首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most Helicobacter pylori strains secrete a toxin (VacA) that causes structural and functional alterations in epithelial cells and is thought to play an important role in the pathogenesis of H. pylori-associated gastroduodenal diseases. The amino acid sequence, ultrastructural morphology, and cellular effects of VacA are unrelated to those of any other known bacterial protein toxin, and the VacA mechanism of action remains poorly understood. To analyze the functional role of a unique strongly hydrophobic region near the VacA amino terminus, we constructed an H. pylori strain that produced a mutant VacA protein (VacA-(Delta6-27)) in which this hydrophobic segment was deleted. VacA-(Delta6-27) was secreted by H. pylori, oligomerized properly, and formed two-dimensional lipid-bound crystals with structural features that were indistinguishable from those of wild-type VacA. However, VacA-(Delta6-27) formed ion-conductive channels in planar lipid bilayers significantly more slowly than did wild-type VacA, and the mutant channels were less anion-selective. Mixtures of wild-type VacA and VacA-(Delta6-27) formed membrane channels with properties intermediate between those formed by either isolated species. VacA-(Delta6-27) did not exhibit any detectable defects in binding or uptake by HeLa cells, but this mutant toxin failed to induce cell vacuolation. Moreover, when an equimolar mixture of purified VacA-(Delta6-27) and purified wild-type VacA were added simultaneously to HeLa cells, the mutant toxin exhibited a dominant negative effect, completely inhibiting the vacuolating activity of wild-type VacA. A dominant negative effect also was observed when HeLa cells were co-transfected with plasmids encoding wild-type and mutant toxins. We propose a model in which the dominant negative effects of VacA-(Delta6-27) result from protein-protein interactions between the mutant and wild-type VacA proteins, thereby resulting in the formation of mixed oligomers with defective functional activity.  相似文献   

2.
Helicobacter pylori VacA is a secreted toxin that induces multiple structural and functional alterations in eukaryotic cells. Exposure of VacA to either acidic or alkaline pH ('activation') results in structural changes in the protein and a marked enhancement of its cell-vacuolating activity. However, the mechanism by which activation leads to increased cytotoxicity is not well understood. In this study, we analysed the binding and internalization of [125I]-VacA by HeLa cells. We detected no difference in the binding of untreated and activated [125I]-VacA to cells. Binding of acid-activated [125I]-VacA to cells at 4 degrees C was not saturable, and was only partially inhibited by excess unlabelled toxin. These results suggest that VacA binds either non-specifically or to an abundant, low-affinity receptor on HeLa cells. To study internalization of VacA, we used a protease protection assay. Analysis by SDS-PAGE and autoradiography indicated that the intact 87 kDa toxin was internalized in a time-dependent process at 37 degrees C but not at 4 degrees C. Furthermore, internalization of the intact toxin was detected only if VacA was acid or alkaline activated before being added to cells. The internalization of activated [125I]-VacA was not substantially inhibited by the presence of excess unlabelled toxin, but was blocked if cells were depleted of cellular ATP by the addition of sodium azide and 2-deoxy-D-glucose. These results indicate that acid or alkaline pH-induced structural changes in VacA are required for VacA entry into cells, and that internalization of the intact 87 kDa toxin is required for VacA cytotoxicity.  相似文献   

3.
Many bacterial toxins utilize cell surface glycoconjugate receptors for attachment to target cells. In the present study the potential carbohydrate binding of Helicobacter pylori vacuolating cytotoxin VacA was investigated by binding to human gastric glycosphingolipids on thin-layer chromatograms. Thereby a distinct binding of the toxin to two compounds in the non-acid glycosphingolipid fraction was detected. The VacA-binding glycosphingolipids were isolated and characterized by mass spectrometry and proton NMR as galactosylceramide (Galbeta1Cer) and galabiosylceramide (Galalpha4Galbeta1Cer). Comparison of the binding preferences of the protein to reference glycosphingolipids from other sources showed an additional recognition of glucosylceramide (Glcbeta1Cer), lactosylceramide (Galbeta4Glcbeta1Cer) and globotriaosylceramide (Galalpha4Galbeta4Glcbeta1Cer). No binding to the glycosphingolipids recognized by the VacA holotoxin was obtained with a mutant toxin with deletion of the 37 kDa fragment of VacA (P58 molecule). Collectively our data show that the VacA cytotoxin is a glycosphingolipid binding protein, where the 37 kDa moiety is required for carbohydrate recognition. The ability to bind to short chain glycosphingolipids will position the toxin close to the cell membrane, which may facilitate toxin internalization.  相似文献   

