cardiovascular physiology, size, anatomy, and the perfusion distribution of blood flows make them better subjects than most species. In addition, swine can be less expensive than dogs and primates and they generally are not associated with the same high concern as other species about humane issues.  相似文献   

18.
The biological aging process is commonly associated with increased risk of cardiovascular diseases. Several theories have been put forward for aging-associated deterioration in ventricular function, including attenuation of growth hormone (insulin-like growth factors and insulin) signaling, loss of DNA replication and repair, histone acetylation and accumulation of reactive oxygen species. Recent evidence has depicted a rather unique role of autophagy as another important pathway in the regulation of longevity and senescence. Autophagy is a predominant cytoprotective (rather than self-destructive) process. It carries a prominent role in determination of lifespan. Reduced autophagy has been associated with aging, leading to accumulation of dysfunctional or damaged proteins and organelles. To the contrary, measures such as caloric restriction and exercise may promote autophagy to delay aging and associated comorbidities. Stimulation of autophagy using rapamycin may represent a novel strategy to prolong lifespan and combat aging-associated diseases. Rapamycin regulates autophagy through inhibition of the nutrient-sensing molecule mammalian target of rapamycin (mTOR). Inhibition of mTOR through rapamycin and caloric restriction promotes longevity. The purpose of this review is to recapitulate some of the recent advances in an effort to better understand the interplay between rapamycin-induced autophagy and decelerating cardiovascular aging.  相似文献   

19.
For humans, ecological and epidemiological results are reported that show a relationship between the serum selenium concentration and cardiovascular disease in populations where low serum selenium concentrations are found, e.g., in Eastern Finland. From clinical studies done in Germany (FRG and GDR), Finland, and Sweden, subnormal serum selenium and partially whole blood selenium concentrations are reported in patients with acute myocardial infarction. For patients with coronary arteriosclerosis, subnormal serum selenium concentrations are reported from the USA and Germany and subnormal whole blood selenium concentrations from Germany. Subnormal serum and subnormal whole blood selenium concentrations of patients with cardiomyopathy are reported from non Keshan disease affected areas in Germany, France, and China. In selenium deficiency, an accumulation of lipid peroxides in the heart may occur, especially under ischemic conditions and if ischemic tissue is reperfused. Lipidperoxides in the heart may damage the cell membrane and may lead to an impaired calcium transport with an uncontrolled calcium accumulation in the cell. This may result in an activation of phospholipids, and, in consequence, to an enhanced formation of arachidonic acid. An increased concentration of lipid peroxides owing to selenium deficiency may shift the prostaglandin synthesis from prostacyclin to thromboxan, causing enhanced blood pressure and platelet aggregability. From animal experiments, it is known that selenium protects against cardiotoxic elements, cardiotoxic xenobiotics, and viral infections that affect the heart. Selenium deficiency may also be a secondary factor in the causation of hypertension and myocardial ischemia.  相似文献   

20.
Urotensin-II and cardiovascular remodeling   总被引:2,自引:0,他引:2  
Urotensin-II (U-II), a cyclic undecapeptide, and its receptor, UT, have been linked to vascular and cardiac remodeling. In patients with coronary artery disease (CAD), it has been shown that U-II plasma levels are significantly greater than in normal patients and the severity of the disease is increased proportionally to the U-II plasma levels. We showed that U-II protein and mRNA levels were significantly elevated in the arteries of patients with coronary atherosclerosis in comparison to healthy arteries. We observed U-II expression in endothelial cells, foam cells, and myointimal and medial vSMCs of atherosclerotic human coronary arteries. Recent studies have demonstrated that U-II acts in synergy with mildly oxidized LDL inducing vascular smooth muscle cell (vSMC) proliferation. Additionally, U-II has been shown to induce cardiac fibrosis and cardiomyocyte hypertrophy leading to cardiac remodeling. When using a selective U-II antagonist, SB-611812, we demonstrated a decrease in cardiac dysfunction including a reduction in cardiomyocyte hypertrophy and cardiac fibrosis. These findings suggest that U-II is undoubtedly a potential therapeutic target in treating cardiovascular remodeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号