首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
 本文报告膜蛋白溶脱剂溶脱大鼠脑M胆碱受体的结果,其中0.5%CHAPS,0.35%洋地黄皂苷和10%甘油的混合液效果较好,可溶脱30%的受体,并得到22%有活性的受体。溶脱的受体有较好的稳定性,与膜结合受体有同样的配体结合特异性,可饱和性及可逆性。平衡结合及动力学研究表明溶脱受体和膜结合受体对[~3H]QNB有类似的亲和性。  相似文献   

2.
The effectiveness of several detergents and salts in solubilizing the muscarinic acetylcholine receptor (identified by its atropine-sensitive [3H]3-quinuclidinyl benzilate (QNB) binding) from bovine striatal membranes is reported. The highest density of receptor is obtained by extraction with 1% digitonin-0.1 mM EDTA. Although the total solubilized muscarinic receptors (sites/ml) are increased and the nonspecific binding is decreased when 1 M NaCl is included in this extraction medium, the receptor density (sites/mg protein) is lower. The solubilized receptors have the same specific QNB binding affinity, and sensitivity to a variety of drugs, as the membrane-bound muscarinic receptors.  相似文献   

3.
Abstract

To investigate if G-protein-receptor interactions can be characterized using sucrose density gradients (SDG) we have determined the experimental conditions for muscarinic acetylcholine receptor (mAChR) solubilization and analysis on SDG. Solubilization of 65–80% of [3H]QNB bound mAChR was accomplished with 1% of detergent. Analysis of solubilized receptors on SDG containing 0.4M KCl and 0.1% detergent demonstrated that the physical properties of the receptor-detergent complexes are influenced by the solubilizing detergent as well as detergents included in the SDG. Neither GTPγS nor NaF and AlCl3 altered the sedimentation properties of mAChR, suggesting that the solubilized mAChR is no longer associated with G-protein under these conditions. Receptors bound to [3H]oxotremorine and [3H]QNB had similar sedimentation properties, suggesting that, once solubilized, mAChRs do not remain associated with G-proteins. Covalent labeling with [3H]PrBCM followed by solubilization and analysis on SDS-gel electrophoresis demonstrated the presence of intact receptor molecule. These observations suggest that the changes in the sedimentation properties of detergent-receptor complexes are independent of G-protein interactions and are influenced by the nature of the detergent associated with the mAChR during analysis.  相似文献   

4.
We previously reported that muscarinic acetylcholine receptors (mAChRs) from porcine brains are glycoproteins. When porcine brain membranes were solubilized with digitonin or 3-[(3-cholamidopropyl)dimethylammonio]-1-propane sulfonate (CHAPS), approximately 20% of the receptors were solubilized, most (90% or more) of which bound to Sepharose 4B conjugated with wheat germ agglutinin (WGA). In contrast, when membranes were solubilized with Lubrol PX, a much larger fraction (approximately 60%) of the receptors were solubilized. However, about a third of this solubilized receptor population remained unbound to WGA-Sepharose even in the presence of an excess amount of the lectin-Sepharose. These results suggested a structural heterogeneity of the mAChR in terms of its carbohydrate moiety. The effects of lectins on the ligand binding properties of mAChRs were also studied. WGA or concanavalin A (ConA) was found to cause a 2- to 3-fold increase in the affinity of membrane-bound receptors to an antagonist [3H]quinuclidinyl benzylate [( 3H]QNB) without affecting the maximum number of sites, whereas the lectins had no significant effects on the binding of the agonist [3H]cis-methyldioxolane. When the membranes were dissolved with detergents, lectin did not increase the [3H]QNB affinity: These lectins caused an approximately 2 fold decrease in the affinity of digitonin-solubilized receptors for [3H]QNB. Thus the lectins exert differential effects on agonist and antagonist binding to the brain membrane mAChRs, most likely by modulating some intermolecular interactions.  相似文献   

