首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Homogenates of neural lobes of bovine pituitary glands were fractionated by differential and density-gradient ultracentrifugation and the distribution of adenosine triphosphatase (ATPase) activity was studied. It was shown that all the activity was membrane-bound. 2. On the basis of ionic requirements the ATPase activity was grouped into three categories: (a) Mg2+-dependent, (b) Ca2+-dependent and (c) Mg2++Na++K+-dependent (ouabain-sensitive) ATPases. The activity in the absence of bivalent cations was negligible. The ratio between the activities of the three ATPases varied between the different subcellular fractions. 3. Preincubation of the subcellular fractions with deoxycholate increased the activity of the Mg2++Na++K+-dependent enzyme, whereas the Mg2+- and Ca2+-activated ATPases were either unaffected or slightly inhibited. Triton X-100 solubilized the Mg2+- and Ca2+-ATPases; however, the activity of the Mg2++Na++K+-ATPase was abolished by the concentration of Triton X-100 used. 4. All the subfractions displayed unspecific nucleotide triphosphatase activity towards GTP, ITP and UTP. These substrates inhibited the hydrolysis of ATP by all three ATPases. ADP also inhibited the ATPases. 5. Polyacrylamide-gel electrophoresis of extracts containing the Mg2+- and Ca2+-dependent ATPase activity solubilized by Triton X-100 revealed the presence of two enzymes; one activated by either Mg2+ or Ca2+ and the other activated only by Ca2+. 6. In sucrose density gradients the distribution of vasopressin was different from that of all three types of ATPases. It is therefore suggested that the neurosecretory granules do not possess ATPase activity.  相似文献   

2.
Vesicles consisting of (Ca2++Mg2+)-dependent ATPase (adenosine triphosphatase), and lipid were prepared from sarcoplasmic reticulum of rabbit skeletal muscle. As with non-ionic detergents [le Maire, Møller & Tanford (1976) Biochemistry 15, 2336–2342] the (Ca2++Mg2+)-dependent ATPase after solubilization by deoxycholate showed a pronounced tendency to form oligomers in gel-chromatographic experiments, when eluted in the presence of deoxycholate and phosphatidylcholine. To evaluate the functional significance of oligomer formation the properties of enzymically active preparations of ATPase, solubilized by deoxycholate, were studied. Such preparations were obtained at a protein concentration of 2.5mg/ml in the presence of a high salt concentration (0.4m-KCl) and sucrose (0.3m) in the solubilization medium. Analytical ultracentrifugation of solubilized ATPase showed one protein boundary moving at the same rate as gel-chromatographically prepared monomeric ATPase (s20,w=6.0S). From simultaneous measurements of the diffusion coefficient an apparent molecular weight of 133000 was calculated, consistent with solubilization of ATPase in predominantly monomeric form. The enzymic activity of deoxycholate-solubilized ATPase when measured directly in the solubilization medium at optimal Ca2+ and MgATP concentrations was about 35–50% of that of vesicular ATPase. The dependence of enzymic activity on MgATP concentration indicated that the solubilized ATPase retained high-affinity binding of MgATP, but the presence of high concentrations of the nucleotide did not stimulate activity further, in contrast with that of vesicular ATPase. The dependence of enzymic activity on the free Ca2+ concentration was essentially the same for both solubilized and vesicular forms, indicating that interaction of ATPase with more than one molecule of Ca2+ is required for enzyme activity. Solubilized enzyme at 20°C was phosphorylated to about the same degree as vesicular ATPase. It is concluded that the catalytic activity of monomeric ATPase retains most of the features of vesicular ATPase and that extensive oligomer formation in gel-chromatographic experiments in the presence of deoxycholate probably reflects processes taking place during inactivation and delipidation of the protein.  相似文献   

3.
Activities and some properties of microsomal ATPases have been studied in developing human placenta. The enzyme activities (Na+ + K+ + Mg2+, Mg2+, and Ca2+ dependent) in the placenta increase steadily with gestational age until the 18th to 21st week, and decrease in the second half of pregnancy. Mg2+-dependent and Na+ + K+ + Mg2+-dependent ATPases possess nearly the same Km (apparent) for ATP, while the Ca2+-dependent enzyme shows a different one. Mg2+-dependent ATPase shows higher substrate affinity than Ca2+-dependent ATPase, although the Vmax of the Mg2+-dependent enzyme is lower than that of the latter. However, for each enzyme, the Km remains almost constant and Vmax varies during ontogenic development. Vmax of the enzymes decline at term. The enzymes are heat-labile, unaffected by amino acids, namely, l-phenylalanine, l-leucine, and l-tryptophan, and deoxycholate inhibits the enzyme activities by about 50%.  相似文献   

