首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conjugate ubiquitin was previously found in the nucleus, cytoplasm, and membranes of eukaryotic cells while the enzymes of the ubiquitin-conjugating system appear to be cytoplasmic. We have prepared the mitochondrial fraction from rabbit brain by discontinuous density gradient ultracentrifugation and by Western blotting, using a specific antibody against conjugate ubiquitin, showing that it contains ubiquitin conjugates in a very wide molecular weight range. Electron microscopy and measurement of specific enzyme markers show that this fraction not only contains mitochondria but also some endoplasmic reticulum vesicles. Immunostaining with anti-ubiquitin IgG followed by immunodecoration with colloidal gold particles provides evidence for the presence of conjugate ubiquitin both in mitochondria and in the endoplasmic reticulum. Furthermore, this "mitochondrial fraction" shows a pronounced ATP-dependent ability to conjugate 125I-ubiquitin into a number of endogenous proteins as evidenced by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. Addition of E1, E2, and E3, the enzymes of the ubiquitin conjugating system purified from rabbit reticulocytes, does not further increase this ubiquitination nor incorporate 125I-ubiquitin into additional protein bands. The same mitochondrial fraction is not able to carry out any ATP-dependent degradation of 125I-albumin; however, it contains an isopeptidase activity able to release the covalently incorporated 125I-ubiquitin and is also able to conjugate 125I-ubiquitin to exogenous proteins as oxidized RNase. By affinity chromatography on ubiquitin-agarose of fraction II of a crude Triton X-100 extract of the mitochondrial fraction, several proteins corresponding in Mr to the E1 and E2s enzymes were obtained. These proteins were also able to form specific ubiquitin-thiol ester bounds on sodium dodecyl sulfate-polyacrylamide gels and to support 125I-ubiquitin conjugation to oxidized RNase. Detergent fractionation of the mitochondrial fraction provided evidence for a possible localization of the ubiquitin conjugating activity in the mitochondrial external membrane and endoplasmic reticulum. The presence of an active ubiquitin protein conjugating system in mitochondria and endoplasmic reticulum may be related to the turnover of organelle proteins as well as to specific cell functions such as import of proteins into mitochondria and ubiquitination of externally oriented membrane-bound proteins.  相似文献   

2.
The eye lens is a useful tissue for studying phenomena related to aging since it can be separated into differentially aged or matured zones. This work establishes correlations between ubiquitin-lens protein conjugating capabilities and age, as well as the stage of maturation of bovine lens tissue. When exogenous 125I-ubiquitin was combined with supernatants of epithelial (least mature), cortex, and core (most mature) tissue, ATP-dependent conjugation of 125I-ubiquitin to lens proteins was most effective with the epithelial tissue preparation. Conjugate formation was greatest when lenses were obtained from young animals. Supernatants from cultured bovine lens epithelial (BLE) cells conjugated more 125I-ubiquitin to lens proteins than any tissue preparation. In all cases the predominant conjugates formed in these cell-free assays were of high molecular mass, although conjugates with masses in the 25-70 kDa range were also observed. Lens tissue and cultured BLE cell preparations were also probed with antibodies to ubiquitin to detect in vivo ubiquitin-lens protein conjugates. There was more free ubiquitin and ubiquitin conjugates in tissue from young as compared with older lenses. The greatest levels of conjugates were observed in cultured BLE cells. Specificity in the ubiquitination system is indicated since some of the conjugates formed in vivo appear identical to those formed in the cell-free assays and in reticulocytes using exogenous 125I-ubiquitin. Upon development and maturation of lens tissue (i.e., core as opposed to epithelium), there is accumulation of lower molecular mass conjugates.  相似文献   

3.
Reticulocytes contain a nonlysosomal proteolytic pathway that requires ATP and ubiquitin. By DEAE chromatography and gel filtration, we were able to fractionate the ATP-dependent system into a 30-300-kDa fraction that catalyzes the ATP-dependent conjugation of ubiquitin to substrates ("Conjugation Fraction") and a high mass fraction (greater than 450 kDa) necessary for hydrolysis of the conjugated proteins. The latter contains two distinct proteases. One protease is unusually large, approximately 1500 kDa, and degrades proteins only when ATP and the conjugating fractions are added. This activity precipitates at 0-38% (NH4)2SO4 saturation and is essential for ATP-dependent proteolysis. Like crude extracts, it is labile in the absence of nucleotides and is inhibited by heparin, poly(Glu-Ala-Tyr), 3,4-dichloroisocoumarin, hemin, decavanadate, N-ethylmaleimide, and various peptide chloromethyl ketones. It lacks amino-peptidase and insulin-degrading activities and does not require tRNA for activity. The ubiquitin-conjugate degrading enzyme, which we suggest be named UCDEN, is inactive against substrates that cannot undergo ubiquitin conjugation. The smaller protease (670 kDa), which precipitates at 40-80% (NH4)2SO4 saturation, does not require ATP or ubiquitin and is therefore not required for ATP-dependent proteolysis. It is stimulated by N-ethylmaleimide and 3,4-dichloroisocoumarin and is stable at 37 degrees C. It hydrolyzes fluorometric tetrapeptides and proteins, including proteins which cannot be conjugated to ubiquitin. Thus, reticulocytes contain two large cytosolic proteases: one is essential for the degradation of ubiquitin conjugates, while the function of the other is uncertain.  相似文献   

