首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the pervasiveness of spatial synchrony of population fluctuations in virtually every taxon, it remains difficult to disentangle its underlying mechanisms, such as environmental perturbations and dispersal. We used multiple regression of distance matrices (MRMs) to statistically partition the importance of several factors potentially synchronizing the dynamics of the gypsy moth, an invasive species in North America, exhibiting outbreaks that are partially synchronized over long distances (approx. 900 km). The factors considered in the MRM were synchrony in weather conditions, spatial proximity and forest-type similarity. We found that the most likely driver of outbreak synchrony is synchronous precipitation. Proximity played no apparent role in influencing outbreak synchrony after accounting for precipitation, suggesting dispersal does not drive outbreak synchrony. Because a previous modelling study indicated weather might indirectly synchronize outbreaks through synchronization of oak masting and generalist predators that feed upon acorns, we also examined the influence of weather and proximity on synchrony of acorn production. As we found for outbreak synchrony, synchrony in oak masting increased with synchrony in precipitation, though it also increased with proximity. We conclude that precipitation could synchronize gypsy moth populations directly, as in a Moran effect, or indirectly, through effects on oak masting, generalist predators or diseases.  相似文献   

2.
I investigate two aspects of source-sink theory that have hitherto received little attention: density-dependent dispersal and the cost of dispersal to sources. The cost arises because emigration reduces the per capita growth rate of sources, thus predisposing them to extinction. I show that source-sink persistence depends critically on the interplay between these two factors. When the emigration rate increases with abundance at an accelerating rate, dispersal costs to sources is the lowest and risk of source-sink extinction the least. When the emigration rate increases with abundance at a decelerating rate, dispersal costs to sources is the highest and the risk of source-sink extinction the greatest. Density-independent emigration has an intermediate effect. Thus, density-dependent dispersal per se does not increase or decrease source-sink persistence relative to density-independent dispersal. The exact mode of dispersal is crucial. A key point to appreciate is that these effects of dispersal on source-sink extinction arise from the temporal density-dependence that dispersal induces in the per capita growth rates of source and sink populations. Temporal density-dependence due to dispersal is beneficial at low abundances because it rescues sinks from extinction, and detrimental at high abundances because it drives otherwise viable sources to extinction. These results are robust to the nature of population dynamics in the sink, whether exponential or logistic. They provide a means of assessing the relative costs and benefits of preserving sink habitats given three biological parameters.  相似文献   

3.
Processes which generate natal dispersal are largely unknown. This is particularly the case for the sources of differences among families. Three types of processes can generate the variability among families: genetic, prenatal and postnatal. We first tested the family resemblance of dispersal behaviour in the common lizard (Lacerta vivipara). We then experimentally investigated the role of pre‐ and postnatal factors in the variability of dispersal among families. From 1989 to 1992, we studied dispersal of juveniles from pregnant females captured in the field and maintained in laboratory until parturition. We manipulated the conditions of gestation to test for prenatal effects on juvenile dispersal. We tested postnatal effects by releasing siblings of the same family in contrasted environments. We also examined covariances of natal dispersal with maternal and offspring traits. The results showed that: (1) dispersal behaviour was similar among siblings, (2) determinants of offspring dispersal differed between sexes and years, (3) offspring dispersal was related to litter sex‐ratio and offspring corpulence at birth, (4) postnatal conditions influenced male dispersal, (5) short‐term prenatal conditions (i.e. maternal conditions during gestation) influenced juvenile dispersal, varying per year, (6) long‐term prenatal conditions (i.e. maternal conditions during gestation in the previous year) could also influence juvenile dispersal (marginally significant). Thus, several types of processes determine natal dispersal in the common lizard. Resemblance among siblings can partly be explained by both pre‐ and postnatal effects. The environment seems to be the major factor influencing juvenile dispersal in this species, i.e. dispersal essentially appears condition‐dependent. The genetic basis of dispersal in vertebrates remains to be demonstrated by studies controlling for both prenatal and postnatal conditions.  相似文献   