4.
ATPase was purified from an alkalophilic Bacillus. The enzyme has a molecular weight of 410,000 and consists of five types of subunits of molecular weights of 60,000 (α), 58,000 (β), 34,000 (γ), 14,000 (δ), and 11,000 (?). The subunit structure is suggested to be α3β3γδ?. The enzyme is activated by Mg2+ and Ca2+. The pH optima of the enzyme with 0.1 and 2.0 mm Mg2+ are 9 and 6, and those with 1 and 10 mm Ca2+ are 8–9 and 7, respectively. Ca2+-ATPase hydrolyzes only ATP, whereas Mg2+-ATPase hydrolyzes GTP and, to a lesser extent, ATP. The values of V and Km of the enzyme with ATP in the presence of 10 mm Ca2+ or 0.6 mm Mg2+ at pH 7.2 are 17 or 0.5 units/mg protein and 1.2 or 0.3 mm, respectively. The enzyme with Mg2+ is appreciably activated by HCO?3. Relationship of the ATPase to the active transport system in the bacterium is suggested.  相似文献   

5.
Coated microvesicle fractions isolated from ox forebrain cortex by the ultracentrifugation procedure of Pearse (1) and by the modified, less time consuming method of Keen et al (2) had comparable Ca2++Mg2+ dependent ATPase activities (about 9 μmol/h per mg protein). The Na++K++Mg2+ dependent ATPase activity was 3.2 μmol/h per mg (±1.0, S.D., n=3) when microvesicles were prepared according to (1) and 1.5 μmol/h per mg (±1.0, S.D., n=3) when prepared according to (2).Oligomycin, ruthenium red, and trifluoperazine, inhibitors of Ca2+ transport in mitochondria and erythrocyte membranes had no effect on Ca2++Mg2+ dependent ATPase from any of the preparations.As demonstrated both by ATPase assays and electron microscopy, coated microvesicles could be bound to immunosorbents prepared with poly-specific antibodies against a coated microvesicle fraction obtained by the method of Pearse (1). The binding could be inhibited by dissolved coat protein using partially purified clathrin. The fraction of coated vesicles eluted from the immunosorbent was purified relative to the starting material as judged by electron microscopy.The Ca2++Mg2+ ATPase activity and calmodulin content was copurified with the coated microvesicles and the specific activity of Na++K++Mg2+ ATPase was decreased.Na++K++Mg2+ dependent ATPase activity in the coated microvesicle fraction could be ascribed to membranes with the appearance of microsomes. These membranes were also bound to the immunosorbents, but the binding was not influenced by clathrin. The capacity of the immunosorbents for these membranes was less than for the coated microvesicles, resulting in a decrease of Na++K++Mg2+ dependent ATPase activity in the eluted coated microvescile fraction.It was concluded that Ca2++Mg2+ ATPase activity is not a contamination from plasma membrane vesicles or mitochondrial membranes but seems to be an integral part of the coated vesicle membrane.  相似文献   

6.
Isolated porcine platelet α granules display a Mg2+-stimulated ATPase activity. The enzyme is membrane bound and several criteria suggest that it is intrinsic to the α granules, rather than arising from contamination with other structures. Characterization of the ATPase revealed an apparent Km for ATP of 198 μm. Other nucleotides are also hydrolyzed by the enzyme, though at a slower rate. The enzyme has an absolute requirement for divalent cations, and both Mg2+ (apparent Km 0.93 mm) and Ca2+ (apparent Km 0.95 mm) can activate it. Maximal hydrolysis rates are higher with Mg2+ than with Ca2+. Micromolar Ca2+ in the presence of maximally stimulating Mg2+ concentrations produces a small additional enhancement of activity. The Mg2+ ATPase has a broad activity maximum between pH 6.5 and 8.5, and an activation energy of 11.8 Kcal/mol. Several independent observations suggest that the ATPase could be involved in H+ translocation across the granule membrane: (a) the activity is stimulated upon disrupting membrane continuity by either hypotonic lysis or addition of nondenaturing detergents; (b) proton ionophores enhance the activity in intact but not in disrupted α granules; (c) permeating anions stimulate the ATPase more than slowly permeant or impermeant ones; (d) addition of NH3 (as either NH4Cl or (NH4)2SO4) activates enzyme activity; (e) silicotungstate and disulfonic stilbene derivatives, which are inhibitors of other H+-transporting ATPases, also inhibit the α-granule enzyme. These findings are compared with the reported properties of H+ pumps of other storage and secretory organelles.  相似文献   

