首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent evidence implies that impaired metabolism of glutathione has a role in the pathogenesis of nephropathic cystinosis. This recessive inherited disorder is characterized by lysosomal cystine accumulation and results in renal Fanconi syndrome progressing to end stage renal disease in the majority of patients. The most common treatment involves intracellular cystine depletion by cysteamine, delaying the development of end stage renal disease by a yet elusive mechanism. However, cystine depletion does not arrest the disease nor cures Fanconi syndrome in patients, indicating involvement of other yet unknown pathologic pathways. Using a newly developed proximal tubular epithelial cell model from cystinotic patients, we investigate the effect of cystine accumulation and cysteamine on both glutathione and ATP metabolism. In addition to the expected increase in cystine and defective sodium-dependent phosphate reabsorption, we observed less negative glutathione redox status and decreased intracellular ATP levels. No differences between control and cystinosis cell lines were observed with respect to protein turnover, albumin uptake, cytosolic and mitochondrial ATP production, total glutathione levels, protein oxidation and lipid peroxidation. Cysteamine treatment increased total glutathione in both control and cystinotic cells and normalized cystine levels and glutathione redox status in cystinotic cells. However, cysteamine did not improve decreased sodium-dependent phosphate uptake. Our data implicate that cysteamine increases total glutathione and restores glutathione redox status in cystinosis, which is a positive side-effect of this agent next to cystine depletion. This beneficial effect points to a potential role of cysteamine as anti-oxidant for other renal disorders associated with enhanced oxidative stress.  相似文献   

2.
Cystinosis is a rare disease caused by homozygous mutations of the CTNS gene, encoding a cystine efflux channel in the lysosomal membrane. In Ctns knockout mice, the pathologic intralysosomal accumulation of cystine that drives progressive organ damage can be reversed by infusion of wildtype bone marrow-derived stem cells, but the mechanism involved is unclear since the exogeneous stem cells are rarely integrated into renal tubules. Here we show that human mesenchymal stem cells, from amniotic fluid or bone marrow, reduce pathologic cystine accumulation in co-cultured CTNS mutant fibroblasts or proximal tubular cells from cystinosis patients. This paracrine effect is associated with release into the culture medium of stem cell microvesicles (100-400 nm diameter) containing wildtype cystinosin protein and CTNS mRNA. Isolated stem cell microvesicles reduce target cell cystine accumulation in a dose-dependent, Annexin V-sensitive manner. Microvesicles from stem cells expressing CTNS(Red) transfer tagged CTNS protein to the lysosome/endosome compartment of cystinotic fibroblasts. Our observations suggest that exogenous stem cells may reprogram the biology of mutant tissues by direct microvesicle transfer of membrane-associated wildtype molecules.  相似文献   

3.
《Autophagy》2013,9(7):971-973
Cystinosis, which is characterized by lysosomal accumulation of cystine in many tissues, was the first known storage disorder caused by defective metabolite export from the lysosome. The molecular and cellular mechanisms underlying nephropathic cystinosis, the most severe form, which exhibits generalized proximal tubular dysfunction and progressive renal failure, remain largely unknown. We used renal proximal tubular epithelial (RPTE) cells and fibroblasts from patients with 3 clinical variants of cystinosis: nephropathic, intermediate, and ocular to explore the specific injury mechanism in nephropathic cystinosis. We demonstrate enhanced autophagy of mitochondria, increase in apoptosis and mitochondrial dysfunction in the nephropathic cystinosis phenotype. Furthermore, specific inhibition of autophagy results in significant attenuation of cell death in nephropathic cystinosis. This study provides ultrastructural and functional evidence of abnormal mitochondrial autophagy in nephropathic cystinosis, which may contribute to the renal Fanconi syndrome and progressive renal injury.  相似文献   

4.
Nephropathic cystinosis is a lysosomal storage disorder caused by mutations in the CTNS gene encoding cystine transporter cystinosin that results in accumulation of amino acid cystine in the lysosomes throughout the body and especially affects kidneys. Early manifestations of the disease include renal Fanconi syndrome, a generalized proximal tubular dysfunction. Current therapy of cystinosis is based on cystine-lowering drug cysteamine that postpones the disease progression but offers no cure for the Fanconi syndrome. We studied the mechanisms of impaired reabsorption in human proximal tubular epithelial cells (PTEC) deficient for cystinosin and investigated the endo-lysosomal compartments of cystinosin-deficient PTEC by means of light and electron microscopy. We demonstrate that cystinosin-deficient cells had abnormal shape and distribution of the endo-lysosomal compartments and impaired endocytosis, with decreased surface expression of multiligand receptors and delayed lysosomal cargo processing. Treatment with cysteamine improved surface expression and lysosomal cargo processing but did not lead to a complete restoration and had no effect on the abnormal morphology of endo-lysosomal compartments. The obtained results improve our understanding of the mechanism of proximal tubular dysfunction in cystinosis and indicate that impaired protein reabsorption can, at least partially, be explained by abnormal trafficking of endosomal vesicles.  相似文献   

