首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flash-induced absorption changes of Triton-solubilized Photosystem I particles from spinach were studied under reducing and/or illumination conditions that serve to alter the state of bound electron acceptors. By monitoring the decay of P-700 following each of a train of flashes, we found that P-430 or components resembling it can hold 2 equivalents of electrons transferred upon successive illuminations. This requires the presence of a good electron donor, reduced phenazine methosulfate or neutral red, otherwise the back reaction of P-700+ with P-430 occurs in about 30 ms. If the two P-430 sites, designated Centers A and B, are first reduced by preilluminating flashes or chemically by dithionite under anaerobic conditions, then subsequent laser flashes generate a 250 μs back reaction of P-700+, which we associate with a more primary electron acceptor A2. In turn, when A2 is reduced by background (continuous) illumination in presence of neutral red and under strongly reducing conditions, laser flashes then produce a much faster (3 μs) back reaction at wavelengths characteristic of P-700. We associate this with another more primary electron acceptor, A1, which functions very close to P-700. The organization of these components probably corresponds to the sequence P-700-A1-A2-P-430[AB]. The relation of the optical components to acceptor species detected by EPR, by electron-spin polarization or in terms of peptide components of Photosystem I is discussed.Preliminary experiments with broken chloroplasts suggest that an analogous situation occurs there, as well.  相似文献   

2.
Fluorescence yield dependence on external magnetic field (0–600 G) was measured for chlorophyll-protein complexes enriched with Photosystem I. Maximal relative changes of fluorescence yield at room temperature (1.0–2.5%) were dependent on the chlorphyll a:P-700 ratio. Magnetic field-induced changes were observed only in the presence of dithionite. At low temperatures (down to ?160°C) the magnetic field-induced effect decreased. The effect is obviously connected with the functions of reaction centers in Photosystem I. An explanation of the effect is proposed based on the hypothesis of radical pairs recombination within the reaction center. For the radical pair (P-700 A), an intermediate acceptor, A, with a g-value approximately equal to that of P-700 is proposed.  相似文献   

3.
The light-induced electron spin resonance signals of Photosystem I spinach subchloroplast particles have been studied at approximately 6 °K. Using the technique of flash photolysis-electron spin resonance with actinic illumination at 647 nm, a kinetic analysis of the previously observed bound ferredoxin ESR signals was carried out. Signal I (P700+) exhibits a partial light-reversible behavior at 6 °K so it was expected that if the bound ferredoxin is the primary acceptor of Photosystem I, it should also exhibit a partial reversible behavior. However, none of the bound ferredoxin ESR signals showed any such light reversible behavior. A search to wider fields revealed two components which did exhibit the expected kinetic behavior. These components are very broad (about 80 G) and are centered at g = 1.75 and g = 2.07. These two components exhibit the expected characteristics of the primary electron acceptor. A model is presented to account for the reversible and irreversible photochemical changes in Photosystem I. The possible identity of the primary acceptor responsible for these two new components, is discussed in terms of the available information. The primary acceptor may be an iron-sulfur protein, but not of the type characteristic of the bound or water-soluble ferredoxins found so far in chloroplasts.  相似文献   

