首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fish nonspecific cytotoxic cells (NCC)3 recognize and lyse a large variety of human and mouse transformed cells. In an effort to determine the Ag recognized by NCC on these targets, mAb were raised against NC-37 target cells. Four anti-NC-37 mAb were chosen for further characterization based on their effects on NCC lysis of target cells. Purified mAb 18C2 and 1E7 (IgM isotype) inhibited NCC killing of the following targets: U937, MOLT-4, K562, HL-60, DAUDI, NC-37, P815, and YAC-1. The dose-dependent inhibitory activity occurred at the target cell level and ranged from 50 to 70% at a concentration of 50 micrograms/well when compared to noninhibitory mAb 7C6 and 1D4 (IgG isotype). Similarly, mAb 18C2 protected the fish parasite Tetrahymena pyriformis from lysis by NCC when compared to mAb 7C6. Adsorption experiments demonstrated that the inhibitory effect on NC-37 lysis by NCC could be removed in a titratable fashion by incubation of mAb 1E7 with any one of the other target cell lines, but it could not be removed by incubation with effector cells. The inhibitory activity of mAb 1E7 and 18C2 was shown to be caused by the inhibition of conjugate formation between effector and NC-37 target cells. The relative membrane concentration of the antigenic determinants recognized by these mAb on the target cells was studied by flow cytometry using FITC-labeled mAb. These experiments showed that all four mAb bound to the surface of the cells tested. Biochemical analysis with Western blots and immunoprecipitation showed that mAb 18C2 and 1E7 recognize two Ag in NC-37 lysates: a larger protein of around 80 kDa and a smaller one of 42 kDa.  相似文献   

2.
We have previously reported the characterization of mAb derived against NC-37 target cells. mAb 18C2 and 1E7 inhibit fish cytotoxicity by binding to target cells and thus preventing the formation of conjugates with fish nonspecific cytotoxic cells (NCC). It was therefore presumed that these inhibitory mAb were specific for the target cell Ag necessary for effector cell recognition. mAb 1D4 and 7C6 bind to NC-37 cells but do not inhibit fish cytotoxic activity. We now report the isolation and purification of the Ag recognized by mAb 18C2 (inhibitor) and 1D4 (noninhibitor) by affinity chromatography of solubilized NC-37 target cell extracts. The 18C2-purified soluble target Ag (STAg) caused inhibition of cytotoxicity when preincubated with fish NCC. This inhibitory activity was reversible and dose-dependent ranging from 20 to 70% inhibition with 25 to 100 micrograms 18C2 purified STAg/10(6) NCC. STAg purified by 1D4 affinity chromatography had no effect on fish cytotoxicity. mAb 18C2 and 1E7 preabsorbed with 18C2 STAg lost their inhibitory activity when tested in the fish NCC cytotoxicity assay. Preabsorption of the same mAb with 1D4 STAg had no effect on their activity.  相似文献   

3.
In the present study mAb were derived against flow cytometry (FCM) purified fish (Ictalurus punctatus) nonspecific cytotoxic cells (NCC). mAb 5C6.10.4 and 6D3.2.10 produced 60 to 65% inhibition of lysis of NC-37 target cells (a human B-lymphoblastoid cell line) by unfractionated NCC. mAb 2B2.4.9 and 6D3.4.4 were noninhibitors of cytotoxicity. All mAb were the same isotype (IgM) and were cloned by limiting dilution (2x). Inhibitory activity was specific for the effector cells because the mAb had no effect on NCC cytotoxicity when only the target cells were treated. Inhibition could be produced by preincubation of the mAb with NCC or by no preincubation, and inhibition was not reversible. Killing by FCM-sorted NCC of NC-37 target cells was inhibited almost 100% by mAb 5C6.10.4. Inhibitor mAb also significantly reduced NCC killing of MOLT-4, K562, P815, U937, Daudi, YAC-1, and HL-60 cells. Experiments also were conducted to determine at which stage of the lytic cycle the mAb acted. Both inhibitor mAb significantly inhibited conjugate formation between effector and NC-37 target cells. The technique of FCM was combined with competitive binding experiments to determine that the Ag recognized by both inhibitor and noninhibitor mAb was found on the membranes of the same cells. These results were confirmed by demonstrating (by using FCM) that FITC-labeled inhibitor and biotinylated noninhibitor mAb bound to the same cells. FCM also was next used to determine mAb binding to various effector cell populations. Inhibitor and noninhibitor mAb bound to approximately 25% (5C6.10.4) and 39% (6D3.4.4) of fish anterior kidney cells; to 42% (5C6.10.4) and 54% (6D3.4.4) of fish spleen cells; and to 2.5% (5C6.10.4 and 6D3.4.4) of fish peripheral blood. mAb were used to purify the target cell binding structure found on NCC. Con A-Sepharose purified mAb were used as the fixed ligand for Affi-Gel-10 affinity chromatography experiments. FCM-purified NCC were solubilized and the receptor was purified by using this technique. Analysis of the NCC-purified receptor by 12% SDS-PAGE indicated that the mAb purified structure may be composed of a dimeric molecule consisting of 41 kDa and 38 kDa proteins. The same dimer was purified by using either inhibitory (6D3.2.10) or noninhibitory (6D3.4.4) mAb. Similar results were obtained with immunoprecipitation experiments by using mAb 5C6.10.4. These studies demonstrate that the Ag-binding receptor structure on fish NCC may be comprised of a dimeric complex.  相似文献   