5.
Cystinosis, which is characterized by lysosomal accumulation of cystine in many tissues, was the first known storage disorder caused by defective metabolite export from the lysosome. The molecular and cellular mechanisms underlying nephropathic cystinosis, the most severe form, which exhibits generalized proximal tubular dysfunction and progressive renal failure, remain largely unknown. We used renal proximal tubular epithelial (RPTE) cells and fibroblasts from patients with three clinical variants of cystinosis: nephropathic, intermediate and ocular to explore the specific injury mechanism in nephropathic cystinosis. We demonstrate enhanced autophagy of mitochondria, increase in apoptosis and mitochondrial dysfunction in the nephropathic cystinosis phenotype. Furthermore, specific inhibition of autophagy results in significant attenuation of cell death in nephropathic cystinosis. This study provides ultrastructural and functional evidence of abnormal mitochondrial autophagy in nephropathic cystinosis, which may contribute to renal Fanconi syndrome and progressive renal injury.Key words: cystinosis, autophagy, mitochondria, kidney, lysosome, apoptosis, cell death, mitophagyCystinosis is an autosomal recessive metabolic disorder caused by mutations in the CTNS gene, which encodes a 7-transmembrane domain protein, cystinosin, a lysosomal cystine transporter. Cystinosis belongs to the family of lysosomal storage disorders (LSDs) characterized by the tissue accumulation of cystine crystals leading to multiple organ dysfunction. The three types of cystinosis, i.e., nephropathic (classic renal and systemic disease), intermediate (a late-onset variant of nephropathic cystinosis) and non-nephropathic (clinically affecting only the cornea) are allelic disorders caused by CTNS mutations. Children affected with nephropathic cystinosis present with the Fanconi syndrome and usually develop progressive renal failure within the first decade of life. The mechanism linking lysosomal cystine storage to pathological manifestations, in particular to the prominent proximal tubular defect and renal injury, remains unclear. Renal injury in nephropathic cystinosis may not simply be caused just by cystine accumulation, as disruption of the ctns gene in mice induces cystine storage in many tissues but does not result in signs of tubulopathy or renal failure; renal injury is not seen in other human forms of cystinosis and progressive renal injury occurs despite cystine depletion therapy.The purpose of our study was to investigate the specific mechanism leading to tubulopathy and end stage renal injury in nephropathic cystinosis. We used primary fibroblast and renal proximal tubular epithelial (RPTE) cells derived from patients with three clinical phenotypes of cystinosis. Our data show an abnormal increase in macroautophagy (hereafter referred to as autophagy), specific to the nephropathic variant of cystinosis. We also demonstrate that specific inhibition of autophagy rescues cell death in nephropathic cystinotic RPTE cells. Our results indicate that mitochondrial autophagy may be a critical mechanism contributing to renal Fanconi syndrome and progressive renal injury in nephropathic cystinosis.Abnormal autophagy was also recently observed in other types of lysosomal storage diseases (LSD). However, our study provides the first evidence supporting the extensive involvement of autophagy in nephropathic cystinosis pathogenesis. Abundant vacuolization and abnormal mitochondria are detected by electron microscopy (EM) in nephropathic cystinotic cells. Additionally, elevated levels of LC3-II and Beclin 1 are also observed in nephropathic cystinotic RPTE cells, indicating a role of Beclin 1-mediated autophagy in cystinosis. These results altogether establish an abnormal increase in autophagy in nephropathic cystinotic cells.Renal biopsies from patients with nephropathic cystinosis can reveal abnormally large mitochondria, but the relevance of this finding and other ultrastructural abnormalities is unclear. Our study further demonstrates a significant decrease in mitochondrial ATP generation with an increase in reactive oxygen species (ROS) in cystinotic cells. To further dissect the association of abnormal mitochondria with increased autophagy in cystinosis, we carefully examined the electron micrographs at higher magnifications. We discovered various stages of degradation of mitochondria by autophagy (hereafter referred to as mitophagy). To further validate mitophagy in cystinosis, we used an immunofluorescence (IF) approach