4.
《BBA》1987,893(2):149-160
The Photosystem I reaction center is a membrane-bound, multiprotein complex containing a primary electron donor (P-700), a primary electron acceptor (A0), an intermediate electron acceptor (A1) and three membrane-bound iron-sulfur centers (FX, FB, and FA). We reported in part I of this series (Golbeck, J.H. and Cornelius, J.M. (1986) Biochim. Biophys. Acta 849, 16–24) that in the presence of 1% lithium dodecyl sulfate (LDS), the reaction center becomes dissociated, resulting in charge separation and recombination between P-700 and FX without the need for prereduction of FA and FB. In this paper, we report (i) the LDS-induced onset of the 1.2-ms ‘fast’ phase of the P-700 absorption transient is time-dependent, attaining a maximum 3:1 ratio of ‘fast’ to ‘slow’ kinetic phases; (ii) the ‘fast’ kinetic phase, corresponding to the P-700+ FX backreaction, is stabilized indefinitely by dilution of the LDS-treated particle followed by ultrafiltration over a YM-100 membrane; (iii) without stabilization, the P-700+ FX reaction deteriorates, leading to the rise of the long-lived P-700 triplet formed from the P-700+AO backreaction; (iv) the ‘slow’ kinetic phase correlates with the redox and ESR properties of FA and/or FB, which indicates that in a minority of particles the terminal iron-sulfur protein remains attached to the reaction center core; (v) the ultrafiltered reaction center is severely deficient in all of the low molecular-weight polypeptides, particularly the 19-kDa, 18-kDa and 12-kDa polypeptides relative to the 64-kDa polypeptide(s); (vi) the stabilized particle contains 5.8 mol labile sulfide per mol photoactive P-700, reflecting largely the iron-sulfur content of Fx, but also residual FA and FB, on the reaction center; and (vii) the apoproteins of FA and FB are physically removed from the reaction center particle as indicated by the presence of protein-bound zero-valence sulfur in the YM-100 filtrate. These results are interpreted in terms of a model for Photosystem I in which FA and FB are located on a low-molecular-weight polypeptide and FX is depicted as a [2Fe-2S] cluster shared between the two high-molecular-weight polypeptides Photosystem I-A1 and Photosystem I-A2.  相似文献   

5.
Photosystem I particles devoid of the secondary electron acceptor A1 were studied by nanosecond flash absorption. The primary radical pair (P-700+, A0 -) decays with a half-time of 35 ns. The difference spectrum was measured (400–870 nm). After subtraction of the P-700+/P-700 difference spectrum, the A0 -/A0 was obtained. It includes bleachings centered at 690 and 430 nm, and broad positive bands in the near infra-red and the blue-green. This spectrum is consistent with A0 being chlorophyll a absorbing at 690 nm.  相似文献   

6.
The Photosystem I primary reaction, as measured by electron paramagnetic resonance changes of P-700 and a bound iron-sulfur center, has been studied at 15°K in P-700-chlorophyll a-protein complexes isolated from a blue-green alga. One complex, prepared with sodium dodecyl sulfate shows P-700 photooxidation only at 300°K, whereas a second complex, prepared with Triton X-100, is photochemically active at 15°K as well as at 300°K. Analysis of these two preparations shows that the absence of low-temperature photoactivity in the sodium dodecyl sulfate complex reflects a lack of bound iron-sulfur centers in this preparation and supports the assignment of an iron-sulfur center as the primary electron acceptor of Photosystem I.  相似文献   

7.
《BBA》1986,849(1):25-31
The Photosystem I electron acceptor complex was characterized by optical flash photolysis and electron spin resonance (ESR) spectroscopy after treatment of a subchloroplast particle with lithium dodecyl sulfate (LDS). The following properties were observed after 60 s of incubation with 1% LDS followed by rapid freezing. (i) ESR centers A and B were not observed during or after illumination of the sample at 19 K, although the P-700+ radical at g = 2.0026 showed a large, reversible light-minus-dark difference signal. (ii) Center ‘X’, characterized by g factors of 2.08, 1.88 and 1.78, exhibited reversible photoreduction at 8 K in the absence of reduced centers A and B. (iii) The backreaction kinetics at 8 K between P-700, observed at g = 2.0026, and center X, observed at g = 1.78, was 0.30 s. (iv) The amplitudes of the reversible g = 2.0026 radical observed at 19 K and the 1.2 ms optical 698 nm transient observed at 298 K were diminished to the same extent when treated with 1% LDS at room temperature for periods of 1 and 45 min. We interpret the strict correlation between the properties and lifetimes of the optical P-700+ A2 reaction pair and the ESR P-700+ center X reaction pair to indicate that signal A2 and center X represent the same iron-sulfur center in Photosystem I.  相似文献   