4.
Nonspecific cytotoxic cells (NCC) may comprise an important effector population specific for recognition of aberrant (tumour) cells, regulation of cell interactions including antibacterial action and lysis of protozoan parasites. In the present study, peptides were synthesized based on the amino acid sequence of a novel protein (Natural Killer cell Target Antigen, NK Tag) found on the protozoan parasite Tetrahymena pyriformis and on NCC-sensitive tumour target cells. Partially purified NK Tag was obtained from Tetrahymena. It inhibited NCC lysis of a large variety of mammalian tumour target cells. Synthetic peptides composed of short 20 mer sequences obtained from the N-terminal and midregion portions of NK Tag were tested for their ability to inhibit NCC cytotoxicity. Synthetic peptide comprised of aa # 55-74 significantly inhibited NCC lysis of IM-9 target cells. A monoclonal antibody generated against an N-terminal dodecapeptide of NK Tag bound to Tetrahymena and to several mammalian NK-sensitive target cells including K562, YAC-1, U937, NC-37, EL-4, IM-9, HL-60 and MOLT-4. NK Tag sequence comparisons using Swisspro database revealed no significant homologies except in a restricted domain region of several glycolytic pathway enzymes. A supergene family relationship was indicated because of these similarities.  相似文献   

5.
Channel catfish, Ictalurus punctatus , were immunized with cilia from three isolates of Tetrahymena pyriformis and challenged with Ichthyophthirius multifiliis using a reproducible quantitative procedure. Two different methods of deciliation were used in antigen preparation. Results indicate that T. pyriformis cilia elicit an immune response in channel catfish against I. multifiliis , and that the protective ability of the cilia varies between T. pyriformis strains.  相似文献   

6.
Two interleukin-2 (IL-2)-dependent cytotoxic T-cell clones were obtained by limiting dilution from a lymphocyte culture stimulated in vitro with the autologous Epstein-Barr virus-transformed lymphoblastoid cell line (LCL) in the presence of fetal calf serum (FCS). Both clones uniformly had a T3+, T4+, Dr+ phenotype and lysed autologous B blasts, the autologous LCL, and allogeneic B cell lines sharing major histocompatibility complex (MHC) class II antigens. The cytotoxic function was triggered by FCS-derived components. There was no killing if the sensitive targets were cultured in serum-free medium or in medium supplemented with human serum. Sensitivity to lysis could be restored by exposing the targets to FCS for at least 6 hr at 37 degrees C. Monoclonal antibodies directed to T-cell-specific surface antigens and MHC class II antigens inhibited lysis with different efficiencies depending on the target cell origin. Killing of Burkitt's lymphoma (BL)-derived cell lines was blocked more easily than killing of LCLs. LCLs but not BL lines induced proliferation of the T-cell clones in the absence of exogenous IL-2. The differences were not related to quantitative variations in the expression of MHC class II antigens, indicating that BL lines differ from LCLs in other cell membrane properties that may influence antigen presentation. The results suggest that the affinity of effector/target binding, which is probably influenced by the concentration of antigenic determinants expressed on the target cell membrane, determines whether proliferative responses or cytotoxicity are induced in the antigen-recognizing T cells.  相似文献   

