首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A steady-state kinetic analysis of the activation of bovine Factor X, by bovine Factor Xa, was undertaken. The activation was found to be dependent on the presence of divalent cations; Ca2+ showing the greatest stimulatory effect and Mn2+ exhibiting a lower degree of activity for this reaction. Although Sr2+ and Mg2+ were ineffective when present alone, each contributed synergistically to the activation rate at suboptimal levels of Ca2+. The effect of phospholipid (phosphatidylcholine:phosphatidylserine, 4:1, w:w) on the rate of activation and on the activation pathway was investigated. Phospholipid (PL) concentrations of up to 40 μm had no effect on the activation rate; whereas, concentrations of 40–180 μm were slightly inhibitory. In the absence of PL, the major product of the activation was Factor α-Xa, while in the presence of PL, lower-molecular-weight forms of Factor X (Factor β-X) and Factor Xa (Factor β-Xa were produced. At saturating levels of Ca2+, the Km app for the activation, at pH 7.4 and 37 °C, in the absence of PL, was found to be 0.6 ± 0.1 μm and the V was 1.7 ± 0.3 mol Factor X cleaved min?1 mol?1 Factor Xa. The corresponding values, in the presence of 90 μm PL, were 1.4 ± 0.2 μm and 2.2 ± 0.2 mol Factor X cleaved min?1 mol?1 Factor Xa.  相似文献   

2.
Petr Paucek  Martin Jab?rek 《BBA》2004,1659(1):83-91
The Na+/Ca2+ antiporter was purified from beef heart mitochondria and reconstituted into liposomes containing fluorescent probes selective for Na+ or Ca2+. Na+/Ca2+ exchange was strongly inhibited at alkaline pH, a property that is relevant to rapid Ca2+ oscillations in mitochondria. The effect of pH was mediated entirely via an effect on the Km for Ca2+. When present on the same side as Ca2+, K+ activated exchange by lowering the Km for Ca2+ from 2  to 0.9 μM. The Km for Na+ was 8 mM. In the absence of Ca2+, the exchanger catalyzed high rates of Na+/Li+ and Na+/K+ exchange. Diltiazem and tetraphenylphosphonium cation inhibited both Na+/Ca2+ and Na+/K+ exchange with IC50 values of 10 and 0.6 μM, respectively. The Vmax for Na+/Ca2+ exchange was increased about fourfold by bovine serum albumin, an effect that may reflect unmasking of an autoregulatory domain in the carrier protein.  相似文献   

3.
Ca2+-selective electrodes have been used to measure free intracellular Ca2+ concentrations in squid giant axons. Electrodes made of glass cannulas of about 20 μm in diameter, plugged with a poly(vinyl chloride) gelled sensor were used to impale the axons axially. They showed a Nernstian response to Ca2+ down to about 3 μM in solutions containing 0.3 M K+ and 0.025 M Na+. Sub-Nernstian but useful responses were obtained up to pCa 8. The electrodes showed adequate selectivity to Ca2+ over Mg2+, H+, K+ and Na+. To calibrate them properly, a set of standard solutions were prepared using different Ca2+ buffers (EGTA, HEEDTA, nitrilotriacetic acid) after carefully characterizing their apparent Ca2+ association constants under conditions resembling the axoplasmic environment. In fresh axons incubated in artificial seawater containing 4 mM Ca2+, the mean resting intracellular ionized calcium concentration was 0.106 μM (n = 15). The Ca2+-electrodes were used to investigate effects of different experimental procedures on the [Ca2+]i. The main conclusions are: (i) intact axons can extrude calcium ions at low [Ca2+]i levels by a process independent of external Na+; (ii) poisoned axons can extrude calcium ions at high levels of [Ca2+]i by an external Na+-dependent process. The level of free intracellular Ca attained at these latter conditions is about an order to magnitude greater than the resting physiological value.  相似文献   