4.
Artificial peptides designed for molecular recognition of a bacterial toxin have been developed. Vacuolating cytotoxin A protein (VacA) is a major virulence factor of Helicobacter pylori, a gram‐negative microaerophilic bacterium inhabiting the upper gastrointestinal tract, particularly the stomach. This study attempted to identify specific peptide sequences with high affinity for VacA using systematic directed evolution in vitro, a cDNA display method. A surface plasmon resonance‐based biosensor and fluorescence correlation spectroscopy to examine binding of peptides with VacA identified a peptide (GRVNQRL) with high affinity. Cyclization of the peptide by attaching cysteine residues to both termini improved its binding affinity to VacA, with a dissociation constant (Kd) of 58 nm . This study describes a new strategy for the development of artificial functional peptides, which are promising materials in biochemical analyses and medical applications. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
VacA toxin from the cancer-inducing bacterium Helicobacter pylori is currently classified as a pore-forming toxin but is also considered a multifunctional toxin, apparently causing many pleiotropic cell effects. However, an increasing body of evidence suggests that VacA could be the prototype of a new class of monofunctional A-B toxins in which the A subunit exhibits pore-forming instead of enzymatic activity. Thus, VacA may use a peculiar mechanism of action, allowing it to intoxicate the human stomach. By combining the action of a cell-binding domain, a specific intracellular trafficking pathway and a novel mitochondrion-targeting sequence, the VacA pore-forming domain is selectively delivered to the inner mitochondrial membrane to efficiently kill target epithelial cells by apoptosis.  相似文献   

6.
VacA, the vacuolating cytotoxin secreted by Helicobacter pylori, is believed to be a major causative factor in the development of gastroduodenal ulcers. This toxin causes vacuolation of cultured cells and it has recently been found to form anion-selective channels upon insertion into planar bilayers as well as in the plasma membrane of HeLa cells. Here, we identify a series of inhibitors of VacA channels and we compare their effectiveness as channel blockers and as inhibitors of VacA-induced vacuolation, confirming that the two phenomena are linked. This characterization opens the way to studies in other experimental systems and to the search for a specific inhibitor of VacA action.  相似文献   

7.
In this study we investigated the roles of lipid rafts and glycosylphosphatidylinositol-anchored proteins (GPI-APs) in the process of VacA binding and internalization into epithelial cells. Vacuolating activity analysis in AGS, CHO cells, and a CHO-derived line that highly expresses GPI-linked fasI proteins indicated the significance of cholesterol and GPI-APs for VacA activity. Flow cytometric analysis along with VacA-cholesterol co-extraction experiments showed a cholesterol-dependent manner for VacA cell-binding activity, while GPI-APs were not related to it. Differential detergent extraction and fractionation in sucrose density gradient showed co-association of VacA and fasI with rafts on cell membranes. Subcellular distribution of fasI visualized by confocal microscope suggested that fasI trafficked via a newly defined endocytic pathway for GPI-APs in the derived line. Upon VacA intoxication, VacA was visualized to co-migrate along with fasI and finally induced vacuolation coupled with dramatic redistribution of fasI molecules. These results suggest that VacA exploits rafts for docking and entering the cell via the endocytic pathway of GPI-APs.  相似文献   

