首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In Physarum polycephalum most genes coding for ribosomal RNA are not integrated in chromosomes, but are located in many copies in the nucleolus as plasmid-like palindromic DNA molecules. To find out whether coding sequences of rDNA are organized in a chromatin-like structure similar to that of bulk chromatin, nuclei were treated with micrococcal nuclease and DNA fragments were isolated. From bulk chromatin multimers of a basic unit of 170-180 base pairs were obtained. Nuclease fragmented DNA hybridized with labelled 19-S + 26-S rRNA was found to give the same saturation value as did unfragmented control DNA. No preferential degradation of ribosomal genes to acid soluble products was observed. A more detailed analysis of the nuclease degradation products was carried out with fragments separated by preparative gel electrophoresis. DNA eluted from the gels was hybridized in solution with labelled 19-S + 26-S rRNA. The coding sequences of rRNA were found to be degraded to approximately nucleosome size slightly more quickly than was the DNA of bulk chromatin. However, the distribution of the rDNA fragments on the gels did not coincide with the distribution of the fragments derived from bulk chromatin nucleosomes and their oligomers. The amount of rDNA in the interband regions was about intermediate between that found in the two adjacent bands. These results lead to the conclusion that the ribosomal genes, most of which are presumably active during rapid growth, are protected by proteins, probably histones. However, the ribosomal genes are present in a structure differing in some way from that of bulk chromatin.  相似文献   

4.
5.
Analysis of human cytomegalovirus nucleoprotein complexes   总被引:2,自引:2,他引:0       下载免费PDF全文
When chromatin was isolated from cells infected with human cytomegalovirus, the virus DNA remained with the chromatin fraction. If deproteinized virus DNA was added to either isolated nuclei or chromatin, the DNA was lost during the chromatin isolation. When isolated chromatin from cytomegalovirus-infected cells was banded in isopycnic metrizamide gradients, a single peak with a density of 1.18 g/cm3 was present. Analysis of this peak in isopycnic neutral CsCl gradients indicated that it contained both human cytomegalovirus and human embryonic lung cell DNAs. When infected nuclei were treated with micrococcal nuclease, 11S subunit particles which cosedimented with cell nucleosomes and contained virus DNA were isolated.  相似文献   

6.
7.
The chromatin structure of the oocyte-type 5S RNA genes in Xenopus laevis was investigated. Blot hybridization analysis of DNA from micrococcal nuclease digests of erythrocyte nuclei showed that 5S DNA has the same average nucleosome repeat length, 192 +/- 4 base pairs, as two Xenopus satellite DNAs and bulk erythrocyte chromatin. The positions of nuclease-sensitive regions in the 5S DNA repeats of purified DNA and chromatin from erythrocytes were mapped by using an indirect end-labeling technique. Although most of the sites cleaved in purified DNA were also cleaved in chromatin, the patterns of intensities were strikingly different in the two cases. In 5S chromatin, three nuclease-sensitive regions were spaced approximately a nucleosome length apart, suggesting a single, regular arrangement of nucleosomes on most of the 5S DNA repeats. The observed nucleosome locations are discussed with respect to nucleotide sequences known to be important for expression of 5S RNA. Because the preferred locations appear to be reestablished in each repeating unit, despite spacer length heterogeneity, we suggest that the regular chromatin structure reflects the presence of a sequence-specific DNA-binding component on inactive 5S RNA genes.  相似文献   

8.
It was show11 that nuclear reassembly was induced by small pieces of DNA fragments in cell-free extracts ofXenopus. In an attempt to learn the relationship between the nuclear reassembly and nucleosome/chromatin assembly, limited amounts of CM-Cellulose are used to eliminate the capacity of the egg extract S-150 to assemble chromatin. while the forming of nucleosomes is checked with DNA supercoiling by plasmid DNA pBR322 incubated in the extract, and further analysed by micrococcal nuclease digestion. This depleted extract is then used to induce nuclear reassembly around demembraned sperms with membrane vesicles. It is found that CM-Cellulose depletes histones H2A and H2B efficiently and blocks the assembly of nucleosomes, the demembraned sperms are yet reconstituted into nuclei in the treated S-150, although the chromatin in reassembled nuclei does not produce protected DNA fragments when digested with micrococcal nuclease. It suggests that in the cell-free system ofXenopus, DNA can be formed into nuclei without assembly of nucleosomes or chromatin.  相似文献   