4.
Interactions between metal ions and amino acids are common both in solution and in the gas phase. The effect of metal ions and water on the structure of l-histidine is examined. The effect of metal ions (Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+) and water on structures of His·M(H2O)m, m = 0.1 complexes have been determined theoretically employing density functional theories using extended basis sets. Of the five stable complexes investigated the relative stability of the gas-phase complexes computed with DFT methods (with one exception of K+ systems) suggest metallic complexes of the neutral l-histidine to be the most stable species. The calculations of monohydrated systems show that even one water molecule has a profound effect on the relative stability of individual complexes. Proton dissociation enthalpies and Gibbs energies of l-histidine in the presence of the metal cations Li+, Na+, K+, Mg2+, Ca2+, Ni2+, Cu2+ and Zn2+ were also computed. Its gas-phase acidity considerably increases upon chelation. Of the Lewis acids investigated, the strongest affinity to l-histidine is exhibited by the Cu2+ cation. The computed Gibbs energies ΔG are negative, span a rather broad energy interval (from ?130 to ?1,300 kJ/mol), and upon hydration are appreciably lowered.  相似文献   

5.
Ca2+ transport was studied in membrane vesicles of alkalophilic Bacillus. When Na+-loaded membrane vesicles were suspended in KHCO3/KOH buffer (pH 10) containing Ca2+, rapid uptake of Ca2+ was observed. The apparent Km value for Ca2+ measured at pH 10 was about 7 μM, and the Km value shifted to 24 μM when measured at pH 7.4. The efflux of Ca2+ was studied with Ca2+-loaded vesicles. Ca2+ was released when Ca2+-loaded vesicles were suspended in medium containing 0.4 M Na+.Ca2+ was also transported in membrane vesicles driven by an artificial pH gradient and by a membrane potential generated by K+-valinomycin in the presence of Na+.These results indicate the presence of Ca2+/Na+ and H+/Na+ antiporters in the alkalophilic Bacillus A-007.  相似文献   

6.
Relationships among several of the ion movements associated with the acrosome reaction of S. purpuratus were investigated. Egg jelly initiates 45Ca2+ and 22Na+ uptake, and K+ and H+ efflux. H+ efflux and 22Na+ uptake occur with approximately equivalent stoichiometries as rapidly as the appearance of acrosomal rods, perhaps reflecting a linked process. Most K+ loss, as measured either by 42K+ efflux or K+-ion-selective electrodes, occurs after the acrosome reaction is complete. Since an elevation of seawater K+ (from 10 to 15 mM) or the addition of 0.5 mM tetraethylammonium (TEA), an inhibitor of K+ channels, inhibits the acrosome reaction half-maximally, K+ movements or alterations of K+-dependent membrane potentials may regulate the triggering by jelly. Most, but not all, of the 45Ca2+ influx is inhibited with a mixture of 10 μM FCCP, 1 mM CN?, and 2 μg/ml oligomycin, suggesting that the mitochondria store most of the Ca2+. The extracellular Na+ concentration affects Ca2+ fluxes: sperm placed into 5 mM Na+ seawater have enhanced 45Ca2+ uptake, but do not undergo the acrosome reaction, unless 30 mM Na+ is also added. Low Na+ concentrations lead to spontaneous triggering, by allowing for both Ca2+ influx and Na+-dependent H+ efflux. At least one early Ca2+ requirement precedes the Na+ and H+ movements, as inferred from attempts at reversing the inhibitors of jelly induction of the acrosome reaction. When sperm are incubated with jelly in the absence of Ca2+, then washed and incubated with jelly in the presence of Ca2+, the acrosome reaction is triggered only upon the second incubation. However, when sperm are mixed with jelly in the presence of the other inhibitors (verapamil, TEA, 5 mM Na+ seawater, low pH, or elevated K+), they are altered so that even upon subsequent washing, jelly-mediated triggering is no longer possible. This suggests the existence of an intermediate state in the reaction pathway, that follows an event for which Ca2+ is required, but that precedes the Na+ and H+ movements, which are inhibited by all inhibitors of the acrosome reaction. These data are used to develop a partial sequence of ionic changes associated with the triggering mechanism.  相似文献   