8.
After blocking Photosystem II on whole Chlorella cells, we measured the absorption changes between 0°C and ?10°C.The absorption changes measured 2 μs after the beginning of a Xenon Flash are the sum of changes due to P+-700 and changes due to P?-430 (after the subtraction of the carotenoid triplet change and of the electrochromic effect).The reduction of P?-430 is not resolved by our technique. Its reoxidation presents a half-time around 1 μs at 0°C and around 2 μs at ?10°C.The reduction and protonation of ferredoxin-NADP-reductase to its neutral semi-quinoid form FNRH° present a half-time of about 3 μs at 0°C and 6 μs at ?10°C.The presence of only one photoreducible ferredoxin-NADP-reductase per Photosystem I center is confirmed. The acceptor preceding ferredoxin-NADP-reductase is not ferredoxin, but is an acceptor X' the differential extinction coefficients of which are weak or null from 420 nm to 480 nm.Tentative explanations which would reconcile these results with what was already known about ferredoxin are proposed.  相似文献   

9.
Fractions enriched in either Photosystem I or Photosystem II activity have been isolated from the blue-green alga, Synechococcus cedrorum after digitonin treatment. Sedimentation of this homogenate on a 10–30% sucrose gradient yielded three green bands: the upper band was enriched in Photosystem II, the lowest band was enriched in Photosystem I, while the middle band contained both activities. Large quantities of both particles were isolated by zonal centrifugation, and the material was then further purified by chromatography on DEAE-cellulose.The resulting Photosystem II particles carried out light-induced electron transport from semicarbizide to ferricyanide of over 2000 μmol/mg Chlorophyll per h (which was sensitive to 3-(3,4-dichlorophenyl)-1,1-dimethylurea), and was nearly devoid of Photosystem I activity. This particle contains β-carotene, very little phycocyanin, has a chlorophyll absorption maximum at 675 nm, and a liquid N2 fluorescence maximum at 685 nm. The purest Photosystem II particles have a chlorophyll to cytochrome b-559 ratio of 50 : 1. The Photosystem I particle is highly enriched in P-700, with a chlorophyll to P-700 ratio of 40 : 1. The physical structure of the two Photosystem particles has also been studied by gel electrophoresis and electron microscopy. These results indicate that the size and protein composition of the two particles are distinctly different.  相似文献   

10.
The linear dichroism of Photosystem I particles containing 10 chlorophylls per P700 has been investigated at 10 K. The particles were oriented by uniaxial squeezing of polyacrylamide gels. The oxidation state of P700 was altered either by incubation of the gels with redox mediators or by low temperature illumination. The QY transitions of the primary electron donor P700, of the remaining unoxidized chlorophyll in P700+ and of a chlorophyll molecule absorbing at 686 nm, which presumably corresponds to the primary electron acceptor A0, are all preferentially oriented perpendicular to the gel squeezing direction. The QY transition of the chlorophyll forms absorbing at 670 and 675 nm appear tilted at 40 ± 5° from this orientation axis. This orientation of the various chlorophylls is compared to that previously reported for more native Photosystem I particles.Abbreviations PSI Photosystem I - P700 primary electron donor of PSI - A0 primary electron acceptor of PSI  相似文献   

11.
Light-induced absorption changes associated with the primary photochemical reaction and dark relaxation in Photosystem I were measured at various low temperatures. A possible temperature-dependent long-range electron tunneling process was suggested to account for the unique temperature dependence of the dark decay process. The kinetics of the light-induced absorption changes are in good agreement with the light-induced EPR changes reported earlier (Ke, B., Sugahara, K., Shaw, E.R., Hansen, R. E., Hamilton, W. D. and Beinert, H. (1974) Biochim. Biophys. Acta 368, 401–408) for the same Photosystem I subchloroplast fragments at comparable temperatures.All absorption changes between 400 and 725 nm at 86 °K have identical kinetics. The light-minus-dark difference spectrum is very similar to that of P-700 at room temperature, with an additional prominent positive change at 690 nm. Possible contributions by P-430 to the blue and red spectral changes were discussed.It was demonstrated that the intensity of the measuring beam has a drastic effect on the light-induced absorption changes of Photosystem I at low temperatures. Various pretreatments of the Photosystem I fragments such as those that photochemically (or chemically) oxidize the primary donor or photoreduce the primary acceptor abolish the subsequent photochemical reaction. Continuous illumination of the Photosystem I fragments before and during freezing has the same effect.In the temperature range of ?20 to ?60 °C, an unusual counter absorption change as well as a counter EPR change were observed.  相似文献   

