首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Measurements of the fraction of the incident light absorbed by diverse Solidago leaves revealed that differences in light harvesting capacity cannot explain the differences in efficiency of utilization of weak light in photosynthesis that have previously been shown to exist between sun and shade ecotypes when these have been grown in strong light and between identical clones of shade ecotypes when grown at different light intensities. Photosynthesis measurements at low and normal oxygen concentrations, provided no evidence that a different degree of inhibition of photo-synthetic CO2 uptake by atmospheric oxygen is responsible for the observed differences in photosynthetic efficiency, at low or high light intensities. These results support the conclusion that the markedly less efficient use of weak light by shaded habitat clones grown in strong as compared with weak light is caused primarily by damage to the photosystems, or to a site close to them. Measurements of Emerson enhancement and of light-induced absorbance changes provide some evidence that photoreaction II is more affected than I. Enzyme extracts prepared from clones native to an exposed habitat were found to contain considerably higher activities of carboxydismutase (ribulosc-l,5-diphos-phate carboxylase) than from clones native to a shaded habitat when the plants were previously grown at a moderately high light intensity. Exposed habitat clones apparently have a genetically determined, higher capacity to produce the carboxyla-tion enzyme than shaded habitat clones. The high degree of correlation found when the light-saturated rate of CO2 uptake in vivo of a number of individual Solidago leaves is plotted against the carboxydismutase activities found in the extracts of these same leaves suggests that low carboxydismutase activity is one of the intrinsic properties responsible for the low capacity for light-saturated photosynthesis of clones from shaded habitats. It is concluded from this and other investigations that differentiation between plants from habitats with contrasting light intensities, whether unrelated species or ecotypos of the same species, probably involves the capacity of several component steps of the photosynthetic process.  相似文献   

2.
Homocontinuous cultures of the unicellular green alga Scenedesmus obliquus were grown under strong (28 W/m2~28,000 lux) and weak (5 W/m2~5000 lux) light conditions to simulate the conditions of ‘sun’ and ‘shade’ plants. As in higher plants the cells adapted to strong light had less chlorophyll but demonstrated a higher photosynthetic capacity and a higher respiration rate, so that their compensation point was reached at three times higher energy than in the cells grown under low light intensities. The CO2 fixation rate and the RuDP carboxylase activity under saturating light intensities were both higher in the cells grown in strong light. In spite of the differences in the pigment content and in the light saturated photosynthetic capacities for both cultures, the quantum yields of photosynthetic oxygen evolution were equal. As documented for some species of higher plants Scenedesmus is not genetically determined to be either a ‘sun’ or ‘shade’ organism but can adapt its photosynthetic apparatus to the different light intensities.  相似文献   

3.
Summary Shoot cultures of Hedyotis corymbosa, a C3 species, and sugarcane, a C4 species, were used to examine the effects of various CO2 concentrations and two light intensities on growth and photosynthetic rates. The fresh and dry weights of new growth of Hedyotis shoots were higher when grown under the higher light intensity, while differences among shoots grown under different CO2 levels were marginal. After 14 d of growth in various CO2 concentrations, no significant differences could be observed in the newly produced leaves of Hedyotis with respect to stomatal distribution and number of mesophyll cell layers. Shoots grown under high light intensity did not show higher rates of photosynthesis than those grown under low light intensity. Also, sugarcane shoots grown in a CO2-enriched environment did not have higher photosynthetic rates, perhaps because the C4 pathway is less sensitive to the ambient CO2 concentration. The quantum yield of Hedyotis shoots grown on medium with 20 g l−1 sucrose was lower than that of shoots on lower sucrose concentrations, supporting the view that photosynthesis is inhibited by high levels of sucrose. Our results suggest that Hedyotis shoots in culture exhibit some form of acclimation to high CO2. so that there is no net gain in productivity by photosynthesis.  相似文献   