7.
(i) The activity of purified NAD-specific isocitrate dehydrogenase from bovine heart was stimulated by free Ca2+ in the presence of ADP and subsaturating levels of magnesium isocitrate, but not in absence of ADP. However, Ca2+ was not absolutely required for ADP activation. This was particularly apparent when free Mg2+ was kept low (0.0024–0.020 mm) and the substrate magnesium dl-isocitrate ranged from 0.07–0.25 mm. When kinetic constants were determined at pH 7.4 under these conditions and in the absence of ethylene glycol bis(β-aminoethyl ether) N,N′-tetraacetate, Ca2+ had little or no effect on Km (app) for ADP; the stimulation of rate by Ca2+ was mainly due to increased V (app). With subsaturating ADP, there was an interdependence in the interaction of the enzyme with substrate and Ca2+. Thus, with ADP constant (0.30 mm) the values of Km (app) for magnesium dl-isocitrate declined from 0.35 mm at zero Ca2+ to 0.19 mm with saturating Ca2+ without affecting V; Km (app) for free Ca2+ declined with increasing magnesium isocitrate to a limiting Km of 0.3 μm. (ii) Ethylene glycol bis(β-aminoethyl ether)-N,N′-tetraacetate, frequently used as a calcium buffer, inhibited enzyme activity with and without ADP. (iii) The enzyme was not inhibited by the calmodulin inhibitors trifluoperazine and chlorpromazine. Inhibition by lanthanide ions of the isocitrate dehydrogenase was competitive with magnesium isocitrate and not with respect to Ca2+. The values of Kis (1.8 to 3.1 μm) for La3+, Yb3+, Gd3+, Eu3+, Tb3+, and Er3+ were about two orders of magnitude smaller than Km for magnesium dl-isocitrate.  相似文献   

8.
Summary The inhibition of Ca2–-ATPase, (Na++K+)-ATPase and Na+/Ca2+ exchange by Cd2+ was studied in fish intestinal basolateral plasma membrane preparations. ATP driven 45Ca2+ uptake into inside-out membrane vesicles displayed a K m for Ca2+ of 88±17 nm, and was extremely sensitive to Cd2+ with an IC50 of 8.2±3.0 pM Cd2+, indicating an inhibition via the Ca2+ site. (Na++K+)-ATPase activity was half-maximally inhibited by micromolar amounts of Cd2+, displaying an IC50 of 2.6±0.6 m Cd2+. Cd2+ ions apparently compete for the Mg2+ site of the (Na +K+)-ATPase. The Na+/Ca2+ exchanger was inhibited by Cd2+ with an IC50 of 73±11 nm. Cd2+ is a competitive inhibitor of the exchanger via an interaction with the Ca2+ site (K i = 11 nm). Bepridil, a Na+ site specific inhibitor of Na+/Ca2+ exchange, induced an additional inhibition, but did not change the K i of Cd2+. Also, Cd2+ is exchanged against Ca2+, albeit to a lesser extent than Ca2+. The exchanger is only partly blocked by the binding of Cd2+. In vivo cadmium that has entered the enterocyte may be shuttled across the basolateral plasma membrane by the Na+/Ca2+ exchanger. We conclude that intracellular Cd2+ ions will inhibit plasma membrane proteins predominantly via a specific interaction with divalent metal ion sites.We would like to thank Dr. D. Fackre (University of Alberta, Canada) for stimulating discussions and Mr. F.A.T. Spanings (University of Nijmegen, The Netherlands) for excellent fish husbandry. The fura-2 measurements of intracellular Ca2+ concentrations in tilapia enterocytes were carried out in the Department of Physiology, School of Medicine, University of Alberta, Edmonton, Alberta T6G 2H7, Canada. Th.J.M. Schoenmakers and G. Flik were supported by travel grants from the Foundation for Fundamental Biological Research (BION) and the Netherlands Organization for Scientific Research (NWO).  相似文献   