to capture colocalization images of LC3, LAMP-2 (lysosomal marker) and ATP5H (mitochondrial marker). Intriguingly, an increase in LAMP-2 perinuclear staining is detected by IF assay in cystinotic cells. This observation may also denote enhanced active autophagy as LAMP-2 is involved in lysosomal biogenesis and/or the fusion between autophagosomes and lysosomes. Alternatively, LAMP-2 accumulation could be a manifestation of retarded autophagic flux in cystinotic cells. A decreased ability of lysosomes to fuse with autophagosomes has been reported in various LSDs. However, the colocalization of LC3 and LAMP-2 in nephropathic cystinotic RPTE cells argues against this possibility. Nevertheless, the possibility of autophagic flux blockade after autophagosome-lysosome fusion leading to detrimental effects is yet to be investigated. Interestingly, previously published EM reports of the renal biopsies of patients with nephropathic cystinosis show only the nucleus and a thin rim of cytoplasm as remnants in a proximal tubular cell, while mitochondria and lysosomes completely disappear.Conventionally, autophagy has been suggested as a cytoprotective mechanism to ensure cell survival during starvation. In contrast, several forms of cell death have been associated with the appearance of autophagic vesicles. To gain insight into the role of autophagy as regards to cell death or cell survival in nephropathic cystinosis, we used 3-methyladenine (3MA), a specific inhibitor of autophagy and assayed cell viability and apoptosis in cystinotic cells. Increased apoptosis has been previously reported in cultured cystinotic fibroblasts and RPTE cells. Treatment with 3MA in cystinotic cells significantly rescues cell death, thus suggesting a synergistic role of apoptosis and autophagy in cystinosis.In conclusion, as illustrated in Figure 1, we speculate that there is a multifaceted impact of autophagy in nephropathic cystinosis as follows: (1) the mechanism linking autophagy to lysosomal cystine or apoptosis in cystinotic cells could potentially be related to lysosomal membrane permeabilization (LMP), proposed as an early step in apoptosis in cystinosis. We hypothesize that abnormal induction of autophagy besides providing more cargo to be digested in the lysosomes, leads to increased fusion of autophagosomes with cystine-laden lysosomes, rendering them more sensitive to membrane destabilization, and thus making them readily enter the apoptotic pathway; (2) the second most important question is the link between abnormal mitochondria and mitophagy in cystinosis. A decreased level of cytosolic glutathione in cystinotic cells is one of the known factors responsible for generating damaged mitochondria. Our data also indicate an impairment of complex I activity, an increase in ROS and a decrease in mitochondrial ATP generation in cystinotic cells. We hypothesize that the abnormal induction of autophagy leads to depletion of mitochondria, forcing cells to enter the ‘starvation mode,’ thereby leading to an uncontrolled autophagy and cell death; (3) the third key question yet to be answered is the link between autophagy and renal injury in nephropathic cystinosis. Skeletal muscles and neuronal tissues are the primary organs where autophagy is physiologically enhanced. Recently, it has been shown that mouse kidneys exert a high level of autophagy under basal conditions, influencing the susceptibility to glomerular disease and renal failure. Thus, we postulate an organ- and tissue-specific effect of abnormally induced autophagy in nephropathic cystinosis, causing severe injury to kidneys leading to loss of renal function, ultimately culminating in end-stage renal disease.Open in a separate windowFigure 1A schematic view of the interplay between autophagy, abnormal mitochondria and cell death in cystinosis. Abnormal induction of autophagy, typically mitophagy, forces cells into a starvation mode leading to cell death; and renders cystine-laden lysosomes sensitive to lysosomal membrane permeabilization (LMP) making it readily enter the apoptosis pathway. A potential block in autophagic flux, after autophagosome-lysosome fusion, remains to be elucidated. Preferential severe kidney damage in nephropathic cystinosis may be due to the tissue- and organ-specific injury effect of autophagy.The recent progress in autophagy research has increased the need for additional studies so that we can fully understand the underlying pathological mechanisms and the significance of the lysosomal cell death axis in lysosomal storage disorders.  相似文献   