4.
The influence of population density and aggregation pheromone were investigated as possible flight initiating factors for Prostephanus truncatus (Horn) (Col.: Bostrichidae). Maize grains (175 g in glass jars) were infested with 20, 50, 150 or 300 beetles, all of which were removed after 2 weeks. Flight initiation of the progeny was observed over a period of 4 weeks, with and without the synthetic aggregation pheromone of P. truncatus. Addition of the synthetic pheromone had no influence on the number of beetles taking off. The number of beetles dispersing increased with growing initial and progeny densities. Dispersal rates (% of total progeny dispersing) rose with declining rate till they reached a maximum at ca. 33%. Of the beetles dispersing, 74% left the cultures between 18.00 and 20.00 hours. Surviving progeny per female decreased with increasing initial density. Sex ratios in the initial cultures and in the F1 were ca. 1:1, whereas a higher proportion of females (67%) was found among the dispersing beetles.  相似文献   

5.
6.
7.
Abstract. We compare the dispersal spectra of diaspores from varied plant communities in Australia, New Zealand, and North America, assigning dispersal mode to each diaspore type on the basis of apparent morphological adaptations. Species with ballistic and external dispersal modes were uncommon in most communities we surveyed. Ant dispersal was also rather uncommon, except in some Australian sclerophyll vegetation types. The frequency of vertebrate dispersal ranged up to 60% of the flora, the highest frequencies occurring in New Zealand forests. Wind dispersal ranged as high as 70% of the flora, with the highest values in Alaska, but usually comprised 10–30% of the flora. Many species in most communities had diaspores with no special morphological device for dispersal. Physiognomically similar vegetation types indifferentbiogeographic regions usually had somewhat dissimilar dispersal spectra. The frequency of dispersal by vertebrates often increased and the frequency of species with no special dispersal device decreased along gradients of increasing vertical diversity of vegetation structure. Elevation and moisture gradients also exhibited shifts in dispersal spectra. Within Australia, vertebrate- and wind-dispersal increased in frequency along a soil-fertility gradient, and dispersal by ants and by no special device decreased. Habitat breadths (across plant communities) and microhabitat breadths (within communities) for species of each major dispersal type did not show consistent differences, in general. Ant-dispersed species often had lower cover-values than other species in several Australian vegetation types. We discuss the ecological bases of these differences in dispersal spectra in terms of the availability of dispersal agents, seed size, and other ecological constraints. Seed size is suggested to be one ecological factor that is probably of general relevance to the evolution of dispersal syndromes.  相似文献   

8.
Effects of sublethal concentrations (LC25) of six insecticides (imidacloprid, rotenone, fenvalerate, abamectin, pirimicarb and azadirachtin) on fecundity and wing dimorphism of the green peach aphid, Myzus persicae (Sulzer), were studied both under laboratory and greenhouse conditions. In the laboratory, aphid reproduction reduced by 44.29% and 54.01% when rotenone and abamectin treatments were applied at sublethal dose, respectively, and sublethal fenvalerate application resulted in markedly lower average reproduction per female per day compared with control. Reproductive duration of aphid treated with abamectin significantly decreased by 44.19%. But in the greenhouse, there were no evident differences in the aphid fecundity and reproductive duration between treatments and control. Life‐table parameters also demonstrated that the six insecticides at sublethal doses did not stimulate the aphid reproductive potential. In the laboratory, after being exposed to sublethal doses of imidacloprid and fenvalerate, the proportions of alate progeny in aphid progeny were significantly higher than that of the control. In the greenhouse, percentages of alate offspring from the mother aphids treated with imidacloprid, fenvalerate and abamectin increased pronouncedly compared with control. Mortality rates of offspring in the nymphal stages from adults treated with insecticides revealed no significant changes between laboratory and greenhouse. The developmental time in days of the offspring varied in all treatments. Mechanisms of insecticide‐induced resurgence are discussed.  相似文献   