7.
Heart sarcolemma has been shown to contain an ATPase hydrolizing system which is activated by millimolar concentrations of divalent cations such as Ca2+ or Mg2+. Although Ca2+-dependent ATPase is released upon treating sarcolemma with trypsin, a considerable amount of the divalent cation dependent ATPase activity was retained in the membrane. This divalent cation dependent ATPase was solubilized by sonication of the trypsin-treated dog heart sarcolemma with 1% Triton X-100. The solubilized enzyme was subjected to column chromatography on a Sepharose-6B column, followed by ion-exchange chromatography on a DEAE cellulose column. The enzyme preparation was found to be rather labile and thus the purity of the sample could not be accurately assessed. The solubilized ATPase preparations did not show any cross-reactivity with dog heart myosin antiserum or with Na+ + K+ ATPase antiserum. The enzyme was found to be insensitive to inhibitors such as ouabain, verapamil, oligomycin and vanadate. The enzyme preparation did not exhibit any Ca2+-stimulated Mg2+ dependent ATPase activity. Furthermore, the low affinity of the enzyme for Ca2– (Ka = 0.3 mM) rules out the possibility of its involvement in the Ca2+ pump mechanism located in the plasma membrane of the cardiac cell.  相似文献   

8.
Studies were conducted to characterize ATPase activity associated with purified chloroplast inner envelope preparations from spinach (Spinacea oleracea L.) plants. Comparison of free Mg2+ and Mg·ATP complex effects on ATPase activity revealed that any Mg2+ stimulation of activity was likely a function of the use of the Mg·ATP complex as a substrate by the enzyme; free Mg2+ may be inhibitory. In contrast, a marked (one- to twofold) stimulation of ATPase activity was noted in the presence of K+. This stimulation had a pH optimum of approximately pH 8.0, the same pH optimum found for enzyme activity in the absence of K+. K+ stimulation of enzyme activity did not follow simple Michaelis-Menton kinetics. Rather, K+ effects were consistent with a negative cooperativity-type binding of the cation to the enzyme, with the Km increasing at increasing substrate. Of the total ATPase activity associated with the chloroplast inner envelope, the K+-stimulated component was most sensitive to the inhibitors oligomycin and vanadate. It was concluded that K+ effects on this chloroplast envelope ATPase were similar to this cation's effects on other transport ATPases (such as the plasmalemma H+-ATPase). Such ATPases are thought to be indirectly involved in active K+ uptake, which can be facilitated by ATPase-dependent generation of an electrical driving force. Thus, K+ effects on the chloroplast enzyme in vitro were found to be consistent with the hypothesized role of this envelope ATPase in facilitating active cation transport in vivo.  相似文献   

9.
The Ca2+/Mg2+ ATPase, which is activated by millimolar concentrations of Ca2+ or Mg2+, was solubilized from rat heart plasma membrane by employing lysophosphatidylcholine, CHAPS, Nal, EDTA and Tris-HCI at pH 7.4. The enzyme was purified by sucrose density gradient, Affi-Gel Blue column and Sepharose 6B column chromatography. The purified enzyme was seen as a single peptide band in the sodium dodecyl sulfate polyacrylamide gel electrophoresis with a molecular weight of about 90,000. The apparent molecular weight of the holoenzyme as determined under non-dissociating conditions by gel filtration on Sepharose 6B column was about 180,000 indicating two subunits. The enzyme was insensitive to ouabain, verapamil, vanadate, oligomycin, N,N-dicyclohexylcarbodiimide and NaN3, but was markedly inhibited by 20 µM gramacidin S and 50 µM trifluoperazine. Analysis of the purified Ca2+/Mg2+ ATPase revealed the presence of 17 amino acids where leucine, glutamic acid and aspartic acid were the major components and histidine, cysteine and methionine were the minor components. The purified enzyme was associated with 19.7 µmol phospholipid/mg protein which was 60 times higher than the phospholipid content in plasma membrane. The cholesterol content in the purified enzyme preparation was 0.75 µmol/mg protein and this represented an 8-fold enrichment over plasma membrane. The glycoprotein nature of the enzyme was evident from the positive periodic acid-Schiff staining of the purified Cau2+/MgATPase in the sodium dodecyl sulfate polyacrylamide gel. The polysaccharide content of the enzyme was enriched 8-fold over plasma membrane; neurominidase treatment decreased the polysaccharide content. Concanavalin A prevented the ATP-dependent inactivation of the purified Ca2+/Mg2+ ATPase and was found to bind to the purified enzyme with a KD of 576 nM and Bmax of 4.52 nmol/mg protein. The results indicate that Ca2+/Mg2+ ATPase is a glycoprotein and contains a large amount of lipids.  相似文献   