4.
Sugar maple (Acer saccharum Marsh.) seedlings were grown in a nursery for three years in 13, 25, 45 and 100 per cent of full daylight. During the third year of growth, the rates of their apparent photosynthesis and respiration were measured periodically with an infra-red gas analyzer at various light intensities and normal CO2 concentration. In addition, the rates of apparent photosynthesis of a single attached leaf of the same seedlings were measured at saturating light intensity, hut varying CO2 concentrations. An increase in the light intensity in which seedlings were grown had no effect on their height or mean leaf area, hut resulted in thicker leaves, an increase in the total leaf area per seedling due to an increase in the number of leaves, an increase in the dry weight especially of roots and a decrease in the chlorophyll content of leaves. Throughout the growing season seedlings grown in full daylight, as compared with those grown in lower light intensities, had the lowest rates of apparent photosynthesis measured at standard conditions (21,600 lux light intensity and 300 ul/l of CO2), when this was expressed per unit leaf area, hut the highest rates on a per seedling basis. Thus dry matter production attained at the end of the growing season correlated positively with the photosynthetic rate per seedling, but not per unit leaf area. The rates of apparent photosynthesis of seedlings grown at lower light intensities were more responsive to changes in light intensity or CO2 concentration than those of seedlings grown in full daylight intensity.  相似文献   

5.
Photosynthetic capacity and leaf properties of sun and shade leaves of overstorey sweetgum trees (Liquidambar styraciflua L.) were compared over the first 3 years of growth in ambient or ambient + 200 μL L?1 CO2 at the Duke Forest Free Air CO2 Enrichment (FACE) experiment. We were interested in whether photosynthetic down‐regulation to CO2 occurred in sweetgum trees growing in a forest ecosystem, whether shade leaves down‐regulated to a greater extent than sun leaves, and if there was a seasonal component to photosynthetic down‐regulation. During June and September of each year, we measured net photosynthesis (A) versus the calculated intercellular CO2 concentration (Ci) in situ and analysed these response curves using a biochemical model that described the limitations imposed by the amount and activity of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Vcmax) and by the rate of ribulose‐1,5‐bisphosphate (RuBP) regeneration mediated by electron transport (Jmax). There was no evidence of photosynthetic down‐regulation to CO2 in either sun or shade leaves of sweetgum trees over the 3 years of measurements. Elevated CO2 did not significantly affect Vcmax or Jmax. The ratio of Vcmax to Jmax was relatively constant, averaging 2·12, and was not affected by CO2 treatment, position in the canopy, or measurement period. Furthermore, CO2 enrichment did not affect leaf nitrogen per unit leaf area (Na), chlorophyll or total non‐structural carbohydrates of sun or shade leaves. We did, however, find a strong relationship between Na and the modelled components of photosynthetic capacity, Vcmax and Jmax. Our data over the first 3 years of this experiment corroborate observations that trees rooted in the ground may not exhibit symptoms of photosynthetic down‐regulation as quickly as tree seedlings growing in pots. There was a strong sustained enhancement of photosynthesis by CO2 enrichment whereby light‐saturated net photosynthesis of sun leaves was stimulated by 63% and light‐saturated net photosynthesis of shade leaves was stimulated by 48% when averaged over the 3 years. This study suggests that this CO2 enhancement of photosynthesis will be sustained in the Duke Forest FACE experiment as long as soil N availability keeps pace with photosynthetic and growth processes.  相似文献   

6.
Summary In altitudinal ecotypes of Trifolium repens L. the oxygen inhibition of photosynthesis, the CO2 compensation point and the sugar content were examined. Excised leaves were exposed to 14CO2 for 20 s and 60 min periods and the radioactivity in different photosynthetic products was studied. In all experiments the temperature during growth and measurement was varied.To some extent, the differences between the ecotypes and the differences between the plants grown under different temperature conditions are similar. These ecotypic differences appear to reflect long-term adaptation to the general temperature conditions at each site. Alpine ecotypes and plants grown at low temperatures show an increased photorespiration. The 14C-labeling of certain photosynthetic products also changes with the ecotypes and the temperatures during growth. Other differences between the ecotypes are interpreted as adaptations to the partial pressure of Co2 and to the length of the growing season, both of which change with altitude.The metabolism of photosynthesis depends greatly on temperature. The 14C-experiments and the study of photorespiration suggest that, to a certain degree, adaptation can compensate for this dependence on temperature.  相似文献   