6.
Cystinosis is a disorder associated with excessive lysosomal cystine accumulation secondary to defective cystine efflux. Patients affected by this disease develop a variable degree of symptoms depending on the involved tissues. Accumulation of cystine in myocardium may lead to heart failure. However, the mechanisms by which cystine is toxic to the tissues are not fully understood. Considering that thiolic enzymes like pyruvate kinase (PK) may be altered by disulfides like cystine, the main objective of the present study was to investigate the effect of cystine on PK activity in the heart of developing rats. We performed kinetic studies and investigated the effects of reduced glutathione (GSH), a biologically occurring thiol groups protector, and cysteamine, the drug used for cystinosis treatment, on the enzyme activity. We observed that cystine inhibited the enzyme activity non-competitively in a dose- and time-dependent way. We also observed that GSH and cysteamine fully prevented and reversed the inhibition caused by cystine, suggesting that cystine inhibits PK activity by oxidation of the sulfhydryl groups of the enzyme. Although there is no definite proof of cystine within cytoplasm, there is indirect proof t it is able to escape lysosomes and come in contact with PK. Considering that cysteamine is used in patients with cystinosis because it causes parenchymal organ cystine depletion, the present data provide a possible new effect for this drug.  相似文献   

7.
Nephropathic cystinosis is a rare autosomal recessive disease characterised by raised intracellular levels of the amino acid, cystine. If untreated, the disease, progressively deteriorates towards end stage renal disease (ESRD) at the end of the first decade. The disease is caused by a defect in the lysosomal transport mechanism for cystine. The treatment of choice is the aminothiol cysteamine which acts as a lysine mimic. However, cysteamine possesses an offensive taste and smell and irritates the gastrointestinal tract leading to nausea and vomiting following administration. Furthermore, the rapid metabolism of cysteamine requires oral administration every 6 h for life, in consequence, the patient compliance is poor. As part of our continuing work to obtain new pro-drugs for the treatment of this genetic disease, we have synthesised a folate derivative of cystamine, the disulfide derivative of cysteamine. This new pro-drug was non cytotoxic, showed greater ability to deplete intralysosomal cystine than the current treatment, and, in fact has been the most effective reducer of intralysosomal cystine discovered in our laboratories to date.  相似文献   

8.
Cysteamine is a cystine-depleting drug used in the treatment of cystinosis, a metabolic disorder caused by deficiency of the lysosomal cystine carrier. As a result, cystine accumulates within lysosomes in many tissues and organs, including the nervous system. Studies with cystine dimethyl ester loaded cells suggest that cystine might induce apoptosis through oxidative stress. Our objective was to investigate the effects of co-administration of cysteamine with the oxidant cystine dimethyl ester on several parameters of oxidative stress in the brain cortex of rats. Animals were injected with 1.6 μmol/g cystine dimethyl ester and/or 0.26 μmol/g body weight cysteamine. Cystine dimethyl ester induced lipoperoxidation, protein carbonylation, and stimulated superoxide dismutase, glutathione peroxidase and catalase activities, probably through the formation of free radicals. Cysteamine prevented those effects, possibly increasing cellular thiol pool and acting as a scavenger of free radicals. These results suggest that the antioxidant effect of cysteamine may be important in the treatment of cystinosis.  相似文献   

9.
The genetic disease, nephropathic cystinosis is characterized by lysosomal accumulation of the amino acid cystine. Crystallization of cystine in affected organs, if untreated, results in mortality of the affected individuals by their middle to late teens. The only approved treatment for cystinosis is administration of cysteamine. However, cysteamine is associated with an offending odor and taste and this, coupled to a rapid first pass metabolism and a 6 h dosing regimen, suggest a clear need to improve the therapy. A number of PEGylated derivatives of cystamine, the disulfide counterpart of cysteamine, have been synthesised and evaluated in cultured cystinotic fibroblasts for toxicity and efficacy. All of the tested compounds were non-cytotoxic and displayed a remarkable depletion of intralysosomal cystine.  相似文献   

10.
Nephropathic cystinosis is a rare autosomal recessive disease characterised by raised lysosomal levels of cystine in the cells of most organs. The disorder is treated by regular administration of the aminothiol, cysteamine, an odiferous and unpleasant tasting compound that along with its metabolites is excreted in breath and sweat, leading to poor patient compliance. In an attempt to improve patient compliance a series of novel prodrugs has been designed and evaluated as a potential new treatment for nephropathic cystinosis. The first of the prodrugs tested, 3a, was found to decrease the levels of intracellular cystine in cystinotic fibroblasts. This is the first report of a potential new therapeutic treatment for nephropathic cystinosis since the advent of cysteamine bitartrate.  相似文献   

