首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orientations of the active site chromophores of the mitochondrial redox carriers have been investigated in hydrated, oriented multilayers of mitochondrial membranes using optical and EPR spectroscopy. The hemes of cytochrome c oxidase, cytochrome c1, and cytochromes b were found to be oriented in a similar manner, with the normal to their heme planes lying approximately in the plane of the mitochondrial membrane. The heme of cytochrome c was either less oriented in general or was oriented at an angle closer to the plane of the mitochondrial membrane than were the hemes of the "tightly bound" mitochondrial cytochromes. EPR spectra of the azide, sulfide and formate complexes of cytochrome c oxidase in mitochondria in situ obtained as a function of the orientation of the applied magnetic field relative to the planes of the membrane multilayers showed that both hemes of the oxidase were oriented in such a way that the angle between the heme normal and the membrane normal was approx. 90 degrees.  相似文献   

2.
The liganded derivatives of mitochondrial cytochrome c oxidase have been prepared in hydrated oriented multilayers of membranous cytochrome c oxidase. The optical spectra of the liganded derivatives recorded at an angle of 45° between the incident light beam and the normal to the planes of the membranes in the multilayers show dichroic ratios of almost 2 in the visible region and 1.2–1.4 in the Soret region. The dichroic ratios were found to be similar for both cytochromes a and a3. Electron paramagnetic resonance spectra of the azide, sulfide, and formate complexes of cytochrome c oxidase obtained as a function of the orientation of the applied magnetic field relative to the planes of the membranes in the multilayer confirm the optical data and demonstrate that both hemes of cytochrome c oxidase are oriented such that the angle between the heme normal and the membrane normal is approximately 90°.  相似文献   

3.
Orientations of the active site chromophores of the mitochondrial cytochrome b-c1 complex incorporated into liposomes have been investigated in hydrated oriented multilayers of proteoliposome membranes using optical and epr spectroscopy. The hemes of cytochromes c1 and b were found to be oriented with the normal to their heme planes lying approximately in the plane of the proteoliposome membrane. Rieske's iron-sulfur center was oriented with the z-axis of the g tensor parallel to the plane of the membranes. It is concluded that the cytochrome b-c1 complex has a structural asymmetry which causes it to orient with respect to the lipid bilayer.  相似文献   

4.
The EPR absorption properties of the hemes of cytochrome oxidase and their liganded derivatives were examined in oriented multilayers from isolated oxidase, mitochondrial membranes and membrane fragments of a bacterium, Paracoccus denitrificans. The hemes of the oxidase in all the systems investigated were oriented normal to the plane of the multilayers. The directions of the g signals corresponding to the gx and gy axes of the g tensor were found to be different in low-spin ferric heme in fully oxidized oxidase and in half-reduced liganded oxidase. It is suggested that this different orientation of gx and gy in fully oxidized oxidase and half-reduced liganded oxidase arises because the respective EPR signals belong to two different hemes, those of cytochrome a and a3.  相似文献   

5.
The liganded derivatives of mitochondrial cytochrome c oxidase have been prepared in hydrated oriented multilayers of membranous cytochrome c oxidase. The optical spectra of the liganded derivatives recorded at an angle of 45 degrees between the incident light beam and the normal to the planes of the membranes in the multilayers show dichroic ratios of almost 2 in the visible region and 1.2-1.4 in the Soret region. The dichroic ratios were found to be similar for both cytochromes a and a3. Electron paramagnetic resonance spectra of the azide, sulfide, and formate complexes of cytochrome c oxidase obtained as a function of the orientation of the applied magnetic field relative to the planes of the membranes in the multilayer confirm the optical data and demonstrate that both hemes of cytochrome c oxidase are oriented such that the angle between the heme normal and the membrane normal is approximately 90 degrees.  相似文献   