5.
Abstract

The binding characteristics of [3H]quinuclidinyl benzilate ([3H]QNB) to isolated crude membranes of cultured bovine aortic endothelial cells were investigated. [3H]QNB bound to endothelial cell membranes with high affinity (kD = 0.056 nM) and limited capacity (132 fmol/mg DNA). The binding specificity, order of affinity and inhibition constants (Ki) were determined by displacement of bound [3H]QNB with unlabeled ligands. The order of affinity was QNB > atropine > 4-diphenylacetoxy-N-methyl-piperidine methiodide (4-DAMP) > p-fluoro-hexahydro-sila-difenidol (p-F-HHSiD) (M3 antagonist) > pirenzepine (M1 antagonist) > AFDX-116 (M2 antagonist) > (4-hydroxy-2-butynyl) trimethylammonium chloride m-chlorocarbanilate (McN-A-343, M1 agonist). These observations suggest that muscarinic receptors of endothelial cells in culture are likely to be of M3 and M1 subtype. Northern blot analysis of receptor subtypes using cDNA probes did not provide conclusive results due to the low level expression of these receptors in cultured cells. Solubilization of protein bound [3H]QNB with 1% digitonin and 0.02% cholate followed by analysis on sucrose density gradients demonstrated the presence of a specifically bound [3H]QNB-protein complex sedimenting at the 6.2S region of the gradient. These data demonstrate the presence of muscarinic acetylcholine receptor protein in cultured bovine aortic endothelial cells.  相似文献   

6.
The muscarinic acetylcholine receptor was solubilized from rat brain cortex by zwitterionic detergent 3-[(3-chloramidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS). About 15% of the binding activity was solubilized and 40% of the activity was destroyed by the detergent. Binding of the muscarinic antagonist [3H]-N-methyl-4-piperidyl benzilate (4NMPB) was saturable. Scatchard analysis revealed a single population of binding sites with KD value of 0.7 nM and a Bmax value of 340 fmoles/mg protein. The homogenate and the CHAPS treated pellet and soluble receptors showed similar affinity for the agonists oxotremorine and carbamylcholine and for the antagonists QNB and atropine. The dissociation of 4NMPB from the soluble receptors appears slightly slower than from the membrane bound receptors.  相似文献   

7.
Membranes of neuron-like NG108-15 hybrid cells bind [3H]quinuclidinyl benzilate (QNB) with high affinity and specificity. Greater than 90% of total [3H]QNB binding is to sites having the pharmacological specificity of muscarinic acetylcholine receptors. Three significant features characterize the interaction of ligands with these sites: (1) Specific binding of [3H]QNB at equilibrium follows a simple adsorption isotherm with an apparent KD of 1 × 10?10 M; (2) Rates of [3H]QNB association and dissociation are biphasic and, as the binding reaction proceeds, the fraction of readily dissociable [3H]QNB decreases; (3) Competition against [3H]QNB for specific binding sites by antagonists gives a slope of 1 when analyzed on Hill plots, but competition for binding sites by agonists gives a slope of less than 1. A simple two-step model for activation is proposed to account for these features.  相似文献   

8.
Male rats were treated for 10 days with the organophosphorus insecticide, acetylcholinesterase inhibitor, O,O-diethyl S-[2-(ethylthio)ethyl]phosphorodithioate (disulfoton, 2 mg/kg/day by gavage). At the end of the treatment, binding of [3H]quinuclidinyl benzilate ([3H]QNB) to cholinergic muscarinic receptors and cholinesterase (ChE) activity were assayed in the pancreas. Functional activity of pancreatic muscarinic receptor was investigated by determining carbachol-stimulated secretion of α-amylase in vitro. ChE activity and [3H]QNB binding were significantly decreased in the pancreas from disulfoton-treated rats. The alteration of [3H]QNB binding was due to a decrease in muscarinic receptor density with no change in the affinity. Basal secretion of amylase from pancreas in vitro was not altered, but carbachol-stimulated secretion was decreased. The effect appeared to be specific since pancreozymin was able to induce the same amylase release from pancreases of control and treated rats. The results suggest that repeated exposures to sublethal doses of an organophosphorus insecticide lead to a biochemical and functional alteration of cholinergic muscarinic receptors in the pancreas.  相似文献   

9.
Alpha2 adrenergic receptors were solubilized from human platelet particulate preparations with digitonin. The solubilized alpha2 receptors retained the essential binding specificity characteristics of the membrane-bound receptors. The alpha2 receptors could be labelled in platelet membranes with either agonist ([3H]epinephrine) or antagonist ([3H]yohimbine) radioligands. When these membranes were solubilized with digitonin and centrifuged on sucrose density gradients, the sedimentation coefficient of the agonist-labelled receptor (14.6S) was greater than that of the antagonist-labelled receptor (12.9S). This observation may provide insight into the mechanism of adenylate cyclase inhibition by alpha2 adrenergic receptors.  相似文献   