9.
Week-old wheat seedlings absorbed at least 40% NO3 from NaNO3 when preloaded with K+ than when preloaded with Na+ or Ca2+. Cultures of Triticum vulgare L. cv. Arthur were grown for 5 days on 0.2 mm CaSO4, pretreated for 48 hours with either 1 mm CaSO4, K2SO4, or Na2SO4, and then transferred to 1 mm NaNO3. All solutions contained 0.2 mm CaSO4. Shoots of K+-preloaded plants accumulated three times more NO3 than shoots of the other two treatments. Initially, the K+-preloaded plants contained 10-fold more malate than either Na+- or Ca2+-preloaded seedlings. During the 48-hour treatment with NaNO3, malate in both roots and shoots of the K+-preloaded seedlings decreased. Seedlings preloaded with K+ reduced 25% more NO3 than those preloaded with either Na+ or Ca2+. These experiments indicate that K+ enhanced NO3 uptake and reduction even though the absorption of K+ and NO3 were separated in time. Xylem exudate of K+-pretreated plants contained roughly equivalent concentrations of K+ and NO3, but exudate from Na+ and Ca2+-pretreated plants contained two to four times more NO3 than K+. Therefore K+ is not an obligatory counterion for NO3 transport in xylem.  相似文献   

10.
It has been known for more than three decades that outward Kir currents (IK1) increase with increasing extracellular K+ concentration ([K+]o). Although this increase in IK1 can have significant impacts under pathophysiological cardiac conditions, where [K+]o can be as high as 18 mm and thus predispose the heart to re-entrant ventricular arrhythmias, the underlying mechanism has remained unclear. Here, we show that the steep [K+]o dependence of Kir2.1-mediated outward IK1 was due to [K+]o-dependent inhibition of outward IK1 by extracellular Na+ and Ca2+. This could be accounted for by Na+/Ca2+ inhibition of IK1 through screening of local negative surface charges. Consistent with this, extracellular Na+ and Ca2+ reduced the outward single-channel current and did not increase open-state noise or decrease the mean open time. In addition, neutralizing negative surface charges with a carboxylate esterifying agent inhibited outward IK1 in a similar [K+]o-dependent manner as Na+/Ca2+. Site-directed mutagenesis studies identified Asp114 and Glu153 as the source of surface charges. Reducing K+ activation and surface electrostatic effects in an R148Y mutant mimicked the action of extracellular Na+ and Ca2+, suggesting that in addition to exerting a surface electrostatic effect, Na+ and Ca2+ might inhibit outward IK1 by inhibiting K+ activation. This study identified interactions of K+ with Na+ and Ca2+ that are important for the [K+]o dependence of Kir2.1-mediated outward IK1.  相似文献   

11.
The capacity of various metal ions to support activation of bovine factor IX, by the coagulant protein of Russell's Viper venom, has been examined. The following metal ions, at concentrations which saturate their effect, promoted activation of factor IX, at approximately equal efficiency: Ca2+, Mn2+, Sr2+, and Co2+, Other metal ions, i.e., Ba2+, and Mg2+, at saturating concentrations, led to a maximum rate of activation of factor IX of 25%, compared to Ca2+, The lanthanides, Gd2+, and Tb3+, also promoted activation in this system, at maximal rates of approximately 15%, compared to Ca2+, In this study, it was also discovered that the esterase activity of bovine factor IXa was dependent upon the presence of metal ions. Utilizing α-N-benzoyl-l-arginine ethyl ester as the substrate, steady state kinetic analysis in the absence of metal ion indicated that the Km and Vmax for this substrate was 20 mm and 2.9 μmol substrate cleaved min?1 mg?1 of factor IXa, respectively, at pH 8.0 and 30 °C. In the presence of optimal concentrations of Ca2+, Mn2+, Mg2+, Sr2+, and Ba2+, the Vmax values for this same substrate increased to 6.7, 5.9, 5.0, 5.0, and 3.7 μmol cleaved min?1 mg?1 of factor IXa, respectively. None of these metal ions had an affect on the Km value of this substrate.  相似文献   