6.
The EPR absorption properties of the hemes of cytochrome oxidase and their liganded derivatives were examined in oriented multilayers from isolated oxidase, mitochondrial membranes and membrane fragments of a bacterium, Paracoccus denitrificans. The hemes of the oxidase in all the systems investigated were oriented normal to the plane of the multilayers. The directions of the g signals corresponding to the gx and gy axes of the g tensor were found to be different in low-spin ferric heme in fully oxidized oxidase and in half-reduced liganded oxidase. It is suggested that this different orientation of gx and gy in fully oxidized oxidase and half-reduced liganded oxidase arises because the respective EPR signals belong to two different hemes, those of cytochrome a and a3.  相似文献   

7.
The activity of a key enzyme of the cytochrome component of the respiratory chain (cytochrome oxidase), the quantitative redistribution of mitochondrial cytochromes b, c 1, c, and aa 3, as well as the activities of the key enzymes of cytochrome heme metabolism (δ-aminolevulinate synthase and heme oxygenase) under conditions of acetaminophen-induced liver injury were studied on the background of dietary protein deprivation. Under conditions of acetaminophen-induced hepatitis that developed on the background of alimentary protein deprivation, an inhibition of cytochrome oxidase activity and a decrease in the contents of mitochondrial cytochromes on the background of an increase in the δ-aminolevulinate synthase and heme oxygenase activity were observed. In animals with a toxic liver injury that were kept under conditions of dietary protein deprivation, the contents of mitochondrial cytochromes b, c 1, c, and aa 3 progressively decreased, which was accompanied by an increase in heme oxygenase activity, whereas δ-aminolevulinate synthase activity remained at the control level. It was concluded that dietary protein deprivation is a critical factor for the development of disturbances in the structural-functional integrity of the cytochrome component of the respiratory chain. The identified changes can be considered as a possible mechanism that underlies the disturbance in the function of the energy biotransformation system under conditions of dietary protein deprivation.  相似文献   

8.
Angular electron paramagnetic resonance spectra of cytochrome P-450 in oriented multilayers from bovine adrenal cortex Submitochondrial particles have been obtained. Both high- and low-spin forms are present. Analysis of the spectra allows the orientation of the cytochrome P-450 to be determined relative to the membrane plane. The quality of the orientation of the cytochrome P-450 is estimated by use of a computer simulation program. Cytochrome P-450, unlike other cytochromes and porphyrins previously studied, has its heme plane parallel to the membrane plane.  相似文献   

9.
Jrgen Bergstrm  Tore Vnngrd 《BBA》1982,682(3):452-456
The cytochromes in spinach chloroplasts were studied using EPR spectroscopy. In addition to the low-spin heme signals previously assigned, cytochrome f (gz 3.51), high-potential cytochrome b-559 (gz 3.08) and cytochrome b-559 converted to a low-potential form (gz 2.94), a high-spin heme signal was induced by 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ). However, this signal cannot be due to cytochrome b-563 in its native form. The orientation of the cytochromes in the thylakoid membrane was studied in magnetically oriented chloroplasts. Cytochrome b-559 in the native state and in the low-potential form was found to have its heme plane perpendicular to the membrane plane. The orientation was the same for cytochrome b-559 oxidized by low-temperature illumination, which suggests that also the reduced heme is oriented perpendicular to the membrane.  相似文献   

10.
Arsenite oxidation by the facultative chemolithoautotroph NT-26 involves a periplasmic arsenite oxidase. This enzyme is the first component of an electron transport chain which leads to reduction of oxygen to water and the generation of ATP. Involved in this pathway is a periplasmic c-type cytochrome that can act as an electron acceptor to the arsenite oxidase. We identified the gene that encodes this protein downstream of the arsenite oxidase genes (aroBA). This protein, a cytochrome c552, is similar to a number of c-type cytochromes from the α-Proteobacteria and mitochondria. It was therefore not surprising that horse heart cytochrome c could also serve, in vitro, as an alternative electron acceptor for the arsenite oxidase. Purification and characterisation of the c552 revealed the presence of a single heme per protein and that the heme redox potential is similar to that of mitochondrial c-type cytochromes. Expression studies revealed that synthesis of the cytochrome c gene was not dependent on arsenite as was found to be the case for expression of aroBA.  相似文献   