10.
The presence of muscarinic receptors in sheep and rat pineals was detected by binding of [3H]quinuclidinyl benzilate ([3H]QNB), a potent and specific muscarinic antagonist. [3H]QNB binding to sheep pineal membrane resuspensions was saturable and reversible, with a rate constant for association at 37°C of 6×108M?1min?1 and a rate constant for dissociation of 1×10?2min?1. Kinetic and saturation experiments yielded an equilibrium dissociation constant of 13–18 pM and a concentration of binding sites equivalent to 1.1 pmol/g of original wet weight. This is only about 5% of the level of β-adrenergic receptors. Competition by a variety of cholinergic drugs confirmed the muscarinic nature of the binding sites. Experiments in rats failed to detect a significant decrease in pineal [3H]QNB binding following bilateral superior cervical ganglionectomy, suggesting that the binding sites are not localized exclusively on sympathetic terminals.  相似文献   

11.
[3H] quinuclidinyl benzilate (QNB), a specific muscarinic antagonist, was utilized to identify muscarinic cholinergic receptors on dispersed anterior pituitary cells. Scatchard analysis of [3H] QNB binding to receptors departs from linearity with upward concavity. A high affinity binding site having a dissociation constant (Kd) of 1.5 nM was observed when the [3H] QNB concentration was varied from 0.15 to 20 nM. A low affinity binding site (Kd 20 nM) was observed when [3H] QNB concentration was above 20 nM. Using 10 nM [3H] QNB for binding, the second order association rate constant (k1) of 0.064 nM?1 min?1 and first order dissociation rate constant (k2) of 0.078 min?1(T12 8 min) were observed. k2/k1 = Kd of 1.22 nM is in good agreement with Kd = 1.5 nM from equilibrium data. Muscarinic cholinergic receptor antagonists, atropine and scopolamine, and agonist oxtoremorine potently competed with [3H] QNB binding. A nicotinic cholinergic receptor agonist was 50 times less potent as a competitor of [3H] QNB binding than the muscarinic agonist.  相似文献   

12.
The interaction of alkylguanidines and decahydrohistrionicotoxin with the membrane-bound and solubilized muscarinic acetylcholine receptor (mAcChR) from porcine atria was described. Alkylguanidines with alkyl chain lengths from one to ten carbons displaced l-[3H]quinuclidinyl benzilate (l-[3H]QNB) competitively from a single class of sites for the membrane-bound mAcChR. From a plot of ?ln Ki versus alkyl carbon chain number, a value of ?(473 ± 30) cal/mol was estimated as the energetic contribution per methylene group to the total binding energy. The binding of alkylguanidines to the digitonin/cholate solubilized mAcChR was complex in nature resulting in titration curves that did not obey the law of mass action for simple competitive inhibition at higher alkyl carbon numbers and a sigmoidal plot of ?ln Ki versus carbon number. Decahydrohistrionicotoxin bound in a competitive manner versus l-[3H]QNB to both the membrane-bound (Ki = (6.9 ± 1.4) × 10?6 M) and the solubilized (Ki = (1.5 ± 0.3) × 10?5 M) preparations.  相似文献   

13.
Muscarinic receptors in brain membranes from honey bees, houseflies, and the American cockroach were identified by their specific binding of the non-selective muscarinic receptor antagonist [3H]quinuclidinyl benzilate ([3H]QNB) and the displacement of this binding by agonists as well as subtype-selective antagonists, using filtration assays. The binding parameters, obtained from Scatchard analysis, indicated that insect muscarinic receptors, like those of mammalian brains, had high affinities for [3H]QNB (KD = 0.47 nM in honey bees, 0.17 nM in houseflies and 0.13 nM in the cockroach). However, the receptor concentration was low (108, 64.7, and 108 fmol/mg protein for the three species, respectively). The association and dissociation rates of [3H]QNB binding to honey bee brain membranes, sensitivity of [3H]QNB binding to muscarinic agonists, and high affinity for atropine were also features generally similar to muscarinic receptors of mammalian brains. In order to further characterize the three insect brain muscarinic receptors, the displacement of [3H]QNB binding by subtype-selective antagonists was studied. The rank order of potency of pirenzepine (PZ), the M1 selective antagonist, 11-[2-[dimethylamino)-methyl)1-piperidinyl)acetyl)-5,11- dihydro-6H-pyrido(2,3-b)-(1,4)-benzodiazepin-6 one (AF-DX 116), the M2-selective antagonist, and 4-DAMP (4-diphenylacetoxy-N-methylpiperidine methiodide) the M3-selective antagonist, was also the same as that of mammalian brains, i.e., 4-DAMP greater than PZ greater than AF-DX 116. The three insect brain receptors had 27-50-fold lower affinity for PZ (Ki 484-900 nM) than did the mammalian brain receptor (Ki 16 nM), but similar to that reported for the muscarinic receptor subtype cloned from Drosophila. Also, the affinity of insect receptors for 4-DAMP (Ki 18.9-56.6 nM) was much lower than that of the M3 receptor, which predominates in rat submaxillary gland (Ki of 0.37 nM on [3H]QNB binding). These drug specificities of muscarinic receptors of brains from three insect species suggest that insect brains may be predominantly of a unique subtype that is close to, though significantly different from, the mammalian M3 subtype.  相似文献   