4.
Ubiquitin is a small protein involved in an ATP-dependent proteolytic pathway in all eukaryotes. This pathway has been demonstrated to be required for both the bulk degradation of cellular proteins and the targeted proteolysis of specific regulatory proteins. We have investigated the presence of ubiquitin (Ub) and the ubiquitin-conjugating system in dormant and activated tubers of Helianthus tuberosus L. cv. OB 1 that represent a widely used model system for studies on the cell cycle in plants. Immunoblot experiments revealed the presence of free ubiquitin and ubiquitin conjugates. Furthermore, the presence of an active ubiquitin-conjugating system, both time- and ATP-dependent, was demonstrated by incubation with 125I-labeled ubiquitin. A few proteins able to form thiol esters with 125I-Ub and probably corresponding to ubiquitin-conjugating enzymes, E1 and E2s, were also found. During the first cell cycle, several proteins become ubiquitinated. In particular a large amount of protein conjugates was present at 6 h when the lowest content of free ubiquitin was found. Subsequently, a dramatic decrease in ubiquitin conjugates occurred. It is well known that cell cycle progression in eukaryotes depends on cyclin levels and cyclin B degradation is ubiquitin- and ATP-dependent. By immunoblot experiments we showed that cyclin B in H. tuberosus is present as at least two protein bands of 50 and 54 kDa and that their amounts undergo profound changes during the cell cycle. The 54-kDa band was also recognized by an anti-ubiquitin antibody. These data seem to indicate that in H. tuberosus activated tuber slices, the ATP-dependent ubiquitin proteolytic pathway is involved in the dedifferentiation process occurring after the artificial break of dormancy when the cells acquire the characteristics linked to the meristematic state.  相似文献   

5.
Reticulocytes contain a nonlysosomal, ATP-dependent system for degrading abnormal proteins and normal proteins during cell maturation. Vanadate, which inhibits several ATPases including the ATP-dependent proteases in Escherichia coli and liver mitochondria, also markedly reduced the ATP-dependent degradation of proteins in reticulocyte extracts. At low concentrations (K1 = 50 microM), vanadate inhibited the ATP-dependent hydrolysis of [3H]methylcasein and denatured 125I-labeled bovine serum albumin, but it did not reduce the low amount of proteolysis seen in the absence of ATP. This inhibition by vanadate was rapid in onset, reversed by dialysis, and was not mimicked by molybdate. Vanadate inhibits proteolysis at an ATP-stimulated step which is independent of the ATP requirement for ubiquitin conjugation to protein substrates. When the amino groups on casein and bovine serum albumin were covalently modified so as to prevent their conjugation to ubiquitin, the derivatized proteins were still degraded by an ATP-stimulated process that was inhibited by vanadate. In addition, vanadate did not reduce the ATP-dependent conjugation of 125I-ubiquitin to endogenous reticulocyte proteins, although it markedly inhibited their degradation. In intact reticulocytes vanadate also inhibited the degradation of endogenous proteins and of abnormal proteins containing amino acid analogs. This effect was rapid and reversible; however, vanadate also reduced protein synthesis and eventually lowered ATP levels in the intact cells. Vanadate (10 mM) has also been reported to decrease intralysosomal proteolysis in hepatocytes. However, in liver extracts this effect on lysosomal proteases required high concentrations of vanadate (K1 = 500 microM) and was also observed with molybdate, unlike the inhibition of ATP-dependent proteolysis in reticulocytes.  相似文献   