10.
The (K+,Mg2+)-ATPase was partially purified from a plasma membrane fraction from corn roots (WF9 × Mol7) and stored in liquid N2 without loss of activity. Specific activity was increased 4-fold over that of the plasma membrane fraction. ATPase activity resembled that of the plasma membrane fraction with certain alterations in cation sensitivity. The enzyme required a divalent cation for activity (Co2+ > Mg2+ > Mn2+ > Zn2+ > Ca2+) when assayed at 3 millimolar ATP and 3 millimolar divalent cation at pH 6.3. When assayed in the presence of 3 millimolar Mg2+, the enzyme was further activated by monovalent cations (K+, NH4+, Rb+ Na+, Cs+, Li+). The pH optima were 6.5 and 6.3 in the absence and presence of 50 millimolar KCl, respectively. The enzyme showed simple Michaelis-Menten kinetics for the substrate ATP-Mg, with a Km of 1.3 millimolar in the absence and 0.7 millimolar in the presence of 50 millimolar KCl. Stimulation by K+ approached simple Michaelis-Menten kinetics, with a Km of approximately 4 millimolar KCl. ATPase activity was inhibited by sodium orthovanadate. Half-maximal inhibition was at 150 and 35 micromolar in the absence and presence of 50 millimolar KCl. The enzyme required the substrate ATP. The rate of hydrolysis of other substrates, except UDP, IDP, and GDP, was less than 20% of ATP hydrolysis. Nucleoside diphosphatase activity was less than 30% of ATPase activity, was not inhibited by vanadate, was not stimulated by K+, and preferred Mn2+ to Mg2+. The results demonstrate that the (K+,Mg2+)-ATPase can be clearly distinguished from nonspecific phosphohydrolase and nucleoside diphosphatase activities of plasma membrane fractions prepared from corn roots.  相似文献   

11.
ATPase was found in plasma membrane of cultured endothelial cells from bovine carotid artery. The activity of the enzyme solubilized by octaethyleneglycol mono-n-dodecyl ether was enhanced by the addition of Ca2+ or Mg2+ and was not affected by F-actin and ouabain. Vmax was 2.8 and 10.0 μmol Pi/mg protein per h for Ca2+- and Mg2+-dependent activity, respectively, and the corresponding Km was 4.8·10?4 M and 3.2·10?4 M. Molecular weight of the protein was estimated to be approx. 250 000, as determined by activity-staining electrophoresis with polyacrylamide gels.  相似文献   

12.
Magnesium-dependent adenosine triphosphatase has been purified from sheep kidney medulla plasma membranes. The purification, which is based on treatment of a kidney plasma membrane fraction with 0.5% digitonin in 3 mm MgCl2, effectively separates the Mg2+-ATPase from (Na+ + K+)-ATPase present in the same tissue and yields the Mg2+-ATPase in soluble form. The purified enzyme is activated by a variety of divalent cations and trivalent cations, including Mg2+, Mn2+, Ca2+, Co2+, Fe2+, Zn2+, Eu3+, Gd3+, and VO2+. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified enzyme shows two bands with Rf values corresponding to molecular weights of 150,000 and 77,000. The larger peptide is phosphorylated by [γ-32P]ATP, suggesting that this peptide may contain the active site of the Mg2+-ATPase. The Mg2+-ATPase activity is unaffected by the specific (Na+ + K+)-ATPase inhibitor ouabain.  相似文献   