14.
《Life sciences》1995,56(25):PL461-PL466
The agent 2α-(2′, 2′-disubstituted-2′-hydroxy-ethoxy) tropane (2α-DHET), its optical isomers and atropine were compared in their ability to inhibit specific [3H]QNB binding to muscarinic receptors of guinea pig ileum and to antagonize oxotremorine- and nicotine—induced contractions of isolated guinea pig ileum. A good correlation was observed between the affinities to muscarinic receptors and the antimuscarinic potencies in isolated guinea pig ileum. The binding data for 2α-DHET and its isomers were also consistent with their central and peripheral pharmacological activity in vivo. Compounds with 2′R configuration are more suitable to the stereostruture of the binding sites of muscarinic receptors than that of 2′S configuration.  相似文献   

15.
The β-adrenergic receptors ((?)[3H]alprenolol binding sites) present in a purified preparation of frog erythrocyte membranes have been solubilized with digitonin and assayed by equilibrium dialysis with (?)[3H]alprenolol. At a concentration of 0.5–1% the detergent solubilizes about 80% of the receptor binding activity. The soluble receptor sites are not sedimented at centrifugal forces up to 105,000 xg for two hours, pass freely through Millipore filters of 0.22 μ pore size and fractionate on Sepharose 6B gel with an apparent molecular weight of 130–150,000 in the presence of digitonin. The soluble receptor sites retain all of the binding characteristics of the membrane-bound receptors. β-adrenergic agonists and antagonists compete with (?)[3H]alprenolol for occupancy of the soluble sites with affinities which are directly related to their β-adrenergic potency on membrane-bound adenylate cyclase.  相似文献   

16.
B Baron  L G Abood 《Life sciences》1984,35(24):2407-2414
This study compared the capacity of different detergents to solubilize the muscarinic cholinergic receptor (mAChR) from bovine brain, evaluated various procedures for the measurement of [3H]-L-quinuclidinyl benzilate [( 3H]-L-QNB) binding to solubilized receptors, and examined some physical and chemical characteristics of the soluble material. An active form of the mAChR was solubilized using digitonin (1%), Triton X-100 (0.5%), and a digitonin-cholate mixture (1%, 0.1%). Values of maximal binding (Bmax) were 2.01, 0.47, and 0.68 pmoles/mg protein, respectively. Comparison of equilibrium dialysis, charcoal adsorption, and polyethylene glycol precipitation indicated that these methods differ in their estimation of Bmax. A decrease in [3H]-L-QNB binding to digitonin solubilized receptors occurred upon dilution or incubation at 37 degrees. The half-life at 37 degrees C was 25 min., but was increased by glycerol. Antagonist binding to digitonin solubilized receptors was saturable and of high affinity. Agonist binding had Hill coefficients less than 1 and was increased by micromolar concentrations of cupric ions.  相似文献   

17.
We have compared the effect of ethanol, a membrane perturbant, on the muscarinic binding sites in neural membranes from a vertebrate (rat) and an insect (locust). The binding of the muscarinic antagonist [3H]quinuclidinyl benzilate ([3H]QNB) to both rat and locust neural membranes was inhibited by ethanol at 10–500 mM concentrations; but this inhibition was greater in the locust. Ethanol (500 mM) increased the apparent dissociation constant (K d) of [3H]QNB binding to rat membranes from 0.13±0.01 nM in control to 0.20±0.02 nM; there was also an small but significant reduction in the number of binding sitesB max. In locust, 500 mM ethanol reduced theB max of [3H]QNB binding from 590±30 in control to 320±40 pmol/g protein; no significant alteration in theK D was detected. The dissociation rate constant (k off) of [3H]QNB increased from 0.020±0.003 in controls to 0.031±0.004 (min–1) in the presence of 500mM ethanol, the association rate constant (k on) did not change significantly. In locust, 500 mM ethanol did not affect eitherk on ork off. Competition experiments revealed that the binding affinities of both the agonist carbamylcholine and the antagonist atropine to the rat membranes were reduced in the presence of ethanol. In contrast, ethanol caused no alteration in the binding affinities of these ligands to the locust membranes. This differential effect of ethanol on rat and locust muscarinic binding suggests a difference in the hydrophobic domains and/or the membrane interactions of the muscarinic receptors in the two species.  相似文献   