7.
Light gradients within tree canopies play a major role in the distribution of plant resources that define the photosynthetic capacity of sun and shade leaves. However, the biochemical and diffusional constraints on gas exchange in sun and shade leaves in response to light remain poorly quantified, but critical for predicting canopy carbon and water exchange. To investigate the CO2 diffusion pathway of sun and shade leaves, leaf gas exchange was coupled with concurrent measurements of carbon isotope discrimination to measure net leaf photosynthesis (An), stomatal conductance (gs) and mesophyll conductance (gm) in Eucalyptus tereticornis trees grown in climate controlled whole‐tree chambers. Compared to sun leaves, shade leaves had lower An, gm, leaf nitrogen and photosynthetic capacity (Amax) but gs was similar. When light intensity was temporarily increased for shade leaves to match that of sun leaves, both gs and gm increased, and An increased to values greater than sun leaves. We show that dynamic physiological responses of shade leaves to altered light environments have implications for up‐scaling leaf level measurements and predicting whole canopy carbon gain. Despite exhibiting reduced photosynthetic capacity, the rapid up‐regulation of gm with increased light enables shade leaves to respond quickly to sunflecks.  相似文献   

8.
Morphological and functional characteristics of Plantago media L. leaves were compared for plants growing at different light regimes on limestone outcrops in Southern Timan (62°45′N, 55°49′E). The plants grown in open areas under exposure to full sunlight had small leaves with low pigment content and high specific leaf weight; these leaves exhibited high photosynthetic capacity and elevated water use efficiency at high irradiance. The maximum photochemical activity of photosystem II (F v/F m) in leaves of sun plants remained at the level of about 0.8 throughout the day. The photosynthetic apparatus of sun plants was resistant to excess photosynthetically active radiation, mostly due to non-photochemical quenching of chlorophyll fluorescence (qN). This quenching was promoted by elevated deepoxiation of violaxanthin cycle pigments. Accumulation of zeaxanthin, a photoprotective pigment in sun plant leaves was observed already in the morning hours. The plant leaves grown in the shade of dense herbage were significantly larger than the sun leaves, with pigment content 1.5–2.0 times greater than in sun leaves; these leaves had low qN values and did not need extensive deepoxidation of violaxanthin cycle pigments. The data reveal the morphophysiological plasticity of plantain plants in relation to lighting regime. Environmental conditions can facilitate the formation of the ecotype with photosynthetic apparatus resistant to photoinhibition. Owing to this adjustment, hoary plantain plants are capable of surviving in ecotopes with high insolation.  相似文献   

9.
Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance‐dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light‐emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS‐grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED‐grown leaves also displayed a more sun‐type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower.  相似文献   

10.
Five ecotypes of Arabidopsis thaliana, from widely dispersed origins, were grown under combinations of ambient and elevated atmospheric CO2 concentrations and ambient and elevated temperatures within solardomes. Total above-ground plant biomass was measured when the majority of plants across all ecotypes and treatments had formed seed pods. There were substantial differences in biomass between the ecotypes across all treatments. Temperature had no effect on biomass whilst CO2 had a significant effect both alone and in interaction with ecotype. The CO2 x ecotype interaction was mostly due to the enhancement of a single ecotype from the Cape Verde Islands.  相似文献   

11.
Differences in leaf interveinal distances, chloroplasts distribution in bundle sheath cells (BSC) and activities of C4 photosynthetic enzymes in the leaves of three ecotypes of Phragmites communis Trinius, namely swamp reed (SR), heavy salt meadow reed (HSMR) and dune reed (DR), occurring in the desert region of northwest China were investigated. The two terrestrial ecotypes, DR and HSMR, had denser vascular system, more and longer BSC chloroplasts and higher capacity of CO2 concentrating mechanism of NAD-ME subtype as compared with the SR ecotype. The enhanced NADP-ME pathway in the HSMR might contribute to its adaptation to the salinity habitat.  相似文献   