12.
《BBA》1986,849(1):16-24
The flash-induced absorption transient at 698 nm in a Photosystem I subchloroplast particle showed the following characteristics after addition of 0.25–2.0% lithium dodecyl sulfate (LDS). (i) The 30-ms transient corresponding to the P-700+ P-430 backreaction was replaced by a 1.2-ms transient. (ii) The amplitude of the transient did not change immediately after LDS addition, but decayed with a half-life of 10 min at pH 8.5. (iii) Methyl viologen had no effect on the magnitude or kinetics of the transient, indicating that it cannot accept an electron from this component. (iv) The difference spectrum of the transient from 400 nm to 500 nm was characteristic of an iron-sulfur protein. (v) The transient followed first-order Arrhenius behavior between 298 K and 225 K with an activation energy of 13.3 kJ/mol; between 225 K and 77 K, the 85-ms half-time remained temperature-invariant. These properties suggest that the LDS-induced absorption transient corresponds to the P-700+ A2 change recombination seen in the absence of a reduced electron-acceptor system. In the presence of LDS, the reaction-center complex was dissociated, allowing removal of the smaller peptides from the 64-kDa P-700-containing protein. With prolonged incubation, the iron-sulfur clusters were destroyed through conversion of the labile sulfide to zero-valence sulfur. About 35% of the zero-valence sulfur was found associated with the 64-kDa protein under conditions that allowed separation of the small peptides. We interpret the long lifetime of the P-700+ A2 transient after LDS addition and the association of zero-valence sulfur with a 64-kDa protein to indicate that A2 is closely associated with, and perhaps integral with, the P-700-containing protein.  相似文献   

13.
P. Gast  T. Swarthoff  F.C.R. Ebskamp  A.J. Hoff 《BBA》1983,722(1):163-175
The yield of the triplet state of the primary electron donor of Photosystem I of photosynthesis (PT-700) and the characteristic parameters (g value, line shape, saturation behavior) of the ESR signal of the photoaccumulated intermediary acceptor A have been measured for two types of Photosystem I subchloroplast particles: Triton particles (TSF 1, about 100 chlorophyll molecules per P-700) that contain the iron-sulfur acceptors FX, FB and FA, and lithium dodecyl sulfate (LDS) particles (about 40 chlorophyll molecules per P-700) that lack these iron-sulfur acceptors. The results are: (i) In Triton particles the yield of PT-700 upon illumination is independent of the redox state of A and of FX,B,A and is maximally about 5% of the active reaction centers at 5 K. The molecular sublevel decay rates are kx = 1100 s?1 ± 10%, ky = 1300 s?1 ± 10% and kz = 83 s?1 ± 20%. In LDS particles the triplet yield decreases linearly with concentration of reduced intermediary acceptors, the maximal yield being about 4% at 5 K assuming full P-700 activity. (ii) In Triton particles the acceptor complex A consists of two acceptors A0 and A1, with A0 preceding A1. In LDS particles at temperatures below ?30°C only A0 is photoactive. (iii) The spin-polarized ESR signal found in the time-resolved ESR experiments with Triton particles is attributed to a polarized P-700-A?1 spectrum. The decay kinetics are complex and are influenced by transient nutation effects, even at low microwave power. It is concluded that the lifetime at 5 K of P-700A0A?1 must exceed 5 ms. We conclude that PT-700 originates from charge recombination of P-700A?0, and that in Triton particles A0 and A1 are both photoaccumulated upon cooling at low redox potential in the light. Since the state P-700AF?X does not give rise to triplet formation the 5% triplet yield in Triton particles is probably due to centers with damaged electron transport.  相似文献   

