首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Engineering of staphylococcal surfaces for biotechnological applications   总被引:3,自引:0,他引:3  
Novel surface proteins can be introduced onto bacterial cell surfaces by recombinant means. Here, we describe various applications of two such display systems for the food-grade bacteria Staphylococcus carnosus and Staphylococcus xylosus, respectively. The achievements in the use of such staphylococci as live bacterial vaccine delivery vehicles will be described. Co-display of proteins and peptides with adhesive properties to enable targeting of the bacteria, have significantly improved the vaccine delivery potential. Recently, protective immunity to respiratory syncytial virus (RSV) could be evoked in mice by intranasal immunization using such 'second generation' vaccine delivery systems. Furthermore, antibody fragments and other 'affinity proteins' with capacity to specifically bind a certain protein, e.g. Staphylococcus aureus protein A-based affibodies, have been surface-displayed on staphylococci as initial efforts to create whole-cell diagnostic devices. Surface display of metal-binding peptides, or protein domains into which metal binding properties has been engineered by combinatorial protein engineering, have been exploited to create staphylococcal bioadsorbents for potential environmental or biosensor applications. The use of these staphylococcal surface display systems as alternatives for display of large protein libraries and subsequent affinity selection of relevant binding proteins by fluorescence-activated cell sorting (FACS) will be discussed.  相似文献   

2.
The use of live bacteria to induce an immune response to itself or to a carried vaccine component is an attractive vaccine strategy. Advantages of live bacterial vaccines include their mimicry of a natural infection, intrinsic adjuvant properties and their possibility to be administered orally. Derivatives of pathogenic and non-pathogenic food related bacteria are currently being evaluated as live vaccines. However, pathogenic bacteria demands for attenuation to weaken its virulence. The use of bacteria as vaccine delivery vehicles implies construction of recombinant strains that contain the gene cassette encoding the antigen. With the increased knowledge of mucosal immunity and the availability of genetic tools for heterologous gene expression the concept of live vaccine vehicles gains renewed interest. However, administration of live bacterial vaccines poses some risks. In addition, vaccination using recombinant bacteria results in the release of live recombinant organisms into nature. This places these vaccines in the debate on application of genetically modified organisms. In this review we give an overview of live bacterial vaccines on the market and describe the development of new live vaccines with a focus on attenuated bacteria and food-related lactic acid bacteria. Furthermore, we outline the safety concerns and identify the hazards associated with live bacterial vaccines and try to give some suggestions of what to consider during their development.  相似文献   

3.
细菌细胞表面展示技术是一项新的蛋白质应用技术,其体系由运载蛋白、靶蛋白和宿主菌三者构成,一般可将其分为革兰阴性菌展示体系和革兰阳性菌展示体系两大类。目前已证实多种具有锚定活性的运载蛋白,并用于不同靶蛋白的细胞表面展示体系。该技术现已被应用于活体重组疫苗的开发、蛋白质文库构建与筛选、生物传感器、全细胞生物催化剂、全细胞生物吸附与降解等多个研发领域。  相似文献   

4.
A novel display system is described that allows highly efficient immobilization of heterologous proteins on bacterial surfaces in applications for which the use of genetically modified bacteria is less desirable. This system is based on nonliving and non-genetically modified gram-positive bacterial cells, designated gram-positive enhancer matrix (GEM) particles, which are used as substrates to bind externally added heterologous proteins by means of a high-affinity binding domain. This binding domain, the protein anchor (PA), was derived from the Lactococcus lactis peptidoglycan hydrolase AcmA. GEM particles were typically prepared from the innocuous bacterium L. lactis, and various parameters for the optimal preparation of GEM particles and binding of PA fusion proteins were determined. The versatility and flexibility of the display and delivery technology were demonstrated by investigating enzyme immobilization and nasal vaccine applications.  相似文献   