12.
Pyridoxine kinase purified from sheep liver was found to consist of a single polypeptide chain with a molecular weight of 60,000 as determined by gel filtration, sedimentation equilibrium ultracentrifugation, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The isoelectric pH of the enzyme was 5.1, and the pH optimum was between 5.5 and 6.0. The enzyme required divalent cations for activity. At cation concentrations of 80 μm, the enzyme activity with each cation was in the order of Zn2+ > Mn2+ > Mg2+. At cation concentrations of 400 μm, the enzyme activity with each cation was in the order of Mn2+ > Zn2+ > Mg2+. Excess free divalent cation inhibited the enzyme. Pyridoxine kinase also required monovalent cations. The enzyme activation was greatest with K+, then Rb+ and NH4+, whereas the enzyme had very little activity with Na+, Li+, or Cs+. Na+ did not interfere with the activation by K+. The activation of the kinase by K+, NH4+, and Rb+ followed Michaelis-Menten kinetics, and the apparent Km values for the cations were 8.9, 3.7, and 5.3 mm, respectively. Increasing the potassium concentration lowered the apparent Km value of the enzyme for pyridoxine and had little or no effect on the Km for ZnATP2? or the V of the kinase-catalyzed reaction.  相似文献   

13.
Plasma membranes of rabbit thymus lymphocytes accumulated Ca2+ when a Na+ gradient (intravesicular > extravesicular) was formed across the membranes. Dissipation of the Na+ gradient by the addition of Na+ to the external medium decreased Ca2+ uptake. Ca2+ preloaded into the lymphocytes was extruded when Na+ was added to the external medium. The Ca2+ uptake decreased at acidic pH but increased at alkaline pH (above 8) and the activity was saturable for Ca2+ (apparent Km for Ca2+ was 61 μM and apparent Vmax was 11.5 nmol/mg protein per min). Na+-dependent uptake of Ca2+ was inhibited by tetracaine and verapamil, and partially inhibited by La3+. The uptake was not influenced by orthovanadate.  相似文献   

14.
Activities and some properties of microsomal ATPases have been studied in developing human placenta. The enzyme activities (Na+ + K+ + Mg2+, Mg2+, and Ca2+ dependent) in the placenta increase steadily with gestational age until the 18th to 21st week, and decrease in the second half of pregnancy. Mg2+-dependent and Na+ + K+ + Mg2+-dependent ATPases possess nearly the same Km (apparent) for ATP, while the Ca2+-dependent enzyme shows a different one. Mg2+-dependent ATPase shows higher substrate affinity than Ca2+-dependent ATPase, although the Vmax of the Mg2+-dependent enzyme is lower than that of the latter. However, for each enzyme, the Km remains almost constant and Vmax varies during ontogenic development. Vmax of the enzymes decline at term. The enzymes are heat-labile, unaffected by amino acids, namely, l-phenylalanine, l-leucine, and l-tryptophan, and deoxycholate inhibits the enzyme activities by about 50%.  相似文献   

15.
The observed equilibrium constant Kobs for the hydrolysis of ATP to ADP and inorganic phosphate has been calculated as a function of pH and metal ion concentration pM (- log [M]) at 25 °C and μ = 0.2 with the use of literature values of the acid dissociation and complex dissociation constants for the phosphates.The resulting standard free energy changes ΔG °′ are presented by means of contour diagrams for the range pH 4–10 and pM 1–7. These maps summarize the results of some 1900 calculations per diagram, and clearly simulate a differential effect of the metal ions of interest, including Mg2+, Ca2+, Sr2+, Mn2+, Li+, Na+ and K+, on the equilibrium hydrolysis of ATP.  相似文献   