14.
《BBA》1987,891(3):286-292
Photosystem I charge separation in a subchloroplast particle isolated from spinach was investigated by electron spin resonance (ESR) spectroscopy following graduated inactivation of the bound iron-sulfur centers by urea-ferricyanide treatment. Previous work demonstrated a differential decrease in iron-sulfur centers A, B and X which indicated that center X serves as a branch point for parallel electron flow through centers A and B (Golbeck, J.H. and Warden, J.T. (1982) Biochim. Biophys. Acta 681, 77–84). We now show that during inactivation the disappearance of iron-sulfur centers A, B, and X correlates with the appearance of a spin-polarized triplet ESR signal with |D| = 279·10−4 cm−1 and |E| = 39·10−4 cm−1. The triplet resonances titrate with a midpoint potential of +380 ± 10 mV. Illumination of the inactivated particles results in the generation of an asymmetric ESR signal with g = 2.0031 and ΔHpp = 1.0 mT. Deconvolution of the P-700+ contribution to this composite resonance reveals the spectrum of the putative primary acceptor species, A0, which is characterized by g = 2.0033 ± 0.0004 and ΔHpp = 1.0 ± 0.2 mT. The data presented in this report do not substantiate the participation of the electron acceptor A1 in PS I electron transport, following destruction of the iron-sulfur cluster corresponding to center X. We suggest that A1 is closely associated with center X and that this component is decoupled from the electron-transport path upon destruction of center X. The inability to photoreduce A1 in reaction centers lacking a functional center X may result from alteration of the reaction center tertiary structure by the urea-ferricyanide treatment or from displacement of A1 from its binding site.  相似文献   

15.
The photochemical oxidation and reduction of P-700 were studied in digitonin- and in sodium dodecyl sulphate (SDS)-Photosystem I (PS I) particles in the presence of ascorbate. In digitonin-PS I particles, reduction of P-700+ occurs by the bound iron-sulphur protein (P-430) and by ascorbate. The relative contribution of these back reactions depends on the length of the exposure to light and on the temperature and pH of the reaction medium. Experiments performed under anaerobic conditions demonstrate that some endogenous component may serve as the electron acceptor of P-430?. The rate of the latter reaction is also dependent upon the temperature and pH of the sample. At pH 9 and lower temperatures the rate of this reaction is so much reduced that the reduction of P-700+ by ascorbate, which increases rapidly at high pH, can be observed even during illumination. The effects of secondary electron acceptors and of the presence of SDS on the absorption changes due to P-700 are also reported. Low concentrations of SDS are shown to retard the back reaction of P-700+ with P-430?. Studies with SDS-PS I particles (CPI) confirm the absence of the iron-sulphur centres in this preparation. Three larger P-700-chlorophylla-protein complexes prepared by mild electrophoresis in the presence of SDS plus Triton X-100, however, still contain P-430.  相似文献   

16.
Photosystem I particles containing 30–40 chlorophyll a molecules per primary electron donor P700 were subjected to 1.5 ps low density laser flashes at 610 nm resulting in excitation of the antenna chlorophyll a molecules followed by energy transfer to P700 and subsequent oxidation of P700. Absorbance changes were monitored as a function of time with 1.5 ps time resolution. P700 bleaching (decrease in absorbance) occurred within the time resolution of the experiment. This is attributed to the formation of 1P700.* This observation was confirmed by monitoring the rise of a broad absorption band near 810 nm due to chlorophyll a excited singlet state formation. The appearance of the initial bleach at 700 nm was followed by a strong bleaching at 690 nm. The time constant for the appearance of the 690 nm bleach is 13.7±0.8 ps. In the near-infrared region of the spectrum, the 810 nm band (which formed upon the excitation of the photosystem I particles) diminished to about 60% of its original intensity with the same 13.7 ps time constant as the formation of the 690 nm band. The spectral changes are interpreted as due to the formation of the charge separated state P700+—A0 -, where A0 is the primary electron acceptor chlorophyll a molecule.  相似文献   