13.
Experiments on the effects of varying concentrations of Ca2+ on the Mg2+ + Na+-dependent ATPase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase showed that Ca2+ was a partial inhibitor of this activity. When Ca2+ was added to the reaction mixture instead of Mg2+, there was a ouabain-sensitive Ca2+ + Na+-dependent ATPase activity the maximal velocity of which was 30 to 50% of that of Mg2+ + Na+-dependent activity. The apparent affinities of the enzyme for Ca2+ and CaATP seemed to be higher than those for Mg2+ and MgATP. Addition of K+, along with Ca2+ and Na+, increased the maximal velocity and the concentration of ATP required to obtain half-maximal velocity. The maximal velocity of the ouabain-sensitive Ca2+ + Na+ + K+-dependent ATPase was about two orders of magnitude smaller than that of Mg2+ + Na+ + K+-dependent activity. In agreement with previous observations, it was shown that in the presence of Ca2+, Na+, and ATP, an acid-stable phosphoenzyme was formed that was sensitive to either ADP or K+. The enzyme also exhibited a Ca2+ + Na+-dependent ADP-ATP exchange activity. Neither the inhibitory effects of Ca2+ on Mg2+-dependent activities, nor the Ca2+-dependent activities were influenced by the addition of calmodulin. Because of the presence of small quantities of endogenous Mg2+ in all reaction mixtures, it could not be determined whether the apparent Ca2+-dependent activities involved enzyme-substrate complexes containing Ca2+ as the divalent cation or both Ca2+ and Mg2+.  相似文献   

14.
The association of K+-stimulated, Mg2+-dependent ATPase activity with plasma membranes from higher plants has been used as a marker for the isolation and purification of a plasma membrane-enriched fraction from cauliflower (Brassica oleraceae L.) buds. Plasma membranes were isolated by differential centrifugation followed by density gradient centrifugation of the microsomal fraction. The degree of purity of plasma membranes was determined by increased sensitivity of Mg2+-ATPase activity to stimulation by K+ and by assay of approximate marker enzymes. In the purified plasma membrane fraction, Mg2+-ATPase activity was stimulated up to 700% by addition of K+. Other monovalent cations also markedly stimulated the enzyme, but only in the presence of the divalent cation Mg2+. Ca2+ was inhibitory to enzyme activity. ATPase was the preferred substrate for hydrolysis, there being little hydrolysis in the presence of ADP, GTP, or p-nitrophenylphosphate. Monovalent cation-stimulated activity was optimum at alkaline pH. Enzyme activity was inhibited nearly 100% by AgNO3 and about 40% by diethylstilbestrol.  相似文献   

15.
The stimulation of the (Ca2+ + Mg2+)ATPase of erythrocyte ghosts by calmodulin was observed not only in intact ghosts, but also in the solubilized (Triton X-100) and partially purified, reconstituted (phosphatidylserine liposomes) forms. Since the solubilized form of the enzyme migrated on Sepharose 6B at a position corresponding to a molecular weight of about 150,000, these results show that calmodulin stimulates by direct interaction with the ATPase complex. Additionally, the effects of calmodulin on erythrocyte ghosts prepared by the Dodge-EDTA method (hypotonic ghosts) and by the method of Ronner et al. (involving lysis followed by an isotonic wash repeated several times) were compared (P. Ronner, P. Gazzotti, and E. Carafoli, 1977, Arch. Biochem. Biophys. 179, 578–583). The (Ca2+ + Mg2+)ATPase of the hypotonic ghosts was low and was stimulated by added calmodulin while that of the isotonic ghosts was high and changed only slightly upon calmodulin addition; this difference in response to calmodulin persisted in the solubilized and reconstituted forms. Hypotonic ghosts bound 125I-labeled calmodulin, while isotonic ghosts did not. This comparison of two types of ghosts showed that isotonic ghosts possess an intact calmodulin-(Ca2+ + Mg2+)ATPase complex, and that the calmodulin remained with the ATPase during solubilization and reconstitution. The isotonic preparation is a particularly useful method of preparing ghosts with an intact calmodulin-ATPase complex, since it requires no special equipment and produces an enzyme activity which is stable to freezing.  相似文献   

16.
Demonstration of a high affinity Ca2+ ATPase in rat liver plasma membranes   总被引:4,自引:0,他引:4  
Rat liver plasma membranes contained a high affinity Ca2+-ATPase which had an apparent half saturation constant of 0.2 μM for calcium. The Ca2+-ATPase was not stimulated by adding magnesium and/or calmodulin. Conversely, the addition of these substances diminished the calcium-stimulation of the ATPase. Orthovanadate (7 nM-2 mM), mitochondrial ATPase blockers (NaN3, KCN, dicyclohexylcarbodiimide), Na+, K+ and ouabain had no effect on the ATPase activity. The ATPase was separated from nonspecific divalent cation stimulatable ATPase (Mg2+-ATPase) by solubilization with Triton X-100 followed by a Sephadex G-200 column chromatography and showed an apparent molecular weight of 200,000.  相似文献   

