首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The d-methionine- and 2-methyl-dl-methionine analogs of the enzymatic methyl donor, (?)S-adenosyl-l-methionine, were synthesized by methylation of S-adenosyl-d-homocysteine and S-adenosyl-2-methyl-dl-homocysteine with methyl iodide. By chromatographic purification, S-adenosyl-d-methionine and S-adenosyl-2-methyl-dl-methionine were obtained. The structure of the latter was ascertained by hydrolysis to 2-methylmethionine in strong acid, and to 5′-methylthioadenosine and 2-methylhomoserine at pH 4. Reference material of the latter compound was obtained by alkaline hydrolysis of 2-methylmethionine methylsulfonium iodide. The sulfonium compounds were tested as methyl donors with N-acetylserotonin O-methyltransferase, l-homocysteine S-methyltransferase, histamine N-methyltransferase, and guanidinoacetate N-methyltransferase. In most instances, methyl donor activity was observed.  相似文献   

2.
S-Methylmethionine Metabolism in Escherichia coli   总被引:1,自引:0,他引:1       下载免费PDF全文
Selenium-accumulating Astragalus spp. contain an enzyme which specifically transfers a methyl group from S-methylmethionine to the selenol of selenocysteine, thus converting it to a nontoxic, since nonproteinogenic, amino acid. Analysis of the amino acid sequence of this enzyme revealed that Escherichia coli possesses a protein (YagD) which shares high sequence similarity with the enzyme. The properties and physiological role of YagD were investigated. YagD is an S-methylmethionine: homocysteine methyltransferase which also accepts selenohomocysteine as a substrate. Mutants in yagD which also possess defects in metE and metH are unable to utilize S-methylmethionine for growth, whereas a metE metH double mutant still grows on S-methylmethionine. Upstream of yagD and overlapping with its reading frame is a gene (ykfD) which, when inactivated, also blocks growth on methylmethionine in a metE metH genetic background. Since it displays sequence similarities with amino acid permeases it appears to be the transporter for S-methylmethionine. Methionine but not S-methylmethionine in the medium reduces the amount of yagD protein. This and the existence of four MET box motifs upstream of yfkD indicate that the two genes are members of the methionine regulon. The physiological roles of the ykfD and yagD products appear to reside in the acquisition of S-methylmethionine, which is an abundant plant product, and its utilization for methionine biosynthesis.  相似文献   

3.
A supplement of 5′-methylthioadenosine (1.0 mM) in the culture medium of the yeast Candida utilis doubled the intracellular level of S-adenosylmethionine. 70% of the specific radioactivity of [8-14C]adenine- or 35S-labeled 5′-methylthioadenosine was recovered in S-adenosylmethionine. The possibility of incorporation of the unfragmented nucleoside was tested by dilution experiments. An additional supplement of adenine or l-methionine greatly reduced the isotope recovery in the sulfonium compound; degradation of the nucleoside is thus indicated as the first phase of the recycling process.  相似文献   

4.
An O-methyltransferase activity which catalyses the methylation of anthocyanins was extracted from flowerbuds of Petunia hybrida. The methyltransferase uses S-adenosyl-l-methionine as methyl donor. Only anthocyanidin 3(p-coumaroyl)rutinosido-5-glucoside was methylated. No methylating activity towards anthocyanidins, anthocyanidin 3-glucosides, anthocyanidin 3-rutinosides, caffeic acid or p-coumaric acid could be detected.  相似文献   

5.
Mudd SH  Datko AH 《Plant physiology》1990,93(2):623-630
The metabolism of S-methylmethionine has been studied in cultures of plants of Lemna paucicostata and of cells of carrot (Daucus carota) and soybean (Glycine max). In each system, radiolabeled S-methylmethionine was rapidly formed from labeled l-methionine, consistent with the action of S-adenosyl-l-methionine:methionine S-methyltransferase, an enzyme which was demonstrated during these studies in Lemna homogenates. In Lemna plants and carrot cells radiolabel disappeared rapidly from S-methylmethionine during chase incubations in nonradioactive media. The results of pulse-chase experiments with Lemna strongly suggest that administered radiolabeled S-methylmethionine is metabolized initially to soluble methionine, then to the variety of compounds formed from soluble methionine. An enzyme catalyzing the transfer of a methyl group from S-methylmethionine to homocysteine to form methionine was demonstrated in homogenates of Lemna. The net result of these reactions, together with the hydrolysis of S-adenosylhomocysteine to homocysteine and adenosine, is to convert S-adenosylmethionine to methionine and adenosine. A physiological advantage is postulated for this sequence in that it provides the plant with a means of sustaining the pool of soluble methionine even when overshoot occurs in the conversion of soluble methionine to S-adenosylmethionine. The facts that the pool of soluble methionine is normally very small relative to the flux into S-adenosylmethionine and that the demand for the latter compound may change very markedly under different growth conditions make it plausible that such overshoot may occur unless the rate of synthesis of S-adenosylmethionine is regulated with exquisite precision. The metabolic cost of this apparent safeguard is the consumption of ATP. This S-methylmethionine cycle may well function in plants other than Lemna, but further substantiating evidence is neeeded.  相似文献   