6.
To investigate the existence of a ubiquitin-dependent protein degradation system in the brain, the proteolytic activity of the cerebral cortex was examined. The soluble extract of rat cerebral cortex degraded 125I-radiolabeled lysozyme in an ATP-dependent manner. The ATP-dependent proteolysis was suppressed with iodoacetamide, which inhibits ubiquitin conjugation, and was abolished by blocking of the amino residues of lysozyme. These results suggest the participation of ubiquitination in the proteolytic activity. An ATP-dependent 125I-ubiquitin-conjugating activity was detected in fraction II from the cerebral cortex. The presence of ATP-dependent proteolytic activity which acted preferentially on ubiquitinated lysozyme was demonstrated, using ubiquitin-125I-lysozyme conjugates as a substrate. The proteinase had a molecular mass of 1500 kDa and displayed nucleotide dependence and sensitivity to various proteinase inhibitors similar to those of the 26S proteinase complex found in reticulocytes. Dialysis of the soluble fraction caused a decrease in the proteolytic activity of ATP-dependent and preferential for ubiquitin-lysozyme conjugates and a reciprocal increase in the ATP-independent free 125I-lysozyme-degrading activity which was scarcely detected before dialysis. The former ATP-dependent proteolytic activity may play a physiological role in the brain.  相似文献   

7.
ATP, ubiquitin-dependent proteolysis proceeds through covalent intermediates between target proteins destined for degradation and the 8,600-Da polypeptide ubiquitin. The ubiquitin moiety therefore represents a sensitive immunological marker for the specificity and function of this novel post-translational modification. Methods are described for the immunochemical detection of ubiquitin conjugates immobilized on nitrocellulose filters following electrophoretic transfer from sodium dodecyl sulfate-polyacrylamide gels. A further modification allows quantitation of conjugated ubiquitin to the exclusion of free polypeptide. Comparisons of conjugate pools in rabbit reticulocytes and erythrocytes demonstrate that 83 +/- 3% and 31 +/- 0.2%, respectively, of total intracellular ubiquitin exists covalently bound to target proteins. Similar large proportions of conjugated ubiquitin were found in three tissue culture cell lines. Subcellular fractionation revealed that 25% of total ubiquitin conjugates of reticulocytes sediment with the 22,000 X g stromal fraction with the remainder found in the 100,000 X g supernatant. In contrast, significant levels of erythrocyte ubiquitin conjugates occur only in the 100,000 X g supernatant, suggesting ubiquitin-mediated proteolysis actively degrades stromal components lost during terminal maturation. Reticulocytes retain their full complement of active ubiquitin during maturation indicating the concomitant decline in energy-dependent proteolysis does not result from ubiquitin inactivation. That the lower level of ubiquitin conjugates and the accompanying rate of energy-dependent proteolysis in erythrocytes is a consequence of limited substrate availability is suggested by observed increases in conjugate pools and induction of specific ubiquitin-protein adducts on incubation with either phenylhydrazine or sodium nitrite.  相似文献   

8.
The effect in reticulocyte lysates of proteins with blocked amino groups on the ATP-dependent degradation of casein and serum albumin was studied in order to assess the extent to which proteins with blocked and with free amino groups share common paths of proteolytic degradation. Completely acetylated or succinylated casein and acetylated or succinylated serum albumin (reduced and carboxymethylated), in addition to other amino-modified proteins, inhibited the ATP-dependent proteolysis of both casein and reduced carboxymethylated serum albumin. Inhibition of serum albumin degradation by acetylated serum albumin was competitive, whereas inhibition of casein degradation by acetylated casein was largely competitive with evidence of mixed kinetics. The different amino-blocked proteins studied, which were largely unfolded under assay conditions, were similarly effective as inhibitors on a weight basis, with Ki values in the range 0.2-0.6 mg/ml; there was no correlation between the ability of the blocked proteins to serve as proteolysis substrates and their effectiveness as inhibitors. Studies of the effects of acetylated proteins on the conjugation of ubiquitin to serum albumin and casein demonstrated that the acetylated proteins blocked formation of ubiquitin-albumin conjugates and of selected casein conjugates; the steady state concentration of selected conjugates of endogenous lysate proteins was increased in the presence of amino-blocked proteins. The results suggest that proteins with blocked amino groups, which cannot serve as substrates for ubiquitin conjugation, can compete for binding to those ubiquitin conjugation factors that recognize and ubiquitinate potential substrates of the ubiquitin pathway. The similar inhibitory properties of the different blocked proteins in turn suggest that a common factor in binding to these conjugation factors may be recognition of the polypeptide backbone.  相似文献   