9.
In tropical forests, ants frequently consume fruit pulp around seeds of vertebrate-dispersed plants, which protects the seeds from infection by fungus and pathogens. Seed cleaning behavior by omnivorous ants was observed in the secondary forests of Bogor botanical garden in West Java. Fruit pulp around the seeds of the rambutan Nephelium lappaceum was completely removed by Pheidole plagiaria, Anoplolepis gracilipes, and other ants. When seed cleaners were excluded, however, many seeds were attacked by fungus and died. Seeds that were cleaned by hand, but not by ants, were similarly attacked. Field experiments on seed cleaning by P. plagiaria revealed that the anti-fungal effect was not merely caused by removal of fruit pulp, and that seed cleaning reduced the development of spores and hypha of fungi. We suggest that the workers apply anti-fungal substances to the fruit pulp and seed surface.  相似文献   

10.
11.
The Selection of Pollen and Seed Dispersal in Plants   总被引:1,自引:0,他引:1  
  相似文献   

12.
Dispersal, defined as a linear spreading movement of individuals away from others of the population is a fundamental characteristic of organisms in nature. Dispersal is a central concept in ecological, behavioral and evolutionary studies, driven by different forces such as avoidance of inbreeding depression, density-dependent competition and the need to change breeding locations. By effective dispersal, organisms can enlarge their geographic range and adjust the dynamic, sex ratio and genetic compositions of a population. Birds are one of the groups that are studied intensively by human beings. Due to their diurnal habits, diverse life history strategies and complex movement, birds are also ideal models for the study of dispersal behaviors. Certain topics of avian dispersal including sex-biased, asymmetric dispersal caused by differences in body conditions, dispersal processes, habitat selection and long distance dispersal are discussed here. Bird-ringing or marking, radio-telemetry and genetic markers are useful tools widely applied in dispersal studies. There are three major challenges regarding theoretical study and methodology research of dispersal: (1) improvement in research methodology is needed, (2) more in-depth theoretical research is necessary, and (3) application of theoretical research into the conservation efforts for threatened birds and the management of their habitats should be carried out immediately. __________ Translated from Acta Ecologica Sinica, 2008, 28(4): 1354–1365 [译自: 生态学报]  相似文献   

13.
1.  Dispersal of individuals between habitat patches depends on both the propensity to emigrate from a patch and the ability to survive inter-patch movement. Environmental factors and individual characteristics have been shown to influence dispersal rates but separating the effects of emigration and dispersal mortality on dispersal can often be difficult. In this study, we use a soil mite laboratory system to investigate factors affecting emigration and dispersal mortality.
2.  We tested the movement of different age groups in two-patch systems with different inter-patch distances. Differences in immigration among age groups were primarily driven by differences in emigration but dispersal mortality was greater for some groups. Immigration declined with increasing inter-patch distance, which was due to increasing dispersal mortality and decreasing emigration.
3.  In a second experiment, we compared the dispersal of recently matured males and females and tested the impact of food availability during the developmental period on their dispersal. Dispersal was found to be male biased but there was no significant sex bias in dispersal mortality. There was some evidence that food availability could affect emigration and dispersal mortality.
4.  These results demonstrate that both emigration and dispersal mortality can be affected by factors such as individual age and resource availability. Understanding these effects is likely to be important for predicting the fitness costs and population consequences of dispersal.  相似文献   