5.
Biotechnological applications of phage and cell display   总被引:20,自引:0,他引:20  
In recent years, the use of surface-display vectors for displaying polypeptides on the surface of bacteriophage and bacteria, combined with in vitro selection technologies, has transformed the way in which we generate and manipulate ligands, such as enzymes, antibodies and peptides. Phage display is based on expressing recombinant proteins or peptides fused to a phage coat protein. Bacterial display is based on expressing recombinant proteins fused to sorting signals that direct their incorporation on the cell surface. In both systems, the genetic information encoding for the displayed molecule is physically linked to its product via the displaying particle. Using these two complementary technologies, we are now able to design repertoires of ligands from scratch and use the power of affinity selection to select those ligands having the desired (biological) properties from a large excess of irrelevant ones. With phage display, tailor-made proteins (fused peptides, antibodies, enzymes, DNA-binding proteins) may be synthesized and selected to acquire the desired catalytic properties or affinity of binding and specificity for in vitro and in vivo diagnosis, for immunotherapy of human disease or for biocatalysis. Bacterial surface display has found a range of applications in the expression of various antigenic determinants, heterologous enzymes, single-chain antibodies, and combinatorial peptide libraries. This review explains the basis of phage and bacterial surface display and discusses the contributions made by these two leading technologies to biotechnological applications. This review focuses mainly on three areas where phage and cell display have had the greatest impact, namely, antibody engineering, enzyme technology and vaccine development.  相似文献   

6.
A novel display system is described that allows highly efficient immobilization of heterologous proteins on bacterial surfaces in applications for which the use of genetically modified bacteria is less desirable. This system is based on nonliving and non-genetically modified gram-positive bacterial cells, designated gram-positive enhancer matrix (GEM) particles, which are used as substrates to bind externally added heterologous proteins by means of a high-affinity binding domain. This binding domain, the protein anchor (PA), was derived from the Lactococcus lactis peptidoglycan hydrolase AcmA. GEM particles were typically prepared from the innocuous bacterium L. lactis, and various parameters for the optimal preparation of GEM particles and binding of PA fusion proteins were determined. The versatility and flexibility of the display and delivery technology were demonstrated by investigating enzyme immobilization and nasal vaccine applications.  相似文献   

7.
Two different host-vector expression systems, designed for cell surface display of heterologous receptors on Staphylococcus xylosus and Staphylococcus carnosus, respectively, were compared for the surface display of four variants of a 101 amino acid region derived from the G glycoprotein of human respiratory syncytial virus (RSV). Surface localization of the different chimeric receptors was evaluated by a colorimetric assay and by fluorescence-activated cell sorting. It was concluded that the S. carnosus system was better both in the ability to translocate inefficiently secreted peptides and in the number of exposed hybrid receptors. The potential use of the described staphylococci as live bacterial vaccine vehicles or alternatives to filamentous phages for surface display of protein libraries is discussed.  相似文献   

8.
The Bacterial Ghost platform system: production and applications   总被引:1,自引:0,他引:1  
The Bacterial Ghost (BG) platform technology is an innovative system for vaccine, drug or active substance delivery and for technical applications in white biotechnology. BGs are cell envelopes derived from Gram-negative bacteria. BGs are devoid of all cytoplasmic content but have a preserved cellular morphology including all cell surface structures. Using BGs as delivery vehicles for subunit or DNA-vaccines the particle structure and surface properties of BGs are targeting the carrier itself to primary antigen-presenting cells. Furthermore, BGs exhibit intrinsic adjuvant properties and trigger an enhanced humoral and cellular immune response to the target antigen. Multiple antigens of the native BG envelope and recombinant protein or DNA antigens can be combined in a single type of BG. Antigens can be presented on the inner or outer membrane of the BG as well as in the periplasm that is sealed during BG formation. Drugs or supplements can also be loaded to the internal lumen or periplasmic space of the carrier. BGs are produced by batch fermentation with subsequent product recovery and purification via tangential flow filtration. For safety reasons all residual bacterial DNA is inactivated during the BG production process by the use of staphylococcal nuclease A and/or the treatment with β-propiolactone. After purification BGs can be stored long-term at ambient room temperature as lyophilized product. The production cycle from the inoculation of the pre-culture to the purified BG concentrate ready for lyophilization does not take longer than a day and thus meets modern criteria of rapid vaccine production rather than keeping large stocks of vaccines. The broad spectrum of possible applications in combination with the comparably low production costs make the BG platform technology a safe and sophisticated product for the targeted delivery of vaccines and active agents as well as carrier of immobilized enzymes for applications in white biotechnology.  相似文献   