9.
The eye lens has an active ubiquitin-protein conjugation system   总被引:4,自引:0,他引:4  
Using exogenous 125I-ubiquitin, ubiquitin-lens protein conjugation was observed with supernatants of cultured rabbit lens epithelial cells and lens cortex tissue. Conjugation was ATP-dependent with the greatest variety and amount of conjugates larger than 150 kDa. In vivo production of ubiquitin-protein conjugates in cultured rabbit and beef lens epithelial cells and rabbit lens tissues of different developmental age was established using immunological detection. There were limited similarities between conjugates found in youngest as opposed to oldest tissue. Cultured rabbit cells contained 27 pmol/mg free ubiquitin and 18 pmol/mg conjugated ubiquitin. Levels of free ubiquitin in lens tissue epithelium, cortex, and core were 36, 5, and 5 pmol/mg, respectively. There were only 2 pmol/mg conjugated ubiquitin in each of these tissues. Hydrolysis of 125I-ubiquitin was catalyzed by supernatants of cultured lens cells, beef and human lens tissues, and reticulocytes. Degradation was greatest in epithelial tissues, and least in core. This corroborates studies which show that proteolytic capabilities are attenuated in older tissue. Decreased initiation of proteolysis by ubiquitination as well as diminished proteolysis in older lens tissue may be related to the accumulation of damaged proteins in aging lens tissue.  相似文献   

10.
Although protein breakdown in most cells seems to require metabolic energy, it has only been possible to establish a soluble ATP-dependent proteolytic system in extracts of reticulocytes and erythroleukemia cells. We have now succeeded in demonstrating in soluble extracts and more purified preparations from rabbit skeletal muscle a 12-fold stimulation by ATP of breakdown of endogenous proteins and a 6-fold stimulation of 125I-lysozyme degradation. However, it has still not been possible to demonstrate such large effects of ATP in similar preparations from liver. Nevertheless, after fractionation by DEAE-chromatography and gel filtration, we found that extracts from liver as well as muscle contain both the enzymes which conjugate ubiquitin to 125I-lysozyme and an enzyme which specifically degrades the ubiquitin-protein conjugates. When this proteolytic activity was recombined with the conjugating enzymes, ATP + ubiquitin-dependent degradation of many proteins was observed. This proteinase is unusually large, approx. 1500 kDa, requires ATP hydrolysis for activity and resembles the ubiquitin-protein-conjugate degrading activity isolated from reticulocytes. Thus the ATP + ubiquitin-dependent pathway is likely to be present in all mammalian cells, although certain tissues may contain inhibitory factors.  相似文献   

11.
In eukaryotes, a major route for ATP-dependent protein breakdown proceeds through covalent intermediates of target proteins destined for degradation and the highly conserved, 76 amino acid protein ubiquitin. In rabbit reticulocytes, it has been shown that hemin effectively inhibits this pathway by blocking the catabolism of ubiquitin-protein conjugates [KI = 25 microM (Haas, A. L., & Rose, I. A. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 6845-6848)]. Here, we demonstrate that hemin is also an effective inhibitor of the ubiquitin-dependent proteolytic pathway in both a higher plant, oats (Avena sativa), and yeast (Saccharomyces cerevisiae). Hemin inhibits all stages of the pathway in vitro, including ATP-dependent formation of ubiquitin-protein conjugates, disassembly of conjugates by ubiquitin-protein lyase(s) (or isopeptidases), and degradation of ubiquitin-protein conjugates by ATP-dependent protease(s). Using ubiquitin-125I-lysozyme conjugates synthesized in vitro as substrates, we determined the specific effects of hemin on the rates of disassembly and degradation separately. The concentration of hemin required for half-maximal inhibition of both processes was identical in each species, approximately 60 microM in oats and approximately 50 microM in yeast. Similar inhibitory effects were observed when two hemin analogues, mesoheme or protoporphyrin IX, were employed. These results demonstrate that the effect of hemin on ubiquitin-dependent proteolysis is not restricted to erythroid cells and as a result hemin may be a useful tool in studies of this pathway in all eukaryotic cells. These results also question models where hemin serves as a specific negative modulator of proteolysis in erythroid cells.  相似文献   