9.
10.
11.
It was shown with the use of specific probes that mild micrococcal nuclease digestion releases from chromatin actively-transcribed genes as small nucleosome oligomers. In the present work we demonstrate that most if not all of the active genes are accessible to the nuclease. It was found that the short released fragments are greatly enriched in transcribed DNA sequences, the most enriched being the dimers of nucleosomes since 35% of their DNA could be hybridized to cytoplasmic RNA. The results of cDNA-DNA hybridizations indicate that the monomers and dimers of nucleosomes contain most of the DNA sequences which encode poly(A+) RNAs, however larger released fragments include some transcribed sequences, while the nuclease-resistant chromatin is considerably impoverished in coding sites. These evidences and the finding that about 25% of the DNA from the dimers of nucleosomes are exclusively located in this class of fragments, tend to prove that the active chromatin regions are attacked in a non-random way by micrococcal nuclease. We have previously isolated, without using exogenous nuclease, an actively transcribed genomic fraction amounting to 1.5–2% of the total nuclear DNA, formed of single-stranded DNA. In the present study we show that all or nearly all the single-stranded DNA sequences could be reassociated with the DNA fragments present in the released monomers and dimers of nucleosomes. Our observations confirmed our previous finding that the greatest part of single-stranded DNA selectively originates from the coding strand of genomic DNA.  相似文献   

12.
Mono- and dinucleosomes preferentially cleaved from mouse myeloma chromatin by very mild micrococcal nuclease digestion at 0 degree C are soluble and are released from nuclei under near-physiological conditions in which normal nucleosomes containing Hl are insoluble. These nucleosomes are highly enriched in RNA, high-mobility-group proteins and a unique subset of other non-histone proteins. They are nearly devoid of histone Hl and contain DNA significantly less methylated than whole myeloma DNA, indicating that they comprise a subset of genomic sequences. Previously we have shown that this fraction is enriched in transcribed DNA sequences. Non-histone proteins that co-sedimented with readily solubilized nucleosomes included many of the most basic, low-to-moderate molecular weight chromosomal proteins. Many of these proteins were also preferentially acetylated in vivo. The residual, pelleted chromatin was highly enriched in high molecular weight proteins (greater than 60 000), and very depleted in medium molecular weight proteins. Readily solubilized nucleoproteins sedimenting like mononucleosomes were partly resolved by electrophoresis, under non-denaturing conditions, into several subfractions differing significantly in non-histone protein contents. Methods described here should be useful for identifying and isolating non-histone proteins bound to nucleosomes and other chromatin regions that are structurally and functionally unique.  相似文献   

13.
Jean O. Thomas  R.J. Thompson 《Cell》1977,10(4):633-640
We have used micrococcal nuclease as a probe of the repeating structure of chromatin in four nuclear populations from three tissues of the rabbit. Neuronal nuclei isolated from the cerebral cortex contain about 160 base pairs of DNA in the chromatin repeat unit, as compared with about 200 base pairs for nonastrocytic glial cell nuclei from the same tissue, neuronal nuclei from the cerebellum and liver nuclei. All four types of nuclei show the same features of nucleosomal organization as other eucaryotic nuclei so far studied: nucleosomes liberated by digestion with micrococcal nuclease give a “core particle” containing 140 base pairs as a metastable intermediate on further digestion and a series of single-strand DNA fragments which are mutiples of 10 bases after digestion with DNAase I. Nuclei from cerebral cortex neurons, which have a short repeat, are distinct from the others in being larger, in having a higher proportion of euchromatin (dispersed chromatin) as judged by microscopy and in being more active in RNA synthesis in vitro.  相似文献   

14.
Transcription of nucleosomes from human chromatin.   总被引:3,自引:3,他引:0       下载免费PDF全文
  相似文献   

15.
Organization of 5S genes in chromatin of Xenopus laevis.   总被引:5,自引:2,他引:3       下载免费PDF全文
The chromatin organization of the genes coding for 5S RNA in Xenopus laevis has been investigated with restriction endonucleases and micrococcal nuclease. Digestion of nuclei from liver, kidney, blood and kidney cells maintained in culture with micrococcal nuclease reveals that these Xenopus cells and tissues have shorter nucleosome repeat lengths than the corresponding cells and tissues from other higher organisms. 5S genes are organized in nucleosomes with repeat lengths similar to those of the bulk chromatin in liver (178 bp) and cultured cells (165 bp); however, 5S gene chromatin in blood cells has a shorter nucleosome repeat (176 bp) than the bulk of the genome in these cells (184 bp). From an analysis of the 5S DNA fragments produced by extensive restriction endonuclease cleavage of chromatin in situ, no special arrangement of the nucleosomes with respect to the sequence of 5S DNA can be detected. The relative abundance of 5S gene multimers follows a Kuhn distribution, with about 57% of all HindIII sites cleaved. This suggests that HindIII sites can be cleaved both in the nucleosome core and linker regions.  相似文献   