12.
P. J. Ferrar  C. B. Osmond 《Planta》1986,168(4):563-570
We have compared the ability of shadegrown clones of Solamum dulcamara L. from shade and sun habitats to acclimate to bright light, as a function of nitrogen nutrition before and after transfer to bright light. Leaves of S. dulcamara grown in the shade with 0.6 mM NO 3 - have similar photosynthetic properties as leaves of plants grown with 12.0 mM NO 3 - . When transferred to bright light for 1–2 d the leaves of these plants show substantial photoinhibition which is characterized by about 50% decrease in apparent quantum yield and a reduction in the rate of photosynthesis in air at light saturation. Photoinhibition of leaf photosynthesis is associated with reduction in the variable component of low-temperature fluorescence emission, and with loss of in-vitro electron transport, especially of photosystem II-dependent processes.We find no evidence for ecotypic differentiation in the potential for photosynthetic acclimation among shade and sun clones of S. dulcamara, or of differentiation with respect to nitrogen requirements for acclimation. Recovery from photoinhibition and subsequent acclimation of photosynthesis to bright light only occurs in leaves of plants provided with 12.0 mM NO 3 - . In these, apparent quantum yield is fully restored after 14 d, and photosynthetic acclimation is shown by an increase in light-saturated photosynthesis in air, of light-and CO2-saturated photosynthesis, and of the initial slope of the CO2-response curve. The latter changes are highly correlated with changes in ribulose-bisphosphate-carboxylase activity in vitro. Plants supplied with 0.6 mM NO 3 - show incomplete recovery of apparent quantum yield after 14 d, but CO2-dependent leaf photosynthetic parameters return to control levels.Symbols and abbreviations Fo initial level of fluorescence at 77 K - Fm maximum level of fluorescence at 77 K - Fv variable components of fluorescence at 77 K (Fv=Fm-Fo) - PSI, PSII photosystem I and II, respectively - RuBP ribulose-1,5-bisphosphate - RuBPCase ribulose-1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39)  相似文献   

13.
Plants of Solidago virgaurea L. from exposed and shaded habitats differ with respect to the response of the photosynthetic apparatus to the level of irradiance during growth. An analysis was carried out on leaf characteristies which might be responsible for the differences established in the rates of Hght-saturated CO2 uptake. The clones were grown in controlled environment chambers at high and low levels of irradiance. Light-saturated rates of photosynthesis and transpiration were measured at natural and lower ambient CO2 concentrations. A low temperature dependence of light-saturated CO2 uptake at natural CO2 concentrations, and a strong response to changes in stomatal width, suggested that the rate of CO2 transfer from ambient air towards reaetion sites in chloroplasts was mainly limiting the pholosynthetic rate. Resistances to transfer of CO2 for different parts of the pathway were calculated. There was a weak but significant correlation between stomatal conductance and the product stomatal frequency ± pore length. Mesopbyll conductance and dry weight per unit area were highly correlated in leaves not damaged by high irradiance. This suggests that mesophyll conductance increases with increasing cross sectional area (per unit leaf area) of the pathways of CO2 transfer in the mesophyll from cell surfaces to reaction sites. The higher light-saturated photosynthesis in clones from exposed habitats when grown at high irradiance than when grown at low irradiance was attributable mainly to a lower mesophyll resistance. In shade clones the effect upon CO2 uptake of the increase in leaf thickness when grown at high irradiance was counteracted by the associated inactivation of the photosynthetic apparatus. The difference in CO2 uptake present between clones from exposed and shaded habitats when preconditioned to high irradiance resulted from differences in both mesophyll and stomatal resistances. A few hybrid clones of an F1-population from a cross between a clone from an exposed habitat and a clone from a shaded habitat reacted, on the whole, in the same way as the exposed habitat parent. When grown at high irradiance, the hybrid clones showed higher photosynthetic rates than either parent; this was largely attributable to the unusually low stomatal resistance of the hybrid leaves.  相似文献   

14.
Clone cultures of the thermophilic alga Plectonema notatum Schmidle were established from cells collected from the high and low light intensity regions of the algal mat which developed in Jerry Johnson Hot Spring, Idaho. Clones isolated from cither high, or low light intensify zones were grown at light intensities of 8000 and 400 ft-c. The existence of specialized and genetically fixed sun or shade ecotypes was evidenced, by the ability of low light intensity clones to synthesize more light harvesting chlorophyll a when grown under low light conditions than the high light clones. High light clones showed light saturation of photosynthesis at higher light intensities with higher carboxylating enzyme activities and less chlorophyll a than low light clones when both were cultured at 8000 ft-c. These clones displayed infraspecific variation along the light intensity gradient and therefore exist as a mosaic of light, intensity ecotypes.  相似文献   