6.
An O-methyltransferase which catalyses the methylation of caffeic acid to ferulic acid using S-adenosyl-l-methionine as methyl donor has been isolated and purified ca 70-fold from root nodules of alfalfa. The enzyme also catalysed the methylation of 5-hydroxyferulic acid. Chromatography on 1,6-diaminohexane agarose (AH-Sepharose-4B) linked with S-adenosyl-l-homocysteine (SAH) gave 35% recovery of enzyme activity. The Km values for caffeic acid and S-adenosyl-l-methionine were 58 and 4.1 μM, respectively. S-Adenosyl-l-homocysteine was a potent competitive inhibitor of S-adenosyl-l-methionine with a Ki of 0.44 μM. The MW of the enzyme was ca 103 000 determined by gel filtration chromatography.  相似文献   

7.
A series of methyl sulfonium compounds, containing appropriately positioned nucleophilic moieties, has been synthesized and studied as models for methylase enzymes in which the methyl sulfonium compound, S-adenosyl-l-methionine, serves as the methyl donor. The results of these studies show that there is a strict requirement for a linear transition state in intramolecular transmethylation reactions, and even slight deviations from this linear transition state are not permitted. These conclusions are pertinent in understanding the steric controls which appear to be operative in enzyme-catalyzed transmethylation reactions.  相似文献   

8.
5′-Methylthio[U-14C]adenosine was used as a culture supplement for Candida utilitis. The resulting S-adenosylmethionine was hydrolyzed into its structural components. Virtually none of the label of the pentose was found in the carbohydrate part of the intracellular S-adenosylmethionine. Much of it was present in the four-carbon chain of the methionine part of the sulfonium compound. The U-14C)-labeled adenine of 5′-methylthio[U-14C]adenosine did not contribute to the labeling of the amino acid component of the sulfonium compound.  相似文献   

9.
The endogenous content of methionine in isolated petals of Tradescantia was found to increase during petal senescence while the levels of S-methylmethionine and protein were found to decline. The increase in free methionine was, at least in part, the result of protein degradation. Methionine and homocysteine were shown to be intermediates in ethylene biosynthesis while S-methylmethionine was not involved. Application of 1-aminocyclopropane-1-carboxylic acid (ACC) to all floral tissues resulted in large stimulations of ethylene production. ACC was shown to be an endogenous amino acid the internal levels of which correlated positively with the rate of ethylene production. Application of l-methionine-[U-14C] led to a rapid appearance of radioactivity in both ethylene and ACC. The specific radioactivity of C-2 and C-3 of ACC and that of ethylene were found to be nearly identical which indicated that ACC was the immediate precursor of ethylene in senescing petals of Tradescantia.  相似文献   

10.
The EcoP15 restriction endonuclease forms complexes at specific sites on unmodified DNA both in the presence and in the absence of S-adenosyl-l-methionine. ATP acts as an allosteric effector of EcoP15 and induces DNA cleavage followed by release of the enzyme from the DNA. The efficiency of endonucleolytic scission varies from site to site. The nucleotide sequences at sites that are cleaved at a high frequency were compared.  相似文献   

11.
S-adenosyl-(L)-homocysteine (SAH) riboswitches are regulatory elements found in bacterial mRNAs that up-regulate genes involved in the S-adenosyl-(L)-methionine (SAM) regeneration cycle. To understand the structural basis of SAH-dependent regulation by RNA, we have solved the structure of its metabolite-binding domain in complex with SAH. This structure reveals an unusual pseudoknot topology that creates a shallow groove on the surface of the RNA that binds SAH primarily through interactions with the adenine ring and methionine main chain atoms and discriminates against SAM through a steric mechanism. Chemical probing and calorimetric analysis indicate that the unliganded RNA can access bound-like conformations that are significantly stabilized by SAH to direct folding of the downstream regulatory switch. Strikingly, we find that metabolites bearing an adenine ring, including ATP, bind this aptamer with sufficiently high affinity such that normal intracellular concentrations of these compounds may influence regulation of the riboswitch.  相似文献   