8.
The VacA toxin secreted by Helicobacter pylori is considered to be an important virulence factor in the pathogenesis of peptic ulcer disease and gastric cancer. VacA monomers self-assemble into water-soluble oligomeric structures and can form anion-selective membrane channels. The goal of this study was to characterize VacA-VacA interactions that may mediate assembly of VacA monomers into higher order structures. We investigated potential interactions between two domains of VacA (termed p-33 and p-55) by using a yeast two-hybrid system. p-33/p-55 interactions were detected in this system, whereas p-33/p-33 and p-55/p-55 interactions were not detected. Several p-33 proteins containing internal deletion mutations were unable to interact with wild-type p-55 in the yeast two-hybrid system. Introduction of these same deletion mutations into the H. pylori vacA gene resulted in secretion of mutant VacA proteins that failed to assemble into large oligomeric structures and that lacked vacuolating toxic activity for HeLa cells. Additional mapping studies in the yeast two-hybrid system indicated that only the N-terminal portion of the p-55 domain is required for p-33/p-55 interactions. To characterize further p-33/p-55 interactions, we engineered an H. pylori strain that produced a VacA toxin containing an enterokinase cleavage site located between the p-33 and p-55 domains. Enterokinase treatment resulted in complete proteolysis of VacA into p-33 and p-55 domains, which remained physically associated within oligomeric structures and retained vacuolating cytotoxin activity. These results provide evidence that interactions between p-33 and p-55 domains play an important role in VacA assembly into oligomeric structures.  相似文献   

9.
In previous studies, we demonstrated that Helicobacter pylori vacuolating cytotoxin (VacA) inhibits gastric epithelial cell proliferation and inhibits epidermal growth factor (EGF)-activated signal transduction. Cell proliferation and migration, both essential for mucosal healing are dependent on the cell cytoskeleton. Other investigators demonstrated that VacA induces vacuolation of eukaryotic cells. Since in some cells, control of actin cytoskeleton involves GTP-binding proteins of Rho family, in this study we examined whether VacA affects wound re-epithelialization, cell cytoskeleton-associated proteins Rho, Rac1 in a gastric epithelial (RGM1) cell monolayer wound model, and whether these changes correlate with vacuolation. VacA treatment significantly inhibited wound re-epithelialization, cell proliferation vs control. VacA-induced cell vacuolation strongly correlated with inhibition of wound re-epithelialization. Furthermore, VacA reduced Rac-1 protein expression and distribution, and C3-mediated ADP-ribosylation of Rho. These findings suggest that VacA may interfere with repair of gastric mucosal injury and ulcer re-epithelialization by altering cytoskeleton-dependent cell functions and signaling.  相似文献   

10.
Pathogenic strains of Helicobacter pylori produce a potent exotoxin, VacA, which causes progressive vacuolation as well as gastric injury. Most H. pylori strains secrete VacA into the extracellular space. After exposure of VacA to acidic or basic pH, re-oligomerized VacA (mainly 6 monomeric units) at neutral pH is more toxic. Although the mechanisms have not been defined, VacA induces multiple effects on epithelial and lymphatic cells, i.e., vacuolation with alterations of endo-lysosomal function, anion-selective channel formation, mitochondrial damage, and the inhibition of primary human CD4+ cell proliferation. VacA binds to two types of receptor-like protein tyrosine phosphatases (RPTP), RPTPalpha and RPTPbeta, on the surface of target cells. Oral administration of VacA to wild-type mice, but not to RPTPbeta KO mice, results in gastric ulcers, suggesting that RPTPbeta is essential for intoxication of gastric tissue by VacA. As the potential roles of VacA as a ligand for RPTPalpha and RPTPbeta are only poor understood, further studies are needed to determine the importance of VacA in the pathogenisis of disease due to H. pylori infection.  相似文献   

11.
Helicobacter pylori secretes a cytotoxin (VacA) that induces the formation of large vacuoles originating from late endocytic vesicles in sensitive mammalian cells. Although evidence is accumulating that VacA is an A-B toxin, distinct A and B fragments have not been identified. To localize the putative catalytic A-fragment, we transfected HeLa cells with plasmids encoding truncated forms of VacA fused to green fluorescence protein. By analyzing truncated VacA fragments for intracellular vacuolating activity, we reduced the minimal functional domain to the amino-terminal 422 residues of VacA, which is less than one-half of the full-length protein (953 amino acids). VacA is frequently isolated as a proteolytically nicked protein of two fragments that remain noncovalently associated and retain vacuolating activity. Neither the amino-terminal 311 residue fragment (p33) nor the carboxyl-terminal 642 residue fragment (p70) of proteolytically nicked VacA are able to induce cellular vacuolation by themselves. However, co-transfection of HeLa cells with separate plasmids expressing both p33 and p70 resulted in vacuolated cells. Further analysis revealed that a minimal fragment comprising just residues 312-478 functionally complemented p33. Collectively, our results suggest a novel molecular architecture for VacA, with cytosolic localization of both fragments of nicked toxin required to mediate intracellular vacuolating activity.  相似文献   