11.
Cystinosis, the most frequent cause of inborn Fanconi syndrome, is characterized by the lysosomal cystine accumulation, caused by mutations in the CTNS gene. To elucidate the pathogenesis of cystinosis, we cultured proximal tubular cells from urine of cystinotic patients (n = 9) and healthy controls (n = 9), followed by immortalization with human papilloma virus (HPV E6/E7). Obtained cell lines displayed basolateral polarization, alkaline phosphatase activity, and presence of aminopeptidase N (CD-13) and megalin, confirming their proximal tubular origin. Cystinotic cell lines exhibited elevated cystine levels (0.86 +/- 0.95 nmol/mg versus 0.09 +/- 0.01 nmol/mg protein in controls, p = 0.03). Oxidized glutathione was elevated in cystinotic cells (1.16 +/- 0.83 nmol/mg versus 0.29 +/- 0.18 nmol/mg protein, p = 0.04), while total glutathione, free cysteine, and ATP contents were normal in these cells. In conclusion, elevated oxidized glutathione in cystinotic proximal tubular epithelial cell lines suggests increased oxidative stress, which may contribute to tubular dysfunction in cystinosis.  相似文献   

12.
Cystinosis is an autosomal recessive lysosomal storage disease caused by mutations in CTNS. The most prevalent CTNS mutation, a 57-kb deletion, occurs in ~60% of patients in the United States and northern Europe and removes exons 1–9, most of exon 10, the CTNS promoter region, and all of an adjacent gene of unknown function called CARKL. CTNS codes for the lysosomal cystine transporter, whose absence leads to intracellular cystine accumulation, widespread cellular destruction, renal Fanconi syndrome in infancy, renal glomerular failure in later childhood, and other systemic complications. Because treatment with oral cysteamine can prevent or delay these complications significantly, early and accurate diagnosis is critical. This study describes the generation of fluorescence in situ hybridization (FISH) probes for the 57-kb deletion in CTNS, enabling cytogenetics laboratories to test for this common mutation. The probes would also be able to detect a less frequent 11.7-kb deletion. A blinded study was performed using multiplex PCR analysis as the gold standard to determine the presence or absence of the 57-kb deletion. The FISH probes, evaluated on 12 lymphoblastoid cell lines from singly deleted, doubly deleted, and nondeleted patients, made the correct diagnosis in every case. This appears to be the first FISH-based diagnostic method described for any lysosomal storage disorder. It can assist in the antenatal and perinatal diagnosis of cystinosis and promote earlier salutary therapy with cysteamine.  相似文献   

13.
14.
Cystinosis is a disorder associated with lysosomal cystine accumulation caused by defective cystine efflux. Cystine accumulation provokes a variable degree of symptoms depending on the involved tissues. Adult patients may present brain cortical atrophy. However, the mechanisms by which cystine is toxic to the tissues are not fully understood. Considering that brain damage may be developed by energy deficiency, creatine kinase is a thiolic enzyme crucial for energy homeostasis, and disulfides like cystine may alter thiolic enzymes by thiol/disulfide exchange, the main objective of the present study was to investigate the effect of cystine on creatine kinase activity in total homogenate, cytosolic and mitochondrial fractions of the brain cortex from 21-day-old Wistar rats. We performed kinetic studies and investigated the effects of GSH, a biologically occurring thiol group protector, and cysteamine, the drug used for cystinosis treatment, to better understand the effect of cystine on creatine kinase activity. Results showed that cystine inhibited the enzyme activity non-competitively in a dose- and time-dependent way. GSH partially prevented and reversed CK inhibition caused by cystine and cysteamine fully prevented and reversed this inhibition, suggesting that cystine inhibits creatine kinase activity by interaction with the sulfhydryl groups of the enzyme. Considering that creatine kinase is a crucial enzyme for brain cortex energy homeostasis, these results provide a possible mechanism for cystine toxicity and also a new possible beneficial effect for the use of cysteamine in cystinotic patients.  相似文献   