16.
17.
Nuclei of substantial purity were isolated from the middle or posterior silk glands of the silkworm Bombyx mori larvae. Both the fibroin H- and L-chain gene sequences in the isolated nuclei from the posterior silk glands of the fifth instar larvae, where the genes are transcribed actively, are extremely sensitive to the digestion with DNaseI; on the other hand, these sequences in the middle silk gland nuclei from the same larvae, where the genes are not expressed, are markedly resistant to the digestion. The H-chain gene sequences in the posterior silk gland nuclei from the fifth instar larvae are also highly susceptible to the digestion with micrococcal nuclease, HinfI, and HhaI. The digestion products with micrococcal nuclease show a continuous size distribution. The H-chain gene sequences in the middle silk gland nuclei or the posterior silk gland nuclei from the fourth molting stage are cleaved partially into nucleosome dimer to oligomer sizes upon digestion with higher concentrations of micrococcal nuclease, suggesting that the inactive forms of the H-chain gene chromatin are constructed by folding of the chromatin fiber containing a regular array of nucleosomes. Hypersensitive sites to micrococcal nuclease are present near both ends of the second exon, a major body of the fibroin H-chain gene, in both the active and inactive forms of the chromatin. The DNaseI or micrococcal nuclease sensitivity of the H-chain gene chromatin in the posterior silk gland nuclei shows periodical changes corresponding to the intermolt-molt-intermolt cycle.  相似文献   

18.
Mouse L-cell nucleoli were isolated from sonicated nuclei by centrifugation and extensively treated with pancreatic DNase or micrococcal nuclease to obtain "core nucleoli." Core nucleoli still contained the precursors to rRNA and about 1% of the total nuclear DNA, which remained tightly bound even after the removal of some chromatin proteins with 2 M NaCl. The core nucleolar DNA electrophoresed in a series of discrete bands, 20 to about 200 base pairs in length. Hybridization tests with specific DNA probes showed that the DNA was devoid of sequences complementary to mouse satellite, mouse Alu-like, and 5S RNA sequences. It also lacked sequences coding for cytoplasmic rRNA species, since it did not hybridize to the 18S to 28S portion of rDNA in Northern blot analyses and none of it was protected by hybridization to a 100-fold excess of total cytoplasmic RNA in S1 nuclease assays. However, the core nucleolar DNA did hybridize to nontranscribed and external transcribed spacer rDNA sequences. We infer that specific portions of rDNA are protected from DNase action by a tight association with nucleolar structural proteins.  相似文献   

19.
Some parameters that influence the analysis in situ of DNA sensitivity to digestion with nuclease S1 have been studied in isolated HeLa nuclei with flow cytometry. DNA staining with the intercalating fluorochrome propidium iodide allowed the nucleolytic activity on double-stranded (ds) DNA to be determined by monitoring the relative reduction in nuclear fluorescence intensity. Nuclei isolated in buffer at low ionic strength in order to decondense chromatin fibres, showed a lower fluorescence intensity than nuclei with native chromatin, after digestion with nuclease S1 under identical conditions. Nuclei prepared with dispersed chromatin and digested with increasing amounts of enzyme showed a decrease in fluorescence intensity that reached a limit value at about 50% of the value of undigested control samples. On the other hand, in nuclei with native chromatin, fluorescence intensity decreased only about 18%. The NaCl concentration in the reaction buffer strongly influenced the DNA sensitivity to S1 nuclease. By increasing salt molarity from 5 mM to 200 mM, the digestion of dsDNA was significantly reduced as also shown by the amount of released nucleotides from purified calf thymus DNA. The detection of DNA sensitivity to nuclease S1, as assessed by the cytometric method, was shown to be more sensitive than a biochemical technique involving hydrolysis of purines. These results indicate that both the procedure for nuclei isolation and the digestion conditions have to be carefully controlled when evaluating in situ the presence of S1-sensitive sites.  相似文献   

20.
Summary Some parameters that influence the analysis in situ of DNA sensitivity to digestion with nuclease S1 have been studied in isolated HeLa nuclei with flow cytometry. DNA staining with the intercalating fluorochrome propidium iodide allowed the nucleolytic activity on double-stranded (ds) DNA to be determined by monitoring the relative reduction in nuclear fluorescence intensity. Nuclei isolated in buffer at low ionic strength in order to decondense chromatin fibres, showed a lower fluorescence intensity than nuclei with native chromatin, after digestion with nuclease S1 under identical conditions. Nuclei prepared with dispersed chromatin and digested with increasing amounts of enzyme showed a decrease in fluorescence intensity that reached a limit value at about 50% of the value of undigested control samples. On the other hand, in nuclei with native chromatin, fluorescence intensity decreased only about 18%. The NaCl concentration in the reaction buffer strongly influenced the DNA sensitivity to S1 nuclease. By increasing salt molarity from 5 mM to 200 mM, the digestion of dsDNA was significantly reduced as also shown by the amount of released nucleotides from purified calf thymus DNA. The detection of DNA sensitivity to nuclease S1, as assessed by the cytometric method, was shown to be more sensitive than a biochemical technique involving hydrolysis of purines. These results indicate that both the procedure for nuclei isolation and the digestion conditions have to be carefully controlled when evaluating in situ the presence of S1-sensitive sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号