11.
Respiratory particles containing an aa3-type cytochrome oxidase were prepared from Anacystis nidulans, Synechocystis 6714, Synechococcus lividus, Anabaena variabilis, Nostoc sp. strain MAC, Nostoc muscorum, and Mastigocladus laminosus. Oxidation of c-type cytochromes by membrane preparations of the different blue-green algae was observed using purified cytochromes from horse heart, Candida krusei, tuna, Saccharomyces oviformis, Rhodospirillum rubrum, Rhodospirillum molischianum, Rhodopseudomonas palustris, Rhodocyclus purpureus, Paracoccus denitrificans, Anacystis nidulans, Anabaena variabilis, Euglena gracilis, and Scenedesmus obliquus. Rapid oxidations were consistently observed with the mitochondrial c-type cytochromes (horse heart cytochrome c reacts most rapidly) and with cytochromes c2 from Rhodopseudomonas palustris and Rhodocyclus purpureus; in contrast, the cytochrome c2 from Rhodospirillum rubrum and the plastidic cytochromes from E. gracilis and Scendesmus obliquus were inactive with all membrane preparations. All reactions were inhibited by low concentrations of KCN, NaN3, and CO, and they were activated by Tween 80, thus indicating participation of the terminal oxidase. The results are discussed in view of the spectral similarities between the terminal oxidase of blue-green algae and the mitochondrial aa3-type cytochrome oxidase of plants and other eukaryotes.  相似文献   

12.
The structure of "membranous cytochrome oxidase" has been investigated by X-ray diffraction, optical polarization spectroscopy and EPR spectroscopy. These studies indicate that the cytochrome oxidase molecules are oriented symmetrically in the membrane profile with a significant portion of their mass occurring within the extravesicular surface of the membrane; the oxidase molecultes span the membrane profile; the distribution of the oxidase molecules over the plane of these membranes is non-crystalline; the oxidase molecules contain bundles of alpha-helical polypeptide chain segments where the average orientation of the helices is normal to the membrane plane; and the average heme orientation within the oxidase molecules is such that the normal to the heme plane lies in the plane of the membrane.  相似文献   

13.
Centrifugation of membrane vesicles, prepared from ultrasonically disrupted Escherichia coli K12, on to a planar surface followed by slow, partial dehydration results in a high degree of parallel orientation of the membrane planes with respect to each other and the supporting surface. Rotation of such membrane multilayers about a single axis parallel with the membrane planes within the magnetic field of an electron paramagnetic resonance (e.p.r.) spectrometer allows the orientation of anisotropic paramagnetic centres to be deduced. Computer simulations of the angular dependence of cytochrome e.p.r. spectra show two, or perhaps three, cytochromes, well-oriented with respect to the membrane plane. A low-spin cytochrome is oriented with the normal to its haem plane lying in the membrane plane. One (or perhaps two) high-spin cytochrome(s) lies with its haem plane making an angle of 45 degrees with the membrane plane. The orientation of the low-spin cytochrome haem is thus the same as that of haems in b-type cytochromes and cytochrome oxidases of the a type found in the mitochondria of higher animal and microbial cells and the bacterium Paracoccus denitrificans (Erecińska et al., 1979). The possible identity of this low-spin component as the terminal oxidase, cytochrome o, is discussed.  相似文献   

14.
The structure of “membranous cytochrome oxidase” has been investigated by X-ray diffraction, optical polarization spectroscopy and EPR spectroscopy. These studies indicate that the cytochrome oxidase molecules are oriented asymmetrically in the membrane profile with a significant portion of their mass occurring within the extravesicular surface of the membrane; the oxidase molecultes span the membrane profile; the distribution of the oxidase molecules over the plane of these membranes is non-crystalline; the oxidase molecules contain bundles of α-helical polypeptide chain segments where the average orientation of the helices is normal to the membrane plane; and the average heme orientation within the oxidase molecules is such that the normal to the heme plane lies in the plane of the membrane.  相似文献   