12.
Homocysteine-dependent transmethylases utilizing 5-methyltetrahydropteroylglutamic acid and S-adenosylmethionine as methyl donors have been examined using ammonium sulphate fractions prepared from isolated mitochondria of pea cotyledons. Substantial levels of a 5-rnethyltetrahydropteroylglutamate transmethylase were detected, the catalytic properties of this enzyme being found similar to those of a previously reported enzyme present in cotyledon extracts. The mitochondrial 5-CH3-H4PteGlu transmethylase had an apparent Km of 25 μM for the methyl donor, was saturated with homocysteine at 1 mM and was inhibited 50% by l-methionine at 2.5 mM. At similar concentrations of methyl donor the mitochondrial S-adenosylmethionine methyltransferase was not saturated. Mitochondrial preparations were found capable of synthesizing substantial amounts of S-adenosylmethionine but lacked ability to form S-methylmethionine. Significant levels of β-cystathionase, cystathionine-γ-synthase, l-homoserine transacetylase and l-homoserine transsuccinylase were detected in the isolated mitochondria. The activity of the enzymes of homocysteine biosynthesis was not affected by l-methionine in vitro. It is concluded that pea mitochondria have ability to catalyze the synthesis of methionine de novo.  相似文献   

13.
Assay for S-adenosylmethionine: methionine methyltransferase   总被引:1,自引:0,他引:1  
A quantitative assay for S-adenosylmethionine: methionine methyltransferase in phosphate buffer extracts has been developed. This enzyme catalyzes the biosynthesis of S-methylmethionine from methionine and S-adenosylmethionine. The radioactively labeled product, S-methylmethionine, is first separated from the radioactively labeled substrate, l-methionine, by means of ion-exchange chromatography. Once separated thusly, the amount present can then be directly determined by the use of a liquid scintillation spectrometer.  相似文献   

14.
As an important biological methyl group donor, S-adenosyl-l-methionine is used as nutritional supplement or drug for various diseases, but bacterial strains that can efficiently produce S-adenosyl-l-methionine are not available. In this study, Corynebacterium glutamicum strain HW104 which can accumulate S-adenosyl-l-methionine was constructed from C. glutamicum ATCC13032 by deleting four genes thrB, metB, mcbR and Ncgl2640, and six genes metK, vgb, lysCm, homm, metX and metY were overexpressed in HW104 in different combinations, forming strains HW104/pJYW-4-metK-vgb, HW104/pJYW-4-SAM2C-vgb, HW104/pJYW-4-metK-vgb-metYX, and HW104/pJYW-4-metK-vgb-metYX-homm-lysCm. Fermentation experiments showed that HW104/pJYW-4-metK-vgb produced more S-adenosyl-l-methionine than other strains, and the yield achieved 196.7 mg/L (12.15 mg/g DCW) after 48 h. The results demonstrate the potential application of C. glutamicum for production of S-adenosyl-l-methionine without addition of l-methionine.  相似文献   

15.
Cystathionine γ-synthase (CGS, EC 4.2.99.9), the first committed enzyme in methionine biosynthesis, was over-expressed in Arabidopsis thaliana by introducing in the genome of this plant the coding sequence of the Arabidopsis enzyme under the control of the cauliflower mosaic virus 35S promoter. In order to target the recombinant protein to the chloroplast, the transgene included the sequence encoding the N-terminal transit peptide of Arabidopsis CGS. CGS activity and polypeptide were increased several fold in these plants. There was a markedly increased level of soluble methionine in the leaves of the transformed plants, up to 15-fold, indicating that CGS is a rate-limiting enzyme in this metabolic pathway. In addition, the transformed plants strongly over-accumulated S-methylmethionine, but not S-adenosylmethionine, in agreement with the view that S-methylmethionine corresponds to a storage form of labile methyl groups in plants and/or plays a role in preventing S-adenosylmethionine accumulation. The same strategy was used to increase the level of cystathionine β-lyase (CBL, EC 4.4.1.8), the second committed enzyme in methionine biosynthesis, in transformed A. thaliana. Despite an increase in both CBL activity and polypeptide in transformed Arabidopsis plants over-expressing Arabidopsis CBL, there was very little change in the contents of soluble methionine and S-methylmethionine, suggesting strongly that CBL is not rate limiting in the methionine biosynthetic pathway.  相似文献   

16.
A method is described for the assay of histone methyltransferase using soluble histones as substrate. The precipitation of the methylated protein on chromatography paper allows for greater sensitivity and more rapid sample processing than have previously been reported. After incubation of the enzyme in the presence of radioisotopically labeled S-adenosyl-l-methionine and soluble rat brain histone, the residual S-adenosyl-l-methionine is removed by extensive washing in 1.1 m trichloroacetic acid. The amount of methyl groups incorporated into histones is measured by liquid seintillation counting. This procedure can probably be used to assay other protein methylases. A comparison is made between this assay and one using chromosomal bound histones as substrates.  相似文献   