7.
Nonspecific cytotoxic cells (NCC) are the teleost equivalent of mammalian lymphokine-activated natural killer cells. The cytotoxic activities of NCC are enhanced by stress-activated serum factors (SASF) present in tilapia acute-phase serum. In the present study purified NCC and xenogeneic target HL-60 tumor cells and nuclei were distinguishable in mixtures determined by flow cytometry. NCC activated by target HL-60 cells undergo activation-induced programmed cell death (AIPCD) during 12- to 16-h killing assays as shown by Annexin-V binding and nuclear DNA fragmentation results. Annexin-V binding studies also demonstrated that NCC kill HL-60 cells by an apoptotic mechanism. NCC are protected from AIPCD by 4-h preincubation in 50% SASF. Pretreatment also produced more than a fourfold increase in NCC cytotoxicity (effector/target (E:T) ratio = 100:1). In the absence of SASF preincubation, the percentage of apoptotic NCC increased from 8 to 91% at E:T ratios of 1:0 and 1:1, respectively. Kinetic studies (E:T = 10:1) demonstrated that the percentage of NCC exhibiting HL-60-dependent AIPCD increased between 0.1 and 12 h and then decreased inversely with total cell necrosis over the next 60 h. Preincubation of NCC with SASF protected NCC from AIPCD for over 72 h. Crosslinkage of the NCCRP-1 receptor with monoclonal antibody (mab) 5C6 produced AIPCD between 1 and 100 microg/mL mab concentrations. Preincubation with SASF completely protected NCC from mab 5C6-dependent AIPCD. SASF-mediated protection of NCC from AIPCD was dependent upon divalent cations, as demonstrated by increases in DNA hypoploidy of 38, 67, and 88% following preincubation in the presence of 10, 100, and 1000 microM EDTA, respectively. SASF also protected NCC from glucocorticoid- (i. e., dexamethasone) induced apoptosis. Combined, these results demonstrated that NCC activity is down-regulated by AIPCD. Release of SASF into the peripheral circulation may prevent negative regulation of NCC by AIPCD by increasing recycling capacity. Results are discussed in the context of the effects of acute stressors on innate immunity.  相似文献   

8.
The role of FasL/FasR pathways of immunoregulation of programmed cell death in teleost cytotoxic innate immunity has not been previously examined. In the present study, constitutive cytosolic soluble FasL (sFasL) was detected in anterior kidney (AK), peripheral blood (PBL) and liver NCC obtained from tilapia. Ligation of NCC by tumour cells caused the release of sFasL that was associated with lysis of HL-60 targets in 14 h killing assays. Evidence that sFasL mediated this activity was that anti-(human) FasL inhibited tilapia and catfish (cf.) NCC lysis of FasR+ HL-60 tumour cells. Inhibition was concentration dependent. Lysis of IM-9 targets (12% positive for FasR) by (cf.) anterior kidney and PBL NCC was only partially inhibited by anti-FasL mab. Activated NCC from both species were negative for the expression of membrane FasL and FasR. These data confirmed that NCC lyse sensitive tumour cells by multiple effector pathways. Pretreatment of (FasR+) HL-60 cells with anti-FasR mab completely inhibited cf. cytotoxicity at low (100:1) E:T ratios. Anti-FasR mab did not inhibit the lysis of IM-9 targets by cf. NCC. This study demonstrated that for catfish and tilapia, initial target cell conjugate formation was required; however, the terminal killing mechanism depended on at least two different pathways of cytotoxicity. One pathway depended on the release of preformed soluble FasL by activated NCC in the presence of FasR positive target cells. A second pathway has yet to be determined.  相似文献   

9.
The teleost non-specific cytotoxic cells (NCC) are evolutionary precursors of the mammalian natural killer (NK) cells and an important element of innate immunity. The non-specific cytotoxic cell receptor protein (NCCRP1) is a characteristic cell surface protein with main functions in target cell recognition and cytotoxicity with sequence information available for many species of fish. We have isolated a cDNA encoding the Axolotl homologue of fish NCCRP1 out of limb regeneration blastema and analysed its expression by RT-PCR. Sequence analysis revealed a high degree of homology with teleost NCCRP1 on nucleotide and deduced amino acid levels. NCCRP1 contains a conserved C-terminal F-box-associated domain (FBA) and proline-rich motifs (PRM) characteristic for this protein family. NCCRP1 is expressed in multiple tissues with high levels in limb regeneration blastema. The present work describes for the first time the cloning of the NCCRP1 gene in a tetrapod vertebrate providing a valuable link between fish and higher vertebrates. Our findings suggest the existence of NCC in axolotl and a role of the innate immune system in the processes of limb regeneration.  相似文献   