15.
Infantile nephropathic cystinosis is an autosomal recessive disorder characterized biochemically by an abnormally high intracellular content of free cystine in different organs and tissues due to a transport defect of cystine through the lysosomal membrane. Affected children present with the Fanconi syndrome and usually develop progressive renal failure within the 1st decade of life. Measurement of free cystine in purified polymorphonuclear leukocytes provides an accurate method for diagnosis and detection of heterozygous carriers. In order to localize the gene locus for cystinosis we performed linkage analysis in 18 cystinosis families. However, since 17 of these were simplex families, we decided to include the phenotypes of the heterozygous carriers previously determined by their leukocyte cystine content in the linkage analysis. This approach allowed us to obtain highly significant results, confirming the localization of the cystinosis gene locus recently mapped to the short arm of chromosome 17 by the Cystinosis Collaborative Research Group. Crucial recombination events allowed us to refine the interval of the cystinosis gene to a genetic distance of 1 cM. No evidence of genetic heterogeneity was found. Our results demonstrate that the use of the previously determined phenotypes of heterozygous carriers in linkage analysis provides a reliable method for the investigation of simplex families in autosomal recessive traits.  相似文献   

16.
[35S]L-cystine uptake was measured in cultured skin fibroblasts from patients with nephropathic cystinosis, pretreated with cysteamine to deplete their cystine pools. The uptake was greater in the cystinotic cells than in normal cells. The data suggest that the enhanced [35S]-cystine uptake observed in cystinotic cells is not a consequence of disulfide exchange with stored cystine and may be related to the underlying abnormality in this enigmatic disorder.  相似文献   

17.
Sorted muscle cells, cultured from a patient with nephropathic cystinosis, stored 100 times normal amounts of cystine. Subcellular fractionation and density-gradient centrifugation confirmed that the cystine was located in a lysosomal compartment. 2. Myoblasts from cystinotic patients in culture underwent fusion to myotubes in a normal fashion. 3. The free thiol cysteamine effectively depleted cystinotic-muscle cells of cystine. 4. Cultured myoblast and myotubes offered a unique system for investigating the effects of lysosomal storage on differentiated cell functions.  相似文献   

18.
As part of our continuing work to obtain new pro-drugs for the treatment of nephropathic cystinosis, a number of glutaric and succinic acid derivatives of cystamine have been designed, synthesised and biologically evaluated in vitro. These compounds have been designed as odourless and tasteless pro-drugs which will release multiple molecules of cysteamine upon administration. All of the synthesised compounds evaluated in this study were non-cytotoxic and displayed a greater ability than cysteamine to deplete the levels of cystine in cultured fibroblasts.  相似文献   

19.
Summary Renal cell cultures were initiated using fresh autopsy material from two individuals with cystinosis, ages 5 and 8 yr. Cells obtained from collagenase treated autopsy material were grown in a selective kidney medium containing Coon's modified F12, 2.5% fetal bovine serum, transferrin, insulin, selenium, hydrocortisone, PGE1, and fibronectin. These cells had an epithelial appearance, formed domes, and were periodic acid-Schiff positive. Both tight junctions and microvilli were seen by electron microscopy. Fibroblasts had a cloning efficiency of zero in the selective medium and grew poorly compared to their growth in Coon's F12 with 10% fetal bovine serum. The lysosomal cystine content of the renal cells was greatly elevated and comparable to that of fibroblasts from cystinotic patients. Renal cell lysosomal cystine levels were only partially reduced by exposure to either pantethine or the aminothiol, cysteamine. However, exposure to either compound effectively depleted cystinotic cultured fibroblasts of their lysosomal cystine. Study of cultured renal material may have practical significance in pharmacologic considerations. This work was supported by Grants AM 01074-01, AM 18434, and GM 17702 from the National Institutes of Health, Bethesda, MD.  相似文献   

20.
Cystinosis, an inherited disease caused by a defect in the lysosomal cystine transporter (CTNS), is characterized by renal proximal tubular dysfunction. Adenosine triphosphate (ATP) depletion appears to be a key event in the pathophysiology of the disease, even though the manner in which ATP depletion occurs is still a puzzle. We present a model that explains how a futile cycle that is generated between two ATP-utilizing enzymes of the γ-glutamyl cycle leads to ATP depletion. The enzyme γ-glutamyl cysteine synthetase (γ-GCS), in the absence of cysteine, forms 5-oxoproline (instead of the normal substrate, γ-glutamyl cysteine) and the 5-oxoproline is converted into glutamate by the ATP-dependant enzyme, 5-oxoprolinase. Thus, in cysteine-limiting conditions, glutamate is cycled back into glutamate via 5-oxoproline at the cost of two ATP molecules without production of glutathione and is the cause of the decreased levels of glutathione synthesis, as well as the ATP depletion observed in these cells. The model is also compatible with the differences seen in the human patients and the mouse model of cystinosis, where renal failure is not observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号