12.
Helicobacter pylori VacA, a paradigm for toxin multifunctionality   总被引:4,自引:0,他引:4  
Bacterial protein toxins alter eukaryotic cellular processes and enable bacteria to successfully colonize their hosts. In recent years, there has been increased recognition that many bacterial toxins are multifunctional proteins that can have pleiotropic effects on mammalian cells and tissues. In this review, we examine a multifunctional toxin (VacA) that is produced by the bacterium Helicobacter pylori. The actions of H. pylori VacA represent a paradigm for how bacterial secreted toxins contribute to colonization and virulence in multiple ways.  相似文献   

13.
A vacuolating toxin was purified to homogeneity from broth culture supernatant of the human gastric bacterium, Helicobacter pylori. The procedure for isolating the toxin included ammonium sulfate precipitation, hydrophobic interactive chromatography, size exclusion chromatography, and anion exchange chromatography, which together resulted in a greater than 5000-fold purification of toxin activity. The molecular mass of the purified, denatured toxin was 87,000 +/- 320 daltons, and the native toxin was an aggregate with a molecular mass greater than or equal to 972,000 daltons. The amino-terminal sequence of the purified toxin was partially homologous with internal sequences of numerous transport or ion channel proteins. Antiserum raised against the M(r) = 87,000 protein neutralized toxin activity, whereas preimmune serum did not. When reacted with specific antiserum to the M(r) = 87,000 protein in an enzyme-linked immunosorbent (ELISA) assay, culture supernatants from eight tox+ H. pylori strains produced significantly higher optical density readings than eight tox- supernatants (0.614 +/- 0.11 versus 0.046 +/- 0.01, p less than 0.0001). Sera from H. pylori-infected humans recognized the purified M(r) = 87,000 protein significantly better by ELISA than sera from uninfected persons (0.424 +/- 0.06 versus 0.182 +/- 0.02, p = 0.0009). Finally, ELISA recognition of the purified M(r) = 87,000 protein by human sera was significantly associated with toxin-neutralizing activity (p = 0.019, r = 0.518).  相似文献   

14.
Cystic fibrosis (CF) is caused by defects of the CF transmembrane conductance regulator (CFTR), which acts both as an anion-selective channel and as a regulator of other proteins. The relative contribution of these two functions in CF disease is debated. The toxin VacA forms channels with properties similar to those of the CFTR, and we report here that it can insert into the membrane of various cells originating from respiratory epithelia, generating a chloride conductance comparable to that produced by activation of the CFTR. VacA may therefore become a valuable tool in the study of CF pathogenesis.  相似文献   

15.
16.
The Helicobacter pylori vacuolating cytotoxin (VacA) induces degenerative vacuolation of sensitive mammalian cell lines. Although evidence is accumulating that VacA enters cells and functions from an intracellular site of action, the biochemical mechanism by which VacA mediates cellular vacuolation has not been established. In this study, we used functional complementation and biochemical approaches to probe the structure of VacA. VacA consists of two discrete fragments, p37 and p58, that are both required for vacuolating activity. Using a transient transfection system, we expressed genetically modified forms of VacA and identified mutations in either p37 or p58 that inactivated the toxin. VacA with an inactivating single-residue substitution in the p37 domain [VacA (P9A)] functionally complemented a second mutant form of VacA with an inactivating two-residue deletion in the p58 domain [VacA Delta(346-347)]. VacA (P9A) and VacA Delta(346-347) also co-immunoprecipitated from vacuolated monolayers, supporting the hypothesis that these two inactive mutants associate directly to function in trans. p37 and p58 interact directly when expressed as separate fragments within HeLa cells, suggesting that p37-p58 inter-actions facilitate VacA monomer associations. Collectively, these results support a model in which the active form of VacA requires assembly into a complex of two or more monomers to elaborate toxin function.  相似文献   