9.
Bacterial systems for the delivery of eukaryotic antigen expression vectors   总被引:26,自引:0,他引:26  
Attenuated bacterial strains allow the administration of recombinant vaccines via the mucosal surfaces. Whereas attenuated bacteria are generally engineered to express heterologous antigens, a novel approach employs intracellular bacteria for the delivery of eukaryotic antigen expression vectors (so-called DNA vaccines). This strategy allows a direct delivery of DNA to professional antigen-presenting cells (APC), such as macrophages and dendritic cells (DC), through bacterial infection. The bacteria used for DNA vaccine delivery either enter the host cell cytosol after phagocytosis by the APC, for example, Shigella and Listeria, or they remain in the phagosomal compartment, such as Salmonella. Both intracellular localizations of the bacterial carriers seem to be suitable for successful delivery of DNA vaccine vectors.  相似文献   

10.
过去的20年中,在细菌表面展示外源多肽的表达系统的研究取得了重要进展。而其中相当一部分是以细菌菌毛作为表达载体用于表达外源多肽或蛋白。本文将详述一种特殊的利用基因置换构建的沙门菌菌毛外源多肽展示系统,同时介绍一些其他的菌毛展示系统并探讨他们的优劣性。  相似文献   

11.
枯草芽孢杆菌芽孢表面展示重组抗原疫苗研究进展   总被引:4,自引:0,他引:4  
枯草芽孢杆菌芽孢所具有的独特的理化特性及生理特征,使之成为新型的蛋白或酶类药物载体而倍受关注。简介了枯草芽孢杆菌芽孢结构特征,以及诱导机体产生的免疫反应,重点阐述了利用芽孢表面展示技术研制重组外源抗原疫苗,最后对芽孢表面展示外源抗原疫苗的应用前景进行了展望。  相似文献   

12.

Since the 1950s, Staphylococcus carnosus is used as a starter culture for sausage fermentation where it contributes to food safety, flavor, and a controlled fermentation process. The long experience with S. carnosus has shown that it is a harmless and “food grade” species. This was confirmed by the genome sequence of S. carnosus TM300 that lacks genes involved in pathogenicity. Since the development of a cloning system in TM300, numerous genes have been cloned, expressed, and characterized and in particular, virulence genes that could be functionally validated in this non-pathogenic strain. A secretion system was developed for production and secretion of industrially important proteins and later modified to also enable display of heterologous proteins on the surface. The display system has been employed for various purposes, such as development of live bacterial delivery vehicles as well as microbial biocatalysts or bioadsorbents for potential environmental or biosensor applications. Recently, this surface display system has been utilized for display of peptide and protein libraries for profiling of protease substrates and for generation of various affinity proteins, e.g., Affibody molecules and scFv antibodies. In addition, by display of fragmented antigen-encoding genes, the surface expression system has been successfully used for epitope mapping of antibodies. Reviews on specific applications of S. carnosus have been published earlier, but here we provide a more extensive overview, covering a broad range of areas from food fermentation to sophisticated methods for protein-based drug discovery, which are all based on S. carnosus.

  相似文献   

13.
Bacterial ghosts are empty cell envelopes of Gram-negative bacteria that can be used as vehicles for antigen delivery. Ghosts are generated by releasing the bacterial cytoplasmic contents through a channel in the cell envelope that is created by the controlled production of the bacteriophage ϕX174 lysis protein E. While ghosts possess all the immunostimulatory surface properties of the original host strain, they do not pose any of the infectious threats associated with live vaccines. Recently, we have engineered the Escherichia coli autotransporter hemoglobin protease (Hbp) into a platform for the efficient surface display of heterologous proteins in Gram-negative bacteria, HbpD. Using the Mycobacterium tuberculosis vaccine target ESAT6 (early secreted antigenic target of 6 kDa), we have explored the application of HbpD to decorate E. coli and Salmonella ghosts with antigens. The use of different promoter systems enabled the concerted production of HbpD-ESAT6 and lysis protein E. Ghost formation was monitored by determining lysis efficiency based on CFU, the localization of a set of cellular markers, fluorescence microscopy, flow cytometry, and electron microscopy. Hbp-mediated surface display of ESAT6 was monitored using a combination of a protease accessibility assay, fluorescence microscopy, flow cytometry and (immuno-)electron microscopy. Here, we show that the concerted production of HbpD and lysis protein E in E. coli and Salmonella can be used to produce ghosts that efficiently display antigens on their surface. This system holds promise for the development of safe and cost-effective vaccines with optimal intrinsic adjuvant activity and exposure of heterologous antigens to the immune system.  相似文献   