10.
Like mammalian leucocytes, white blood cells of fish are able to kill altered (e.g. virus-infected) and foreign (allogeneic or xenogeneic) cells. The existence of natural killer (NK)-like and specific cytotoxic cells in fish was first shown using allogeneic and xenogeneic effector/target cell systems. In addition to in vivo and ex vivo studies, very important contributions were made by in vitro analysis using a number of different long-term cytotoxic cell lines established from channel catfish. In mammals, specific cell-mediated cytotoxicity (CMC) as part of the adaptive immune response requires a number of key molecules expressed on effector leucocytes and target cells. CD8+ T lymphocytes kill infected cells only, if their antigen receptor (TCR) matches the MHC class I with bound peptide of the target cell. Expression patterns of the fish gene homologues for TCR, CD8 and MHC class I, as well as related genes, are in agreement with similar function. Convenient systems for the analysis of specific CMC have only recently become available for fish with the combination of clonal fish with syngeneic or allogeneic but MHC class I matching cell lines. It was demonstrated that both, NK- and cytotoxic T (Tc) cells are involved in the killing of virus infected MHC class I matching and mismatching target cells. Analysis of these lymphocyte subsets is only starting for fish. There is also evidence that the different viral proteins trigger different subsets of killer cells. This review further discusses findings on fish CMC with regard to temperature/seasons and ontogeny.  相似文献   

11.
Summary Lymphocytes from patients with transitional cell carcinoma (TCC) of the urinary bladder are more cytotoxic to bladder tumor cells than to a variety of control cells. This disease-related cytotoxicity has previously been shown to involve several mechanisms and different types of effector cells. To analyze further the nature of the effector cells operative in this system, peripheral blood lymphocytes from eight TCC patients were stimulated in vitro with TCC extract and cultured in the presence of interleukin 2 and allogeneic feeder cells. When tested for cytotoxicity in vitro on a target cell panel including both adherent and nonadherent cell lines, the lymphocytes killed a broad spectrum of targets in a major histocompatibility complex (MHC)-unrestricted fashion. When cloned by limiting dilution, clones were obtained which displayed a more restricted pattern of target cell killing. Some of the clones were highly but not exclusively selective for TCC-derived target cells. Phenotypically, these cells resembled mature T cells of CTL-type (CD8+/CD4). They also expressed the CD3/5 T cell antigen receptor complex but target cell killing was not MHC-restricted. The results of various inhibition experiments suggested that the CD3/TCR complex was involved in the cytotoxicity exhibited by these effector cells. However, its precise role in target cell recognition and the identification of the tumor cell structures recognised by the effector cells require further studies.  相似文献   

12.
This study was aimed to observe the direct and lymphokine-activated cell mediated cytotoxic effects against Trichomonas vaginalis by mouse peritoneal macrophages. Cytotoxicity was measured as release of 3H-thymidine from prelabeled protozoa, and tested in U-bottom microtiter plates. A 0.1 ml suspension of labeled protozoa (2 x 10(5)/ml) was placed in each well, followed by 0.1 ml of a suspension containing increasing numbers of peritoneal cells. After a 24 hr incubation at 37 degrees C, 0.1 ml of the supernatant was collected and counted in liquid scintillation counter. Mouse peritoneal macrophages had appreciable level of spontaneous cytotoxicity against T. vaginalis at the effector to target cell ratios from 5:1 to 50:1. Treatment of macrophages with lymphokine, produced by PHA-stimulated spleen cells, increased the cytotoxicity in comparison with resident macrophages against T. vaginalis. The degree of macrophage activation for the killing was not dependent upon the lymphokine concentration. Peritoneal cells adherent to plastic displayed significant levels of cytotoxicity against T. vaginalis. This study indicates that mouse peritoneal macrophages are spontaneously cytotoxic for T. vaginalis and lymphokine increases the cytotoxicity by activating macrophages to kill T. vaginalis.  相似文献   