15.
Magnetic interactions operating between the Chromatium vinosum reaction center associated c-cytochromes and the electron carriers of the reaction center have been assayed by comparing the magnetic properties of these components alone, and in various combinations with paramagnetic forms of the reaction center electron carriers. These studies have yielded the following results. 1. The oxidized paramagnetic forms of the high potential cytochromes c-555 produce no discernable alteration of the light-induced (BChl)2.+signal. 2. Similarly, analysis of the lineshape of the light-induced (BChl)2.+signal shows that a magnetic interaction with the oxidized low potential cytochromes c-553 is likely to produce less than a 1 gauss splitting of the (BChl)2.+signal, which corresponds to a minimum separation of 25 +/- 3 A between the unpaired spins if the heme and (BChl)2 are orientated in a coplanar arrangement, suggesting a minimum separation of 15+/- 3A between the heme edge and the (BChl)2 edge. 3. a prominent magnetic interaction is observed to operate between the cytochrome c-553 and c-555, which results in a 30-35 gauss splitting of these spectra, and suggests an iron to iron separation of about 8 A.4. Magnetic interactions are not observed between the c-cytochromes and the reaction center "primary acceptor" (the iron . quinone complex) nor with the reaction center intermediate electron carrier (which involves bacteriopheophytin) suggesting separations greater than 10 A. 5. Magnetic interactions are not discerned between the two cytochrome c-553 hemes, nor between the two cytochrome c-555 hemes, implying that the distance between the cytochromes of the same pair is greater than 10 A. 6. EPR studies of oriented chromatophores have demonstrated that the cytochrome c-553 and c-555 hemes are perpendicular to each other, and suggest that the cytochrome c-553 heme plane lies parallel to the plane of the membrane, while the cytochrome c-555 heme plane lies perpendicular to the plane of the membrane surface.  相似文献   

16.
《Plant science》1988,54(2):109-115
The interaction of monomeric and dimeric derivatives of ellipticine (a plant alkaloid) with plant mitochondria was studied by following electron transport and phosphorylative activities. It is shown that these compounds act as powerful inhibitors of the electron transfer in the terminal enzyme, i.e. cytochrome c oxidase, (presumably in the vicinity of cytochromes a-a3) and exhibit uncoupling activities. The possibility of mitochondrial inner membrane being one of the sites of action of ellipticine derivatives is discussed in relation with their well-known pharmacological properties.  相似文献   

17.
The EPR signals of oxidized and partially reduced cytochrome oxidase have been studied at pH 6.4, 7.4, and 8.4. Isolated cytochrome oxidase in both non-ionic detergent solution and in phospholipid vesicles has been used in reductive titrations with ferrocytochrome c.The g values of the low- and high-field parts of the low-spin heme signal in oxidized cytochrome oxidase are shown to be pH dependent. In reductive titrations, low-spin heme signals at g 2.6 as well as rhombic and nearly axial high-spin heme signals are found at pH 8.4, while the only heme signals appearing at pH 6.4 are two nearly axial g 6 signals. This pH dependence is shifted in the vesicles.The g 2.6 signals formed in titrations with ferrocytochrome c at pH 8.4 correspond maximally to 0.25–0.35 heme per functional unit (aa3) of cytochrome oxidase in detergent solution and to 0.22 heme in vesicle oxidase. The total amount of high-spin heme signals at g 6 found in partially reduced enzyme is 0.45–0.6 at pH 6.4 and 0.1–0.2 at pH 8.4. In titrations of cytochrome oxidase in detergent solution the g 1.45 and g 2 signals disappear with fewer equivalents of ferrocytochrome c added at pH 8.4 compared to pH 6.4.The results indicate that the environment of the hemes varies with the pH. One change is interpreted as cytochrome a3 being converted from a high-spin to a low-spin form when the pH is increased. Possibly this transition is related to a change of a liganded H2O to OH? with a concomitant decrease of the redox potential. Oxidase in phosphatidylcholine vesicles is found to behave as if it experiences a pH, one unit lower than that of the medium.  相似文献   