14.
Lactic acid bacteria have a good potential as agents for the delivery of heterologous proteins to the gastrointestinal mucosa and thus for the reequilibration of inappropriate immune responses to food antigens. Bovine beta-lactoglobulin (BLG) is considered a major allergen in cow's milk allergy. We have designed recombinant Lactococcus lactis expressing either full-length BLG or BLG-derived octapeptide T6 (IDALNENK) as fusions with Lactobacillus bulgaricus extracellular proteinase (PrtB). In addition to constructs encoding full-length PrtB for the targeting of heterologous proteins to the cell surface, we generated vectors aiming at the release into the medium of truncated PrtB derivatives lacking 100 (PrtB partial differential, PrtB partial differential-BLG, and PrtB partial differential-T6) or 807 (PrtBdelta) C-terminal amino acids. Expression of recombinant products was confirmed using either anti-PrtB, anti-BLG, or anti-peptide T6 antiserum. All forms of the full-length and truncated recombinant products were efficiently translocated, irrespective of the presence of eucaryotic BLG sequences in the fusion proteins. L. lactis expressing PrtB partial differential-BLG yielded up to 170 microg per 10(9) CFU in the culture supernatant and 9 microg per 10(9) CFU at the bacterial cell surface within 14 h. Therefore, protein fusions relying on the use of PrtB gene products are adequate for concomitant cell surface display and secretion by recombinant L. lactis and thus may ensure maximal bioavailability of the eucaryotic antigen in the gut-associated lymphoid tissue.  相似文献   

15.
Expressing proteins of interest as fusions to proteins of the bacterial envelope is a powerful technique with many biotechnological and medical applications. Autotransporters have recently emerged as a good tool for bacterial surface display. These proteins are composed of an N-terminal signal peptide, followed by a passenger domain and a translocator domain that mediates the outer membrane translocation of the passenger. The natural passenger domain of autotransporters can be replaced by heterologous proteins that become displayed at the bacterial surface by the translocator domain. The simplicity and versatility of this system has made it very attractive and it has been used to display functional enzymes, vaccine antigens as well as polypeptides libraries. The recent advances in the study of the translocation mechanism of autotransporters have raised several controversial issues with implications for their use as display systems. These issues include the requirement for the displayed polypeptides to remain in a translocation-competent state in the periplasm, the requirement for specific signal sequences and "autochaperone" domains, and the influence of the genetic background of the expression host strain. It is therefore important to better understand the mechanism of translocation of autotransporters in order to employ them to their full potential. This review will focus on the recent advances in the study of the translocation mechanism of autotransporters and describe practical considerations regarding their use for bacterial surface display.  相似文献   

16.
Lactic acid bacteria (LAB), widely used in the food industry, are present in the intestine of most animals, including humans. The potential use of these bacteria as live vehicles for the production and delivery of heterologous proteins of vaccinal, medical or technological interest has therefore been extensively investigated. Lactococcus lactis, a LAB species, is a potential candidate for the production of biologically useful proteins. Several delivery systems have been developed to target heterologous proteins to a specific cell location (i.e., cytoplasm, cell wall or extracellular medium). A promising application of L. lactis is its use as an antigen delivery vehicle, for the development of live mucosal vaccines. The expression of heterologous proteins and antigens as well as the various delivery systems developed in L. lactis, and its use as an oral vaccine carrier are discussed.  相似文献   