13.
Activation of macrophages (M phi) for host defense against tumor cells follows a sequence of priming events followed by an initiating stimulus that results in production and release of cytotoxic molecules that mediate target cell killing. We have developed a model to study specific macrophage cytotoxicity in vitro utilizing a cultured murine M phi cell line, J774. Specific cytotoxicity of cultured human gastrointestinal tumor cells is achieved in the presence of murine IgG2a monoclonal antibody (mAb) 17-1-A. The ability of these cells to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) is greatly enhanced following gamma-irradiation. ADCC can be demonstrated at mAb 17-1-A concentrations greater than or equal to 1 microgram/ml and effector/target cell ratios greater than or equal to 2. Exposure to doses greater than or equal to 10 Gy of gamma-irradiation increases ADCC threefold. Varying the duration from J774 M phi exposure to gamma-irradiation until addition of antibody-coated target cells showed that the primed state for ADCC is stable for at least 8 days but approximately 24 hr is required for complete development of the primed state. mAb-dependent target cell death begins 8 hr after addition of mAb and labeled target cells to primed effector cells and is complete by 24 hr. Incubation of unirradiated J774 M phi effector cells with recombinant murine interferon-gamma (rmIFN-gamma) also results in enhanced ADCC, but the extent of target cell killing achieved is less than that following priming by gamma-irradiation. Concomitant priming of gamma-irradiated J774 M phi with rmIFN-gamma increases the extent of ADCC. Further study of irradiated J774 cells may elucidate the molecular pathways utilized by M phi for achieving and maintaining the primed state for ADCC. Irradiated J774 cells will also provide a homogenous, stably primed cell type in which to examine the mechanism(s) of cytotoxicity employed by tumoricidal M phi.  相似文献   

14.
Spontaneous non-antigen-dependent cytotoxicity is displayed in vitro by mononuclear cells from molluscs, annelids, and echinoderms. The cytotoxic potential of these cells appears to be independent of prior antigenic exposure, is easily demonstrated in vitro, and is temperature dependent. The specificity of these cells may be directed at cell-surface glycoproteins on the target cell surface since a variety of defined mono- and disaccharides can block killing. The ability of sugars to block is target cell and effector cell specific. This finding is exactly analogous to our previous finding that human spontaneous monocyte-mediated cytotoxicity is blocked in a target-specific fashion by different mono- and disaccharides. These data suggest that invertebrate as well as vertebrate mononuclear cells may “recognize” targets through a series of sugar-specific “lectin-like” molecules present on the effector cell surface.  相似文献   

15.
Cytokines as soluble mediators of immunity are important in understanding immunological mechanisms against infectious organisms and during stress conditions. In the present study, the role of protein tyrosine phosphorylation is assessed in the activation of nonspecific cytotoxic cells (NCC) from tilapia Oreochromis niloticus by cytokine-like serum factors. NCC are the teleost equivalent of mammalian natural killer (NK) cells. In teleost fish, NCC are important mediators of innate immunity against bacterial and parasite insult and tumor growth. We have previously shown that exposure of tilapia (a tropical fish) to cold water temperatures (3 to 5 min at 5 to 10 degrees C) produces physiological stress responses characterized by immediate phenotypic and immunological changes. The serum obtained from stressed tilapia contains a 'stress activating serum factor' (SASF) which passively increases in vitro naive NCC cytotoxicity 2- to 4-fold over control levels. In an effort to identify the mechanisms of activation of cytotoxicity by SASF, the phosphorylation status of tyrosine residues in proteins from treated NCC was determined. NCC were incubated with heat-inactivated or untreated stress serum and Western blots of the cell lysates were probed with anti-phosphotyrosine monoclonal antibodies (mabs). The levels of tyrosine phosphorylation in several proteins of the SASF-activated NCC were higher than in control cells. Increased tyrosine phosphorylation was also induced by incubation of NCC in the presence of the tyrosine phosphatase inhibitor Na orthovanadate (vanadate). In every case, an increase in phosphorylation status shown by Western blotting was correlated with increases in cytotoxic activity of NCC against HL-60 target cells. The enzyme inhibitor Herbimycin A (HA) has been previously used to inhibit the activity of the src-family of tyrosine kinases. In the present study, a 4 h pretreatment of NCC with HA (2 microM), followed by treatment with SASF blocked the activation of cytotoxicity produced by SASF. These results suggested that activation of NCC by cytokine-like factors is mediated through activation of the src family of protein tyrosine kinases. Activation was associated with increased phosphorylation and higher cytotoxic effector functions.  相似文献   