17.
In its mature form, the VacA toxin of Helicobacter pylori is a 95-kDa protein which is released from the bacteria as a low-activity complex. This complex can be activated by low-pH treatment that parallels the activity of the toxin on target cells. VacA has been previously shown to insert itself into lipid membranes and to induce anion-selective channels in planar lipid bilayers. Binding of VacA to lipid vesicles and its ability to induce calcein release from these vesicles were systematically compared as a function of pH. These two phenomena show a different pH-dependence, suggesting that the association with the lipid membrane may be a two-step mechanism. The secondary and tertiary structure of VacA as a function of pH and the presence of lipid vesicles were investigated by Fourier-transform infrared spectroscopy. The secondary structure of VacA is identical whatever the pH and the presence of a lipid membrane, but the tertiary structure in the presence of a lipid membrane is dependent on pH, as evidenced by H/D exchange.  相似文献   

18.
Helicobacter pylori has elaborated a unique set of virulence factors that allow it to colonise the stomach wall. These factors include urease, helicoidal shape, flagella and adhesion molecules. Here we discuss the molecular characteristics and mechanisms of action of the vacuolating cytotoxin, VacA, and the neutrophil-activating protein, HP-NAP. Their activities are discussed in terms of tissue alterations, which promote the release of nutrients necessary for the growth and survival of the bacterium in its nutrient-poor ecological niche.  相似文献   

19.
Background. Helicobacter pylori induces gastric damage and may be involved in the pathogenesis of gastric cancer. H. pylori‐vacuolating cytotoxin, VacA, is one of the important virulence factors, and is responsible for H. pylori‐induced gastritis and ulceration. The aim of this study is to assess whether several naturally occurring polyphenols inhibit VacA activities in vitro and in vivo. Materials and Methods. Effects of polyphenols on VacA were quantified by the inhibition of: 1, vacuolation; 2, VacA binding to AZ‐521 or G401 cells or its receptors; 3, VacA internalization. Effects of hop bract extract (HBT) containing high molecular weight polymerized catechin on VacA in vivo were investigated by quantifying gastric damage after oral administration of toxins to mice. Results. HBT had the strongest inhibitory activity among the polyphenols investigated. HBT inhibited, in a concentration‐dependent manner: 1, VacA binding to its receptors, RPTPα and RPTPβ; 2, VacA uptake; 3, VacA‐induced vacuolation in susceptible cells. In addition, oral administration of HBT with VacA to mice reduced VacA‐induced gastric damage at 48 hours. In vitro, VacA formed a complex with HBT. Conclusions. HBT may suppress the development of inflammation and ulceration caused by H. pylori VacA, suggesting that HBT may be useful as a new type of therapeutic agent for the prevention of gastric ulcer and inflammation caused by VacA.  相似文献   

20.
The VacA toxin produced by Helicobacter pylori acts inside cells and induces the formation of vacuoles arising from late endosomal/lysosomal compartments. Using VacA as bait in a yeast two-hybrid screening of a HeLa cell library, we have identified a novel protein of 54 kDa (VIP54), which interacts specifically with VacA, as indicated by co-immunoprecipitation and binding experiments. VIP54 is expressed in cultured cells and many tissues, with higher expression in the brain, muscle, kidney and liver. Confocal immunofluorescence microscopy with anti-VIP54 affinity- purified antibodies shows a fibrous pattern typical of intermediate filaments. Double label immunofluorescence performed on various cell lines with antibodies specific to different intermediate filament proteins revealed that VIP54 largely co-distributes with vimentin. In contrast to known intermediate filament proteins, VIP54 is predicted to contain approximately 50% of helical segments, but no extended coiled-coil regions. The possible involvement of this novel protein in interactions between intermediate filaments and late endosomal compartments is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号