14.
Summary Previous studies have sought to elucidate the relationship between dispersal mode (biotic versus abiotic) and the taxonomic diversification of angiosperm families, but with ambiguous results. In this study, we propose the hypothesis that the combination of (1) the large seed size required of plants germinating in closed, light-poor environments and (2) the necessity to move disseminules away from the maternal plant in order to avoid intraspecific competition, predation and pathogens should favour biotically-dispersed relative to abiotically-dispersed woody arborescent angiosperms, resulting in higher diversification of the former. In this paper, we seek patterns of diversification that support this hypothesis. We examine the association between dispersal mode, growth habit and taxonomic richness of monocotyledon and dicotyledon families using (1) contingency table analyses to detect the effect of dispersal mode on the relative abundances and diversification of woody versus herbaceous taxa and (2) non-parametric analyses of variance to detect the statistical effect of dispersal mode on taxonomic diversification (mean number of species per genus, genera per family and species per family) in monocot and dicot families dominated by biotic or abiotic dispersal. We found a clear statistical effect of dispersal mode on diversification. Among families of woody dicots, dispersal by vertebrates is associated with significantly higher levels of species per genus, genera per family and species per family than is abiotic dispersal. The same pattern is observed among woody monocots, but is not significant at the 0.05 level. Among families of herbaceous monocots and dicots, the situation is reversed, with abiotically-dispersed families exhibiting higher levels of diversification than vertebrate-dispersed families. When woody and herbaceous families are pooled, there is no association between dispersal mode and diversification. These data coincide with evidence from the fossil record to suggest vertebrate dispersal has positively contributed to the diversification of woody angiosperms. We suggest that vertebrate dispersal may have promoted the diversity of extant taxa by reducing the probability of extinction over evolutionary time, rather than by elevating speciation rates. Our results suggest vertebrate dispersal has contributed to, but does not explainin toto, the diversity of living angiosperms.  相似文献   

15.
Dispersal (i.e. movement from a natal or breeding site to another breeding site) is a central process in ecology and evolution as it affects the eco‐evolutionary dynamics of spatially structured populations. Dispersal evolution is regulated by the balance between costs and benefits, which is influenced by the individual phenotype (i.e. phenotype‐dependent dispersal) and environmental factors (i.e. condition‐dependent dispersal). Even though these processes have been extensively studied in species with simple life cycles, our knowledge about these mechanisms in organisms displaying complex life cycles remains fragmentary. In fact, little is specifically known about how the interplay between individual and environmental factors may lead to alternative dispersal strategies that, in turn, lead to the coexistence of contrasted site fidelity phenotypes. In this paper, we examined breeding dispersal in a pond‐breeding amphibian, the great crested newt Triturus cristatus, within usual walking distances for a newt. We took advantage of recent developments in multi‐event capture–recapture models and used capture–recapture data (946 newts marked) collected in a spatially structured population occupying a large pond network (73 ponds). We showed a high rate of breeding site infidelity (i.e. pond use) and the coexistence of two dispersal phenotypes, namely, a highly pond faithful phenotype and a dispersing phenotype. Individuals that were site faithful at time t – 1 were therefore more likely to remain site faithful at time t. Our results also demonstrated that the probability that individuals belong to one or the other dispersal phenotypes depended on environmental and individual factors. In particular, we highlighted the existence of a dispersal syndrome implying a covariation pattern among dispersal behavior, body size, and survival. Our work opens new research prospects in the evolution of dispersal in organisms displaying complex life cycles and raises interesting questions about the evolutionary pathways that contribute to the diversification of movement strategies in the wild.  相似文献   

16.
【目的】为探讨毒死蜱(Chlorpyrifos)对二斑叶螨Tetranychus urticae Koch种群动态的影响,室内研究了毒死蜱亚致死剂量对二斑叶螨实验种群成螨和若螨的生长发育、存活和繁殖情况的影响。【方法】用浸虫法进行测定,生命表方法分析亚致死效应。【结果】结果表明毒死蜱亚致死剂量LC25处理成螨后,雌成螨寿命、总产卵量、子代孵化率、性比与对照组无显著差异,其净增值率、内禀增长率、周限增长率以及种群加倍时间显著低于对照组。毒死蜱亚致死剂量LC25处理若螨后,总产卵量、净增值率、世代平均周期显著低于对照组,内禀增长率、周限增长率以及种群加倍时间与对照组无显著差异。扩散试验证明毒死蜱对二斑叶螨有较强的刺激扩散作用。【结论】以上结果说明毒死蜱亚致死剂量对不同发育阶段的二斑叶螨发育和繁殖的影响不同,毒死蜱对二斑叶螨的刺激扩散作用可能是引起二斑叶螨再猖獗的原因之一。  相似文献   