16.
BACKGROUND: The nonradiometric assays previously developed to detect cellular cytotoxic activity have been hindered by many difficulties. Among the problems are the requirement for expensive commercial kits and the use of techniques that produce high background noise and decreased sensitivity. In addition, these assays did not account for bidirectional apoptosis (activation-induced cell death [AICD]). Most attempts to derive cytometry-based cytotoxicity assays have been unsuccessful because individual effectors and targets could not be identified (i.e., "separated") using gating techniques. METHODS: In the present study, teleost nonspecific cytotoxic (NCC) and mammalian target cells were each sufficiently different in size to identify them by flow cytometry (FCM). Using appropriate gating and discriminator techniques, these two cell populations were differentiated based on scatter properties and propidium iodide (PI) binding. Total capacity for PI binding was obtained by permeabilization of the targets with ice-cold acetone. Spontaneous PI binding was relatively low. This technique detected cytotoxicity at effector-to-target ratios (E:T) of 1:1 and after only 30 min cocultivation. RESULTS: Tilapia NCC from peripheral blood kill human transformed target cells by necrosis and apoptosis as identified by PI binding. Maximum killing of HL-60 targets (approximately 100%) occurred by 180 min cocultivation. For the same time, the killing of IM-9 did not exceed 60%. Almost 90% of IM-9 targets are lysed following 14 h of cocultivation. The maximum killing of both HL-60 and IM-9 targets was observed at a 25:1 E:T ratio after 14 h. Comparisons of the chromium(>51) release assay with flow detection of cytotoxicity revealed that FCM detected 55% lysis of the target cells compared with 2% cytotoxicity by chromium release, after a cocultivation time of 240 min. DISCUSSION: FCM detection of (teleost) NCC lysis of target cells using PI uptake is more sensitive than standard chromium release assays. This level of sensitivity was observed because NCC and targets were sufficiently different in size such that they could be resolved by scatter plots. Using FCM, cytotoxicity was detected earlier and at lower E:T ratios than previously reported for chromium release assays. Although tilapia were reported previously to be not capable of lysing IM-9 targets by chromium release detection, the more sensitive method of FCM detected cytotoxicity using PI uptake. HL-60 lysis by tilapia NCC exhibited saturable kinetics but occurred at different times post-cocultivation.  相似文献   

17.
Nonspecific cytotoxic cells (NCC) may be the teleost fish equivalent of mammalian natural killer (NK) cells. Although significant differences exist between species regarding many characteristics of these cells, both NCC and NK cells share similarities: in the types of target cells sensitive to lysis; in mechanisms of target cell recognition; in the requirements for a competent lytic cycle; and both types of effectors participate in mediating the lysis of infectious microorganisms. A putative antigen binding receptor obtained from catfish NCC has now been characterized using monoclonal antibodies (mabs). This receptor is a vimentin-like protein. Preliminary studies indicate that NCC recognize a 40 kD protein on the membranes of susceptible target cells. Solubilized target cell protein can specifically bind to NCC and inhibit killing.Similar to NK cells, NCC require cell contact with the target cell to deliver the lethal cytotoxic hit. NCC appear to be the more potent cytotoxic cells because fewer are required to kill an individual target cell and less time is required for this action to occur than for NK cells. Unlike NK cells, NCC do not recycle under experimental conditions. Preliminary studies were also reviewed to characterize signal transduction responses. Monoclonal antibody against the vimentin-like protein receptor activates NCC cytotoxicity, initiates the production of significant increased levels of free cytoplasmic calcium, and causes the production of inositol lipid intermediates (specifically phosphotidylinositol 1, 4–5 trisphosphate). NCC may be important effectors of anti-parasite immunity. Although these cells probably do not elicit memory responses, data suggest that they do recognize antigen and can be activated and recruited into peripheral tissue where they mediate cytolytic responses.  相似文献   

18.
Human peripheral blood lymphocytes (PBL), from anti-Epstein-Barr virus (EBV)-seropositive donors, were stimulated by EBV and were shown to be cytotoxic toward autologous, HLA-compatible, and fully allogeneic EBV-transformed target cells. The lysis was not due to natural killer (NK) cells since the target cells used were resistant to lysis by fresh PBL and by virus-stimulated PBL-depleted of AET-SRBC-rosetting T cells (the latter being still fully cytotoxic on K562 NK-susceptible target cells). Conversely only E-rosette-purified (T) lymphocytes killed EBV-transformed HLA-compatible and allogeneic target cells. Moreover, anti-MHC antibodies inhibited the cytotoxicity exerted by EBV-induced cytotoxic T lymphocytes (CTL) on both autologous and allogeneic target cells. Finally the lysis was EBV specific since PHA blasts were not killed and since only EBV-transformed cells could compete for lysis with the EBV-positive target cells. Efficient competition was achieved by EBV-transformed cells autologous or allogeneic to the targets, even when effector and target cells were fully allogeneic. All together, the data suggest that human anti-EBV CTL may recognize nonpolymorphic HLA determinants on the target cells in association with the virus-induced antigens.  相似文献   