17.
Ca2+ inhibited the Mg2+-dependent and K+-stimulated p-nitrophenylphosphatase activity of a highly purified preparation of dog kidney (Na+ + K+)-ATPase. In the absence of K+, however, a Mg2+-dependent and Ca2+-stimulated phosphatase was observed, the maximal velocity of which, at pH 7.2, was about 20% of that of the K+-stimulated phosphatase. The Ca2+-stimulated phosphatase, like the K+-stimulated activity, was inhibited by either ouabain or Na+ or ATP. Ouabain sensitivity was decreased with increase in Ca2+, but the K0.5 values of the inhibitory effects of Na+ and ATP were independent of Ca2+ concentration. Optimal pH was 7.0 for Ca2+-stimulated activity, and 7.8–8.2 for the K+-stimulated activity. The ratio of the two activities was the same in several enzyme preparations in different states of purity. The data indicate that (a) Ca2+-stimulated phosphatase is catalyzed by (Na+ + K+)-ATPase; (b) there is a site of Ca2+ action different from the site at which Ca2+ inhibits in competition with Mg2+; and (c) Ca2+ stimulation can not be explained easily by the action of Ca2+ at either the Na+ site or the K+ site.  相似文献   

18.
A membrane-bound, monovalent cation-stimulated ATPase from Zea mays roots has been purified to a single band on sodium dodecyl sulfate gel electrophoresis. Microsomal preparations with K+ -stimulated ATPase activity were extracted with 1 m NaClO4, and the solubilized enzyme was purified by chromatography on columns of n-hexyl-Sepharose, DEAE-cellulose, and Sephadex G-100 Superfine. A 500-fold purification over the activity present in the microsomes was obtained. The K+ -stimulated activity shows positive cooperativity with increasing KCl concentrations. The purified enzyme shows K+ -stimulated activity with ATP, GTP, UTP, CTP, ADP, α + β-glycerophosphate, p-nitrophenyl phosphate, and pyrophosphate as substrates. Under most conditions ATP is the best substrate. Although dicyclohexyl carbodiimide and Ca2+ inhibit and alkylguanidines stimulate the K+ -ATPase while bound to microsomes, they have no effect on the purified enzyme.  相似文献   

19.
A new simple procedure has been developed for the purification of plasma membranes from rabbit kidney microsomes which yields a three- to fourfold increase in the specific activity of Na+-K+-adenosine triphosphatase (ATPase). The procedure differs from previous methods with deoxycholate or other detergents and does not change the molecular activity of the ATPase. The K+-dependent p-nitrophenylphosphatase activity of the native Na+-K+-ATPase is controlled more effectively by Mg2+ in the presence of K+ at concentrations higher than that of Mg2+, and by K+ in the presence of Mg2+ at concentrations higher than that of K+. The enzyme in its Mg2+-regulating state, which shows K+-saturation curves with a Hill coefficient of 1, is less sensitive to ouabain (I0.5 = 90 μM) and corresponds to the enzyme conformation reported previously which is inhibited by the concurrent presence of Na+ and ATP or of Na+ and oligomycin (I0.5 is the midpoint of the saturation curve). The enzyme in its K+-regulating state, which shows K+-saturation curves with a Hill coefficient of 2, is more sensitive to ouabain inhibition (I05 = 8 μM) and corresponds to the enzyme conformation which is stimulated by the concurrent presence of Na+ and ATP or of Na+ and oligomycin. There appear to be two conformations of the enzyme that are regulated by Mg2+ binding on the inhibitory sites of the enzyme.  相似文献   

20.
(Na+ + K+)-ATPase activity is demonstrated in plasma membranes from pig mesenteric lymph nodes. After dodecyl sulfate treatment plasma membranes have an 18-fold higher (Na+ + K+)-ATPase activity, while their ouabain-insensitive Mg2+-ATPase is markedly lowered. A solubilized (Na+ + K+)-ATPase fraction, obtained by Lubrol WX treatment of the membranes, has very high specific activity (21μmol Pi/h per mg protein). Concanavalin A has no effect on these partially purified (Na+ + K+)-ATPase, while it inhibits (40%) this activity in less purified fractions which still contain Mg2+-ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号