15.
Summary Net photosynthesis of Picea abies was measured in a spruce forest in northern Germany with temperature- and humidity-controlled cuvettes in 4 different crown layers on shoots of different ages. These measurments were performed such that temperature and humidity either followed ambient conditions or were kept constant. Annual courses of light-, temperature-, and humidity-related net photosynthesis were determined. Spruce had a remarkably constant rate of CO2 uptake from April to September for 1-year and older needles. Light saturation was achieved at 25 klx. Current year needles had the highest rates of CO2 uptake in early summer, but these rates decreased by autumn. Photosynthetic capacity decreased with needle age and, on a dry weight basis, it was higher in the shade than in the sun crown. The temperature optimum was between 13 and 23° C. Photosynthesis in spruce decreased when air humidity was low.The effect of the natural weather conditions on photosynthetic capacity was determined. The habitat is characterized by a high frequency of low light intensities (75% of total daytime below 20 klx) and cool temperatures (80% of daytime between 9 and 21° C). Low air humidity was only present when light intensities were high. The major limiting factor for production was low light intensities, which reduced photosynthetic capacity in the sun crown to 42% below maximum possible rates. Adverse temperatures reduced CO2 uptake by 28% and large water vapor pressure deficits reduced rates by only 2% compared with maximum possible rates. The limited adaptation to light is discussed.  相似文献   

16.
The present study was performed to investigate the adjustment of the rate parameters of the light and dark reactions of photosynthesis to the natural growth light in leaves of an overstorey species, Betula pendula Roth, a subcanopy species, Tilia cordata P. Mill., and a herb, Solidago virgaurea L., growing in a natural plant community in Järvselja, Estonia. Shoots were collected from the site and individual leaves were measured in a laboratory applying a standardized routine of kinetic gas exchange, Chl fluorescence and 820 nm transmittance measurements. These measurements enabled the calculations of the quantum yield of photosynthesis and rate constants of excitation capture by photochemical and non-photochemical quenchers, rate constant for P700+ reduction via the cytochrome b6f complex with and without photosynthetic control, actual maximum and potential (uncoupled) electron transport rate, stomatal and mesophyll resistances for CO2 transport, Km(CO2) and Vm of ribulose-bisphosphate carboxylase-oxygenase (Rubisco) in vivo. In parallel, N, Chl and Rubisco contents were measured from the same leaves. No adjustment toward higher quantum yield in shade compared with sun leaves was observed, although relatively more N was partitioned to the light-harvesting machinery in shade leaves ( H. Eichelmann et al., 2004 ). The electron transport rate through the Cyt b6f complex was strongly down-regulated under saturating light compared with darkness, and this was observed under atmospheric, as well as saturating CO2 concentration. In vivo Vm measurements of Rubisco were lower than corresponding reported measurements in vitro, and the kcat per reaction site varied widely between leaves and growth sites. The correlation between Rubisco Vm and the photosystem I density was stronger than between Vm and the density of Rubisco active sites. The results showed that the capacity of the photosynthetic machinery decreases in shade-adjusted leaves, but it still remains in excess of the actual photosynthetic rate. The photosynthetic control systems that are targeted to adjust the photosynthetic rate to meet the plant's needs and to balance the partial reactions of photosynthesis, down-regulate partial processes of photosynthesis: excess harvested light is quenched non-photochemically; excess electron transport capacity of Cyt b6f is down-regulated by ΔpH-dependent photosynthetic control; Rubisco is synthesized in excess, and the number of activated Rubisco molecules is controlled by photosystem I-related processes. Consequently, the nitrogen contained in the components of the photosynthetic machinery is not used at full efficiency. The strong correlation between leaf nitrogen and photosynthetic performance is not due to the nitrogen requirements of the photosynthetic apparatus, but because a certain amount of energy must be captured through photosynthesis to maintain this nitrogen within a leaf.  相似文献   

17.
Abstract Photosynthetic and anatomical parameters of leaves from the juvenile and adult part of an ivy plant (Hedera helix L.) have been determined and compared with each other. Light-saturated net photosynthesis (per unit leaf area) was about 1.5 times higher in adult leaves than in juvenile ones. The lower photosynthetic capacity of juvenile leaves was caused by a lower stomatal and especially a lower residual conductance to the CO2-transfer. This corresponds with anatomical features of the leaves, i.e. lower stomatal frequency, fewer chloroplasts per cell, and – most important – thinner leaves, as well as with a less efficient photosynthetic apparatus measured as Hill reaction of isolated broken chloroplasts and activity of ribulose bisphosphate carboxylase. No differences in the respiration in light (relative to net photosynthesis) and in the CO2-compensation concentration could be detected between the two leaf types. These observed anatomical and photosynthetic parameters of the juvenile and adult ivy leaves resemble those reported for shade and sun leaves, respectively, although the leaves investigated originated from the same light environment.  相似文献   