19.
Nonspecific cytotoxic responses such as natural killer activity can be increased in vitro by incubating effector cells with soluble factors or allogeneic cells. We sought to determine if newborn cells, known to be deficient in most cytotoxic responses, including resting NK activity, could develop enhanced cytotoxic responses following incubation with allogeneic cells (augmented cytotoxicity) or with lymphokines (lymphokine-activated cytotoxicity). Cord whole mononuclear cells (WMC) incubated with irradiated Raji cells for 5 days develop lower levels of cytotoxicity toward K562 targets at both a 20:1 effector:target (E:T) ratio (39 +/- 2.7% vs 49 +/- 3.6%) and a 10:1 E:T ratio (29 +/- 2.6% vs 40 +/- 3.6%) than do adult cells. Lessened specific cytotoxicity of cord cells developed toward the sensitizing Raji cells was also observed at both E:T ratios. Attempts to enhance the induced cytotoxicity by incubation with interferon or isoprinosine were unsuccessful. In contrast, lymphokine (i.e., interleukin 2)-activated killer (LAK) cytotoxicity is not deficient in cord WMC. Indeed, the level of LAK cytotoxicity is equivalent to that observed with similarly treated adult cells despite a lower baseline level of cytotoxicity toward the target cells. In the presence of purified IL-2 for 5 days, cord WMC cytotoxicity against K562 cells increased from 12 +/- 2.6 to 71 +/- 4.2% and against Raji cells increased from 9.6 +/- 2.5 to 48 +/- 6.7%. Similarly treated adult cells increased their killing against K562 from 23 +/- 4.2 to 61 +/- 4.5% and against Raji from 12 +/- 3.0 to 36 +/- 5.3%. This substantial lymphokine-activated cytotoxicity of newborn cells suggests the possibility of therapeutic intervention with purified lymphokines in neonatal infections or neoplasms.  相似文献   

20.
An important component of immediate innate responses of tilapia to stress is the release within minutes of soluble cytokine-like substances into the peripheral circulation. These cytokine-like stress factors bind nonspecific cytotoxic cells (NCC) and produce 3-4-fold increased cytotoxicity. In the present study, the in vivo responses of tilapia NCC following injection with different isolates of intact killed Streptococcus iniae was investigated. Activated cytotoxicity of NCC in the peripheral blood (PB) was produced by increased specific activity of resident cells rather than increased numbers. Tilapia injected intravenously (i.v.) with killed S. iniae produced different cytotoxicity responses compared to fish injected intraperitoneally (i.p.). In the spleen (S) and anterior kidney (AK), there was no correlation between S. iniae isolate and cytotoxicity response at 4, 8 or 24 h following i.p. injection. The NCC response following i.v. injection of killed bacteria was different. Within minutes following i.v. injection, NCC cytotoxicity from the PB increased 100% compared to naive controls. The existence of subsets of differentiated NCC in the PB was suggested because i.v. injection had no amplification effects on NCC from the AK or S. Likewise, NCC from the PB only appeared to exhibit a degree of antigen specificity. S. iniae strain #173 produced activation of cytotoxicity compared to isolates #164 and ATCC. Evidence for soluble factor (cytokine?) involvement in increased cytotoxicity was obtained by passive activation of NCC with serum from #173 (i.v.) injected fish. Incubation of this serum with control (na?ve) NCC produced large increases in the cytotoxicity of labelled HL-60 target cells. Similarly obtained serum from fish injected with ATCC and #164 isolates had no amplification activity. Studies were also performed to study the mechanism(s) of passive activation. Flow cytometric analysis revealed that NCC from the S, AK and PB constitutively expressed cytosolic (not membrane) FasL. Stress serum treated NCC obtained from the peripheral blood produced an increase in the expression of FasL, CAS and FADD by Western blot examination. These data indicated that cytokine like factors in the serum of stressed tilapia activate increased NCC cytotoxicity (possibly) by stimulating the expression of proteins involved in activation of programmed cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号