18.
Abstract

The pharmacological characteristics of muscarinic receptor (mAChR) subtypes in canine left ventricular membranes (LVM) were determined using [3H]quinuclidinyl benzilate ([3H]QNB) and [3H] N-methyl scopolamine ([3H]NMS) as ligands. Binding of [3H]QNB and [3H]NMS was saturable with respect to the radioligand concentrations. Analysis of binding isotherms by Scatchard plot showed that [3H]QNB and [3H] NMS bound to an apparently homogeneous population of mAChRs in LVM, with KD values of 390 ± 100 and 285 ± 34 pM and Bmax values of 240 ± 20 and 133 ± 9 fmol/mg protein, (n=6), respectively. The Hill coefficients for [3H]QNB and [3H]NMS binding were 0.95 ± 0.02 and 0.99 ± 0.01, respectively. Based on the competitive inhibition of [3H] ligand binding, atropine and NMS as well as the selective M1 antagonist PZ revealed no selectivity for these mAChRs. PZ competed with [3H]QNB or [3H]NMS for a single binding site with a Ki value of 0.23 ± 0.03 μM and 0.62 ± 0.10 μM, (n = 6), respectively, which is close to the values of M2 or M3 receptors. The data indicate that the M1 receptor subtype did not exist in canine LVM. Competition of [3H] ligand binding with selective M2 antagonists, AF-DX 116 and methoctramine and the selective M3 antagonists, 4-DAMP and hexahydrosiladifenidol, gave a best fit for a two-binding site model. The inhibition of carbachol-mediated phosphoinositide hydrolysis by PZ, AF-DX 116 and 4-DAMP, generated an affinity profile for this response also dissimilar to that described for the classical cardiac M2 response. Although no other muscarinic receptor mRNA has been detected in this tissue, these data suggest the presence of a second population of muscarinic sites, which may signify an M2 receptor diversity.  相似文献   

19.
1. Sphingosine inhibited the binding of [3H]quinuclidinyl benzilate (QNB), a potent and specific muscarinic antagonist, in dispersed rat parotid acinar cells.2. The inhibition of [3H]QNB binding was expressed as decrease in affinity without significant change of a number of membrane sites.3. The effect of Sphingosine on the binding was not affected by the chelation of extracellular Ca2+.4. H-7, an inhibitor of protein kinase C, failed to decrease [3H]QNB binding.5. Stearylamine, an analogue of Sphingosine, was as effective as Sphingosine in inhibiting [3H]QNB binding.6. These results suggest that Sphingosine inhibits muscarinic cholinergic receptor binding by a mechanism that is independent on extracellular Ca2+ and protein kinase C.  相似文献   

20.
The effects of apomorphine on the binding properties of striatal muscarinic receptors were investigated using the specific muscarinic antagonist, [3H](?)3-quinuclidinyl benzilate ([3H](?)QNB). When binding measurements were made in 50 mM sodium/HEPES buffer, pH 7.4, containing Mg+2, the binding of [3H](?)QNB was consistent with the presence of two binding sites; 57% of the sites had a high affinity dissociation constant of 0.030 nM whereas the remaining sites had a low affinity dissociation constant of 0.64 nM. Apomorphine (1.0 μM) enhanced the binding of [3H](?)QNB by an apparent conversion of low to high affinity sites. A variety of other agents were screened for their ability to enhance [3H](?)QNB binding, and a pattern generally consistent with a dopaminergic effect was observed although some evidence for a β-adrenergic effect was demonstrable. The potent neuroleptics haloperidol, spiperone and sulpiride failed to antagonize the apomorphine enhancement of [3H](?)QNB binding as well as some adrenergic antagonists. However, the potent inhibitors of the dopamine-sensitive adenylate cyclase, α-flupenthixol and fluphenazine, specifically blocked the apomorphine enhancement of [3H](?)QNB binding with Ki values of approximately 0.1 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号