17.
A methyltransferase, which catalyzes the methylation of luteolin (Km, 16 μM) using S-adenosyl-l-methionine as the methyl donor, has been purified about 38-fold from cell suspension cultures of soybean (Glycine max L., var. Mandarin). The following 3,4-dihydroxy phenolic compounds were also methylated: luteolin 7-O-glucoside (Km, 28 μm), quercetin (Km, 35 μm), eriodictyol (Km, 75 μm), 5-hydroxyferulic acid (Km, 227 μm), dihydroquercetin (Km, 435 μm), and caffeic acid (Km, 770 μm). Rutin and quercetin 3-O-glucoside were poor substrates. Methylation proceeded only in the meta position. The enzyme was unable to catalyze the methylation of p-coumaric acid, m-coumaric acid, ferulic acid, isoferulic acid, sinapic acid, apigenin, or naringenin. While the isoflavones biochanin A and daidzein did not serve as substrates, texasin (6,7-dihydroxy-3′-methoxyisoflavone) was methylated (Km, 35 μm). The methylation of caffeic acid and quercetin showed a pH optimum of 8.6–8.9. The enzyme required Mg2+ ions for maximum activity (approximately 1 mm) and could be totally inhibited by EDTA (10 mm). The Km for S-adenosyl-l-methionine was 11 μm. S-Adenosyl-l-homocysteine inhibited the methylation of luteolin by S-adenosyl-l-methionine.  相似文献   

18.
A novel affinity chromatographic adsorbent was developed for purification of spermidine synthase from rat prostate. The adsorbent (S-adenosyl(5′)-3-thiopropylamine-Sepharose) possesses a ligand structurally similar to S-adenosyl(5′)-3-methylthiopropylamine (decarboxy AdoMet), a substrate of spermidine synthase. The S-adenosyl(5′)-3-thiopropylamine-Sepharose was prepared by an alkylation on sulfur of S-adenosyl-3-thiopropylamine by bromoacetamidohexyl-Sepharose under mild acidic conditions. The enzyme has been purified to homogeneity in 40% yield by using DEAE-cellulose, affinity chromatography employing S-adenosyl(5′)-3-thiopropylamine-Sepharose, and gel filtration. The enzyme had a molecular weight of approximately 73,000 and was composed of two subunits of equal size. The specificity of the reaction was rather strict, but cadaverine could replace putrescine as the aminopropyl acceptor, and the rate was 1/20th of the rate for spermidine formation. Apparent Km values for putrescine and decarboxy AdoMet were 0.1 mm and 1.1 μm, respectively. Inhibition by decarboxy AdoMet and 5′-deoxy-5′-methylthioadenosine was observed. The inhibition by 5′-deoxy-5′-methylthioadenosine was partially noncompetitive with respect to decarboxy AdoMet.  相似文献   

19.
An S-adenosyl-l-methionine: o-dihydric phenol O-methyltransferase was isolated from tobacco cell suspension culture and was partially purified by (NH4)2SO4 precipitation and successive chromatography on DEAE-Sepharose, Sephacryl S-200 and hydroxyapatite columns. It catalysed the O-methylation of 3 cinnamic acids, two coumarins and two flavonoids, but to different extents. Results obtained from polyacrylamide gel electrophoresis, m-/p-methylation ratios and mixed substrate experiments indicated the existence of two forms of the enzyme which were resolved by chromatography on DEAE-cellulose. One form (MW 74000, pI 6.1, opt. pH 7.3) catalysed the meta-methylation of caffeic acid, while the other (MW 70000, pI 6.3, opt. pH 8.3) mediated the para-methylation of quercetin, though each form exhibited some activity against other substrates.  相似文献   

20.
Using a liquid chromatography method that separates the two sulfonium diastereoisomers of adenosylmethionine, we have found that immature soybeans, soybean callus culture, radish leaves, yeast and rat liver contain only the (S)-sulfonium form of S-adenosylmethionine. Our findings contradict the suggestion by Stolowitz and Minch that 10–20% of naturally-occurring adenosylmethionine may have the (R)-configuration at the sulfonium pole. Absence of the (R)-sulfonium isomer of adenosylmethionine in biological materials indicates that the (R)-sulfonium form of adenosylmethionine present in commercial adenosylmethionine samples is an artifact of the isolation procedure. Our method of measuring the isomers of adenosylmethionine enabled us to readily determine the rate of racemization and hydrolysis of adenosylmethionine. Our rate constants for racemization (Kr) and hydrolysis (Kh) were 2.4 × 10?6 sec?1 and 12.3 × 10-?6 sec?1, respectively; values which are noticeably different from those of Wu and co-workers which were obtained with a more complicated method (Kr = 8 × 10?1 sec?1; Kh = 6 × 10?6 sec?1). We believe the absence of the (R)-isomer in vivo is best explained by stabilization of the (S)-isomer as suggested by Wu et al. Although the tissues we have analysed contained the (S)-sulfonium form of adenosylmethionine exclusively, when ethionine-resistant soybean cell lines were given ethionine, they accumulated both sulfonium diastereoisomers of adenosylethionine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号