17.
Pollination and seed dispersal determine the spatial pattern of gene flow in plant populations and, for those species relying on pollinators and frugivores as dispersal vectors, animal activity plays a key role in determining this spatial pattern. For these plant species, reported dispersal patterns are dominated by short-distance movements with a significant amount of immigration. However, the contribution of seed and pollen to the overall contemporary gene immigration is still poorly documented for most plant populations. In this study we investigated pollination and seed dispersal at two spatial scales in a local population of Prunus mahaleb (L.), a species pollinated by insects and dispersed by frugivorous vertebrates. First, we dissected the relative contribution of pollen and seed dispersal to gene immigration from other parts of the metapopulation. We found high levels of gene immigration (18.50%), due to frequent long distance seed dispersal events. Second, we assessed the distance and directionality for pollen and seed dispersal events within the local population. Pollen and seed movement patterns were non-random, with skewed distance distributions: pollen tended moved up to 548 m along an axis approaching the N-S direction, and seeds were dispersed up to 990 m, frequently along the SW and SE axes. Animal-mediated dispersal contributed significantly towards gene immigration into the local population and had a markedly nonrandom pattern within the local population. Our data suggest that animals can impose distinct spatial signatures in contemporary gene flow, with the potential to induce significant genetic structure at a local level.  相似文献   

18.
Coleosporium species cause pine needle rust. Most species have heteromacrocyclic life cycles, and 12 species use Pinus densiflora as aecial hosts. To understand the biology of rust fungi and develop better methods for controlling rust diseases, it is necessary to clarify that which Coleosporium species affect pine trees. However, Coleosporium on pine trees have rarely been identified at the species level because of their morphological similarities. We used polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) to clarify the species composition, abundance, and distribution of Coleosporium in a P. densiflora forest. We surveyed a site where several Coleosporium species might complete their life cycles. PCR-RFLP revealed four species on the pines: C. asterum, C. clematidis-apiifoliae, C. lycopodis, and C. phellodendri. Coleosporium phellodendri was distributed throughout the forest and was the most abundant. Aecia of C. phellodendri formed mainly on 2-y-old needles. The abundance and distribution of C. phellodendri appeared to be affected by the longer effective dispersal range of basidiospores and the existence of abundant inoculum sources. The age of leaves where C. phellodendri form aecia mainly was thought to be influenced by the characteristic life cycle, with aecial formation requiring 2?y after basidiospore infection.  相似文献   

19.
20.
杂草种子传播研究进展   总被引:5,自引:1,他引:4  
李儒海  强胜 《生态学报》2007,27(12):5361-5370
种子传播将母株生殖周期的末端与它们后代种群的建立连结了起来,广泛认为,其对植被结构具有深刻的影响。种子传播的整个过程称为种子传播循环。研究表明,杂草种子传播的因子多种多样,包括仅依赖自身来完成的主动传播,以及依赖风、水、动物、人类等外界媒介的被动传播。其中,人类传播杂草种子是影响最广泛的一种,对现代植物的分布格局产生了深刻的影响。杂草种子的传播,对杂草种子库的数量和空间动态影响很大。研究种子传播的主要方法有荧光染料标记法、放射性同位素标记法、稳定同位素分析、分子遗传标记等。结合近几年国内外的研究进展,作者就杂草种子传播对种子库数量和空间动态影响的精确直接研究、杂草种子传播的过程及传播后的命运、杂草种子适应传播的机理、生态控草措施研究、外来杂草入侵蔓延与其种子传播的关系等方面提出了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号