16.
The uptake of K+ and Ca2+ in Dunaliella salina is mediated by two distinct carriers: a K+ carrier with a high selectivity against Na+, Li+, and choline+ but not towards Rb+, K+, Cs+, or NH4+, and a Ca2+ carrier with a high selectivity against Mg2+. The latter is specifically blocked by La3+ and by Cd2+. Apparent Km values for K+ and Ca2+ uptake are 2.5 and 0.8 millimolar, respectively, and their maximal calculated fluxes are 22 and 0.8 nanomoles per square meter per second, respectively. Effects of permeable ions and ionophores on K+ and Ca2+ uptake suggest that the driving force for their uptake is the transmembrane electrical potential. Inhibitors of ATP production, typical inhibitors of plasma membrane H+-ATPases and protonionophores inhibit K+ and Ca2+ uptake and accelerate K+ efflux. The results suggest that an H+-ATPase in the cell membrane provides the driving force for K+ and Ca2+ uptake. Efflux measurements from 86Rb+ and 45Ca2+ loaded cells suggest that part of the intracellular K+ and most of the intracellular Ca2+ is nonexchangeable with the extracellular pool. Correlations between phosphate and K+ contents and the effect of phosphate on K+ efflux suggest intracellular associations between K+ and polyphosphates. On the basis of these results, it is suggested that: (a) K+ and Ca2+ uptake in D. salina is driven by the transmembrane electrical potential which is generated by the action of an H+-ATPase of the plasma membrane. (b) Part of the intracellular K+ is associated with polyphosphate bodies, while most of the intracellular Ca2+ is accumulated in intracellular organelles in the algal cells.  相似文献   

17.
K+-dependent Na+-Ca2+ exchangers (NCKXs) play an important role in Ca2+ homeostasis in many tissues. NCKX proteins are bi-directional plasma membrane Ca2+-transporters which utilize the inward Na+ and outward K+ gradients to move Ca2+ ions into and out of the cytosol (4Na+:1Ca2+ + 1 K+). In this study, we carried out scanning mutagenesis of all the residues of the highly conserved α-1 and α-2 repeats of NCKX2 to identify residues important for K+ transport. These structural elements are thought to be critical for cation transport. Using fluorescent intracellular Ca2+-indicating dyes, we measured the K+ dependence of transport carried out by wildtype or mutant NCKX2 proteins expressed in HEK293 cells and analyzed shifts in the apparent binding affinity (Km) of mutant proteins in comparison with the wildtype exchanger. Of the 93 residue substitutions tested, 34 were found to show a significant shift in the external K+ ion dependence of which 16 showed an increased affinity to K+ ions and 18 showed a decreased affinity and hence are believed to be important for K+ ion binding and transport. We also identified 8 residue substitutions that resulted in a partial loss of K+ dependence. Our biochemical data provide strong support for the cation binding sites identified in a homology model of NCKX2 based on crystal structures reported for distantly related archaeal Na+-Ca2+ exchanger NCX_Mj. In addition, we compare our results here with our previous studies that report on residues important for Ca2+ and Na+ binding. Supported by CIHR MOP-81327.  相似文献   