18.
《BBA》2023,1864(2):148934
The catalytic cycle of cytochrome c oxidase (COX) couples the reduction of oxygen to the translocation of protons across the inner mitochondrial membrane and involves several intermediate states of the heme a3-CuB binuclear center with distinct absorbance properties. The absorbance maximum close to 605 nm observed during respiration is commonly assigned to the fully reduced species of hemes a or a3 (R). However, by analyzing the absorbance of isolated enzyme and mitochondria in the Soret (420–450 nm), alpha (560–630 nm) and red (630–700 nm) spectral regions, we demonstrate that the Peroxy (P) and Ferryl (F) intermediates of the binuclear center are observed during respiration, while the R form is only detectable under nearly anoxic conditions in which electrons also accumulate in the higher extinction coefficient low spin a heme. This implies that a large fraction of COX (>50 %) is active, in contrast with assumptions that assign spectral changes only to R and/or reduced heme a. The concentration dependence of the COX chromophores and reduced c-type cytochromes on the transmembrane potential (ΔΨm) was determined in isolated mitochondria during substrate or apyrase titration to hydrolyze ATP. The cytochrome c-type redox levels indicated that soluble cytochrome c is out of equilibrium with respect to both Complex III and COX. Thermodynamic analyses confirmed that reactions involving the chromophores we assign as the P and F species of COX are ΔΨm-dependent, out of equilibrium, and therefore much slower than the ΔΨm-insensitive oxidation of the R intermediate, which is undetectable due to rapid oxygen binding.  相似文献   

19.
Isolated and purified cytochrome c oxidase from beef heart muscle mitochondria (Kuboyama et al. (1972) J. Biol. Chem.247, 6375–6383) is shown to be very similar to the hemoprotein in situ with respect to its EPR absorption properties and the half-reduction potentials of the hemes and copper. The half-reduction potentials of cytochromes a and a3 in the purified cytochrome c oxidase are 205 mV and 360 mV, respectively, and these values are the same in the presence and absence of cytochrome c.Low-temperature EPR spectra show that the binding of CO to reduced cytochrome a3 changes the oxidized cytochrome a from high spin (g 6) to low spin (g 3). In samples at 5–8 °K the photodissociation of the reduced cytochrome a3CO compound shifts the spectrum of the oxidized low-spin cytochrome a to a lower g value and converts approximately 5% of the low-spin form to a high-spin form. The heme-heme interaction demonstrated in this reaction is very fast as evidenced by the fact that even at 5 °K the measured change in oxidized cytochrome is complete within 5 msec.  相似文献   

20.
The rate of incorporation of [14C]aminolevulinic acid (ALA) into cytochrome hemes was used to measure mitochondrial cytochrome synthesis in the fat body of adult male Blaberus discoidalis cockroaches. The hemes of cytochromes aa3+b and c+c1, were chemically separated to observe differential rates in their synthesis and regulation. [14C]ALA was linearly incorporated into cytochrome hemes for at least 8 h. No significant pool of endogenous ALA was detected relative to the amount of administered [14C]ALA. Peak cytochrome synthesis occurred 4 to 6 days after adult emergence. Endocrine disruption by corpora cardiaca-corpora allata extirpation or cervical ligation eliminated the 4-day developmentally related increase in the rate of cytochrome aa3+b synthesis but had no effect on the production of cytochromes c+c1. Injections of corpora cardiaca extracts into cervically ligated animals stimulated the rate of production of cytochromes aa3+b by 2.5 times but did not affect cytochromes c+c1. By comparison, juvenile hormone injections did not affect the rate of synthesis of either cytochrome fraction. These findings indicate that a neurohormone regulates the rate of synthesis of cytochromes a+b in insect fat body mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号