18.
Hoflacher, H. and Bauer, H. 1982. Light acclimation in leaves of the juvenile and adult life phases of ivy (Hedera helix). – Physiol. Plant. 56: 177–182. Light acclimation was investigated during the juvenile and adult life phases of the whole-plant-development in Hedera helix L. For this purpose, cuttings of the juvenile and adult parts of one single parent plant were grown under low-light (PAR 30–50 μmol photons m?2 s?1) and high-light (PAR 300–500 μmol m?2 s?1) conditions: CO2 exchange, chloroplast functions, and specific anatomy of fully developed leaves differentiated under these conditions were determined. In juvenile plants the leaves formed under low and high light had light-saturated rates of net photosynthesis of 6.5 and 11.1 mg CO2 (dm leaf area)?2 h?1, respectively. In adult plants the rates were 9.4 and 22.2 mg dm?2 h?1, indicating a more pronounced capacity for acclimation to strong light in the adult life phase. Higher photosynthetic capacities were accompanied by higher conductances for the CO2 transfer through the stomata, leading to almost the same CO2 concentration in the intercellular spaces. Thus, stomatal conductances were not primarily responsible for the different photo-synthetic capacities. The higher rates in adult and high-light grown leaves were mainly the result of formation of thicker leaves with more chloroplasts per unit leaf area. Expressed per chloroplast, the photosynthetic capacity, the Hill reaction, and the activity of ribulose bisphosphate carboxylase were almost identical in plants grown in low-light and high-light. Measurements of photosynthetic capacity and thickness of leaves of Hedera sampled from field habitats with contrasting light regimes confirm the results of growth chamber studies. It is, therefore, concluded that both life phases of Hedera are capable of acclimating to strong light, but that during the juvenile phase this capacity is not fully developed.  相似文献   

19.
We investigated how light and CO2 levels interact to influence growth, phenology, and the physiological processes involved in leaf senescence in red oak (Quercus rubra) seedlings. We grew plants in high and low light and in elevated and ambient CO2. At the end of three years of growth, shade plants showed greater biomass enhancement under elevated CO2 than sun plants. We attribute this difference to an increase in leaf area ratio (LAR) in shade plants relative to sun plants, as well as to an ontogenetic effect: as plants increased in size, the LAR declined concomitant with a decline in biomass enhancement under elevated CO2 Elevated CO2 prolonged the carbon gain capacity of shade‐grown plants during autumnal senescence, thus increasing their functional leaf lifespan. The prolongation of carbon assimilation, however, did not account for the increased growth enhancement in shade plants under elevated CO2. Elevated CO2 did not significantly alter leaf phenology. Nitrogen concentrations in both green and senesced leaves were lower under elevated CO2 and declined more rapidly in sun leaves than in shade leaves. Similar to nitrogen concentration, the initial slope of A/Ci curves indicated that Rubisco activity declined more rapidly in sun plants than in shade plants, particularly under elevated CO2. Absolute levels of chlorophyll were affected by the interaction of CO2 and light, and chlorophyll content declined to a minimal level in sun plants sooner than in shade plants. These declines in N concentration, in the initial slope of A/Ci curves, and in chlorophyll content were consistent with declining photosynthesis, such that elevated CO2 accelerated senescence in sun plants and prolonged leaf function in shade plants. These results have implications for the carbon economy of seedlings and the regeneration of red oak under global change conditions.  相似文献   

20.
A close correlation between stomatal conductance and the steady-state photosynthetic rate has been observed for diverse plant species under various environmental conditions. However, it remains unclear whether stomatal conductance is a major limiting factor for the photosynthetic rate under naturally fluctuating light conditions. We analysed a SLAC1 knockout rice line to examine the role of stomatal conductance in photosynthetic responses to fluctuating light. SLAC1 encodes a stomatal anion channel that regulates stomatal closure. Long exposures to weak light before treatments with strong light increased the photosynthetic induction time required for plants to reach a steady-state photosynthetic rate and also induced stomatal limitation of photosynthesis by restricting the diffusion of CO2 into leaves. The slac1 mutant exhibited a significantly higher rate of stomatal opening after an increase in irradiance than wild-type plants, leading to a higher rate of photosynthetic induction. Under natural conditions, in which irradiance levels are highly variable, the stomata of the slac1 mutant remained open to ensure efficient photosynthetic reaction. These observations reveal that stomatal conductance is important for regulating photosynthesis in rice plants in the natural environment with fluctuating light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号