17.
Mark S. Crowder  Alan Bearden 《BBA》1983,722(1):23-35
The reduction rate of oxidized reaction center chlorophyll of Photosystem I after laser-flash excitation at 25 K has been determined for D-144 subchloroplast fragments and chloroplasts. A maximum of 40% of Photosystem I reaction centers undergo irreversible charge separation (P-700, Cluster A: P-700+, Cluster A?) at 25 K, a percentage which is independent of laser-flash intensity. The remaining reaction centers in chloroplasts and D-144 fragments undergo reversible charge separation with biphasic recombination. Similar amplitudes and time constants (chloroplasts, 49 μs (61%); D-144 fragments, 90 μs (67%)) were obtained for the fast component, while the slower component differed considerably in time (chloroplasts, 2.9 ms; D-144 fragments, 170 ms). It is known that Fe-S Cluster A is photoreduced in less than 1 ms at 25 K. Data obtained support a model for Photosystem I involving a single intermediate in the decay path between the reduced primary electron acceptor (A?1) and P-700+ and a second intermediate in the decay path between a reduced secondary electron acceptor and P-700+. Dual laser-flash experiments to determine rate constants for these processes are included.  相似文献   

18.
Treatment of spinach chloroplast fragments with the detergent lauryl dimethylamine oxide, followed by column chromatography on DEAE-cellulose, leads to the isolation of a Subchloroplast fragment that is enriched in Photosystem I. The spectrum of the lauryl dimethylamine oxide fragments, characterized by maxima at 418, 435, and 671 nm, shows the absence of chlorophyll b. The fragments contain 1 molecule of P700 per 40 chlorophyll molecules but have no cytochromes. The P700 in the fragments is photochemically active at both room temperature and liquid helium temperature. The fragments contain the primary electron acceptor of Photosystem I, as evidenced by the low-temperature photoreduction of a bound iron-sulfur protein. The fragments are able to catalyze noncyclic electron transfer from ascorbate to oxygen but not to the electron acceptor NADP.  相似文献   

19.
J. Amesz  B.G. De Grooth 《BBA》1976,440(2):301-313
Spinach chloroplasts, suspended in a liquid medium containing ethyleneglycol, showed reversible absorbance changes near 700 and 518 nm due to P-700 and “P-518” in the region from ?35 to ?50 °C upon illumination. The kinetics were the same at both wavelengths, provided absorbance changes due to Photosystem II were suppressed. At both wavelengths, the decay was slowed down considerably, not only by the System I electron acceptor methyl viologen, but also by silicomolybdate. The effect of the latter compound is probably not due to the oxidation of the reduced acceptor of Photosystem I by silicomolybdate, but to the enhanced accessibility of the acceptor to some other oxidant.In the presence of both an electron donor and acceptor for System I, a strong stimulation of the extent of the light-induced absorbance increase at 518 nm was observed. The most effective donor tested was reduced N-methylphenazonium methosulphate (PMS). The light-induced difference spectrum was similar to spectra obtained earlier at room temperature, and indicated electrochromic band shifts of chlorophylls a and b and carotenoid, due to a large potential over the thylakoid membrane, caused by sustained electron transport. It was estimated that steady-state potentials of up to nearly 500 mV were obtained in this way; the potentials reversed only slowly in the dark, indicating a low conductance of the membrane. This decay was accelerated by gramicidin D. The absorbance changes were linearly proportional to the membrane potential.  相似文献   

20.
A. Telfer  J. Barber  P. Heathcote  M.C.W. Evans 《BBA》1978,504(1):153-164
1. Photosystem I particles enriched in P-700 prepared by Triton X-100 treatment of chloroplasts show a light-induced increase in fluorescence yield of more than 100% in the presence of dithionite but not in its absence.2. Steady state light maintains the P-700, of these particles, in the oxidised state when ascorbate is present but in the presence of dithionite only a transient oxidation occurs.3. EPR data show that, in these particles, the primary electron acceptor (X) is maintained in the reduced state by light at room temperature only when the dithionite is also present. In contrast, the secondary electron acceptors are reduced in the dark by dithionite.4. Fluorescence emission and excitation spectra and fluorescence lifetime measurements for the constant and variable fluorescence indicate a heterogeneity of the chlorophyll in these particles.5. It is concluded that the variable fluorescence comes from those chlorophylls which can transfer their energy to the reaction centre and that the states PX and P+X are more effective quenchers of chlorophyll fluorescence than PX?, where P is P-700.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号