18.
Abstract: With a partially purified, membrane-bound (Ca + Mg)-activated ATPase preparation from rat brain, the K0.5 for activation by Ca2+ was 0.8 p μm in the presence of 3 mm -ATP, 6 mm -MgCl2, 100 mM-KCI, and a calcium EGTA buffer system. Optimal ATPase activity under these circumstances was with 6-100 μm -Ca2+, but marked inhibition occurred at higher concentrations. Free Mg2+ increased ATPase activity, with an estimated K0.5, in the presence of 100 μm -CaCl2, of 2.5 mm ; raising the MgCl2 concentration diminished the inhibition due to millimolar concentrations of CaCl2, but antagonized activation by submicromolar concentrations of Ca2+. Dimethylsulfoxide (10%, v/v) had no effect on the K0.5 for activation by Ca2+, but decreased activation by free Mg2+ and increased the inhibition by millimolar CaCl2. The monovalent cations K+, Na+, and TI+ stimulated ATPase activity; for K+ the K0.5 was 8 mm , which was increased to 15 mm in the presence of dimethylsulfoxide. KCI did not affect the apparent affinity for Ca2+ as either activator or inhibitor. The preparation can be phosphorylated at 0°C by [γ-32P]-ATP; on subsequent addition of a large excess of unlabeled ATP the calcium dependent level of phosphorylation declined, with a first-order rate constant of 0.12 s?1. Adding 10 mm -KCI with the unlabeled ATP increased the rate constant to 0.20 s?1, whereas adding 10 mm -NaCl did not affect it measurably. On the other hand, adding dimethyl-sulfoxide slowed the rate of loss, the constant decreasing to 0.06 s?1. Orthovanadate was a potent inhibitor of this enzyme, and inhibition with 1 μm -vanadate was increased by both KCI and dimethylsulfoxide. Properties of the enzyme are thus reminiscent of the plasma membrane (Na + K)-ATPase and the sarcoplasmic reticulum (Ca + Mg)-ATPase, most notably in the K+ stimulation of both dephosphorylation and inhibition by vanadate.  相似文献   

19.
RNA G-quadruplexes, as their well-studied DNA analogs, require the presence of cations to fold and remain stable. This is the first comprehensive study on the interaction of RNA quadruplexes with metal ions. We investigated the formation and stability of two highly conserved and biologically relevant RNA quadruplex-forming sequences (24nt-TERRA and 18nt-NRAS) in the presence of several monovalent and divalent metal ions, namely Li+, Na+, K+, Rb+, Cs+, NH4 +, Mg2+, Ca2+, Sr2+, and Ba2+. Circular dichroism was used to probe the influence of these metal ions on the folded fraction of the parallel G-quadruplexes, and UV thermal melting experiments allowed to assess the relative stability of the structures in each cationic condition. Our results show that the RNA quadruplexes are more stable than their DNA counterparts under the same buffer conditions. We have observed that the addition of mainly Na+, K+, Rb+, NH4 +, as well as Sr2+ and Ba2+ in water, shifts the equilibrium to the folded quadruplex form, whereby the NRAS sequence responds stronger than TERRA. However, only K+ and Sr2+ lead to a significant increase in the stability of the folded structures, which is consistent with their coordination to the O6 atoms from the G-quartet guanosines. Compared to the respective DNA motives, dNRAS and htelo, the RNA sequences are not stabilized by Na+ ions. Finally, the difference in response between NRAS and TERRA, as well as to the corresponding DNA sequences with respect to different metal ions, could potentially be exploited for selective targeting purposes.  相似文献   

20.
P2X2 purinoceptors are cation-selective channels activated by ATP and its analogues. Using single channel measurements we studied the channel's selectivity for the alkali metal ions and organic monovalent cations NMDG+, Tris+, TMA+, and TEA+. The selectivity sequence for currents carried by alkali metal ions is: K+ > Rb+ > Cs+ > Na+ > Li+, which is Eisenman sequence IV. This is different from the mobility sequence of the ions in free solution suggesting there is weak interaction between the ions and the channel interior. The relative conductance for alkali ions increases linearly in relation to the Stokes radius. The organic ions NMDG+, Tris+, TMA+ and TEA+ were virtually impermeant. The divalent ions (Mn2+, Mg2+, Ca2+ and Ba2+) induced a fast block visible as a reduction in amplitude of the unitary currents. Using a single-site binding model, the divalent ions exhibited an equilibrium affinity sequence of Mn2+ > Mg2+ > Ca2+ > Ba2+. Received: 3 May 1999/Revised: 23 August 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号