17.
《Biotechnology advances》2017,35(5):565-574
Outer membrane vesicles (OMVs) are naturally non-replicating, highly immunogenic spherical nanoparticles derived from Gram-negative bacteria. OMVs from pathogenic bacteria have been successfully used as vaccines against bacterial meningitis and sepsis among others and the composition of the vesicles can easily be engineered. OMVs can be used as a vaccine platform by engineering heterologous antigens to the vesicles. The major advantages of adding heterologous proteins to the OMV are that the antigens retain their native conformation, the ability of targeting specific immune responses, and a single production process suffices for many vaccines. Several promising vaccine platform concepts have been engineered based on decorating OMVs with heterologous antigens. This review discusses these vaccine concepts and reviews design considerations as the antigen location, the adjuvant function, physiochemical properties, and the immune response.  相似文献   

18.
Mucosal immunization with subunit vaccines requires new types of antigen delivery vehicles and adjuvants for optimal immune responses. We have developed a non-living and non-genetically modified gram-positive bacterial delivery particle (GEM) that has built-in adjuvant activity and a high loading capacity for externally added heterologous antigens that are fused to a high affinity binding domain. This binding domain, the protein anchor (PA), is derived from the Lactococcus lactis AcmA cell-wall hydrolase, and contains three repeats of a LysM-type cell-wall binding motif. Antigens are produced as antigen-PA fusions by recombinant expression systems that secrete the hybrid proteins into the culture growth medium. GEM particles are then used as affinity beads to isolate the antigen-PA fusions from the complex growth media in a one step procedure after removal of the recombinant producer cells. This procedure is also highly suitable for making multivalent vaccines. The resulting vaccines are stable at room temperature, lack recombinant DNA, and mimic pathogens by their bacterial size, surface display of antigens and adjuvant activity of the bacterial components in the GEM particles. The GEM-based vaccines do not require additional adjuvant for eliciting high levels of specific antibodies in mucosal and systemic compartments.  相似文献   

19.
Phage display for detection of biological threat agents   总被引:9,自引:0,他引:9  
The essential element of any immuno-based detector device is the probe that binds analyte and, as a part of the analytical platform, generates a measurable signal. The present review summarizes the state of the art in development of the probes for detection of the biological threat agents: toxins, bacteria, spores and viruses. Traditionally, the probes are antibodies, which are isolated from sera of immunized animals or culture media of hybridomas. However, the "natural" antibodies may have limited application in the new generation of real-time field detectors and monitoring systems, where stress-resistant and inexpensive long-livers are required. Phage display is a newcomer in the detection area, whose expertise is development of molecular probes for targeting of various biological structures. The probes can be selection from about billion clone libraries of recombinant phages expressing on their surface a vast variety of peptides and proteins, including antigen-binding fragments of antibodies. The selection procedure, like kind of affinity chromatography, allows separating of phage binders, which are propagated in Escherichia coli bacterial cells and purified using inexpensive technology. Although phage display traditionally is focused more on development of medical preparations and studying molecular recognition in biological systems, there are some examples of its successful use for detection, which are presented in the review. To be used as probes for detection, peptides and antibodies identified by phage display are usually chemically synthesized or produced in bacteria. Another interesting aspect is using of the selected phage itself as a probe in detector devices, like sort of substitute antibodies. This idea is illustrated in the review by "detection" of beta-galactosidase from E. coli with "landscape" phage displaying a dense array of peptide binders on the surface.  相似文献   

20.
细菌样颗粒(Bacterium-like particles,BLPs)是一种新型非遗传修饰型乳酸菌表面展示技术,外源蛋白可通过锚钩蛋白锚定于经热酸处理而得的乳酸菌肽聚糖骨架表面,形成空心表面展示颗粒。因其安全性高、表面展示密度大、黏膜递送效率高,又兼有佐剂效应,BLPs广泛应用于黏膜疫苗和黏膜佐剂的开发、病毒抗原的纯化、生物催化剂的制备等领域。本文就BLPs的构建、独特优势、目前的应用及尚需解决的问题等方面进行详细综述,以期展现BLPs新型表面展示平台的广阔应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号