12.
A soluble ATP/Mg2-dependent proteolytic system from rabbit cardiac muscle has been identified (m ca. 310 kDa) and purified ca. 9-fold. This enzyme which splits the substrate [3H]globin and 125I-bovine serum albumin (125I-BSA) has many similarities to the ATP-dependent proteolytic enzyme system from reticulocytes which utilizes ubiquitin: 1) The specific activities in reticulocyte lysates and cardiac muscle extracts are of the same magnitude (0.5-1 arb. unit/mg). 2) The binding and elution behavior on DEAE-cellulose is similar. 3) In both cases the pH optimum (substrate 125I-BSA) is pH 7.6. 4) Both enzymes are inhibited by hemin, NEM and iodoacetate but not e.g. by leupeptin, or inhibitors of serine proteases. 5) Neither enzyme system can utilize ATP-analogs such as AMP-CPP, AMP-PCP, AMP-PNP or ATP-gamma-S. There are however also significant differences: 1) The enzyme system from cardiac muscle is fully active in the absence of ubiquitin and cannot be activated by this peptide. 2) The enzyme from cardiac muscle can degrade methylated BSA. 3) The cardiac muscle enzyme can be further purified on Sepharose 4B; the enzyme from reticulocytes is inactivated by this procedure. 4) The cardiac enzyme cannot be inactivated by ribonuclease as the reticulocyte counterpart. Although ubiquitin does not appear to play a role in the isolated ATP/Mg2-dependent proteolytic system from cardiac muscle, it is demonstrated for the first time that 125I-ubiquitin can be conjugated to a wide variety of cardiac muscle proteins in vitro in an ATP-dependent manner. Apparent molecular masses of major conjugates were: 185 kDa, 140 kDa, 85 kDa, 65 kDa, 46 kDa, 38 kDa and 36 kDa as estimated by discontinuous SDS gel electrophoresis. Addition of purified phosphorylase kinase to cardiac muscle extract changed the ubiquitination pattern by the appearance of two novel protein bands. It is concluded that the ATP/Mg2-dependent proteolytic system of cardiac muscle must be differentiated from the proteolytic system of reticulocytes mainly because of its ubiquitin-independence. Nevertheless the conjugation of 125I-ubiquitin to many muscle proteins is a strong indication for a crucial role of this interesting peptide in striated muscle.  相似文献   

13.
In rabbit reticulocytes, the hexokinase (EC 2.7.1.1)-specific activity is 4-5 times that of corresponding mature red cells. Immunoprecipitation of hexokinase by a polyclonal antibody made in vitro shows that this maturation-dependent hexokinase decay is not due to accumulation of inactive enzyme molecules but to degradation of hexokinase. A cell-free system derived from rabbit reticulocytes, but not mature erythrocytes, was found to catalyze the decay of hexokinae activity and the degradation of 125I-labeled enzyme. This degradation is ATP-dependent and requires both ubiquitin and a proteolytic fraction retained by DEAE-cellulose. Maximum ATP-dependent degradation was obtained at pH 7.5 in the presence of MgATP. MgGTP could replace MgATP with a relative stimulation of 0.90. 125I-Hexokinase incubated with reticulocyte extract in the presence of ATP forms high molecular weight aggregates that reach a steady-state concentration in 1 h, whereas the degradation of the enzyme is linear up to 8 h, suggesting that the formation of protein aggregates precedes enzyme catabolism. These aggregates are stable upon boiling in 2% sodium dodecyl sulfate, 3% mercaptoethanol and probably represent an intermediate step in the enzyme degradation with hexokinase and other proteins covalently conjugate to ubiquitin. That hexokinase could be conjugated to ubiquitin was shown by the formation of 125I-ubiquitin-hexokinase complexes in the presence of ATP and the enzymes of the ubiquitin-protein ligase system. Thus, the decay of hexokinase during reticulocyte maturation is ATP- and ubiquitin-dependent and suggests a new physiological role for the energy-dependent degradation system of reticulocytes.  相似文献   

14.
Covalent ligation of multiple copies of ubiquitin to proteins is known to target intracellular proteins for degradation by large molecular weight cytosolic proteinase(s). Ubiquitin protein conjugates are found in cytosolic cell compartments suggesting that ubiquitination may have multiple roles. We have detected ubiquitinated proteins in the lysosomal apparatus of normal fibroblasts and fibroblasts treated with lysosomal proteinase inhibitors. In contrast rabbit reticulocytes lack lysosomes. We present here direct evidence for ubiquitination of mitochondrial proteins during rabbit reticulocyte maturation. In addition ubiquitination appears to be associated with the terminal differentiation of human keratinocytes. These results suggest that: 1. ubiquitin-protein conjugates may be degraded lysosomally 2. organellar proteins may be degraded by the ubiquitin system 3. ubiquitination is involved in the programmed elimination of proteins and organelles from several cell types during differentiation.  相似文献   

15.
It was previously shown that ubiquitin is very similar to the polypeptide cofactor of the ATP-dependent protein degradation system from rabbit reticulocytes (Wilkinson, K. D., Urban, M. K., and Haas, A. L. (1980) J. Biol. Chem. 255, 7529-7532). We have extended this work to show that the peptic peptide maps are identical for bovine ubiquitin and the polypeptide cofactor isolated from human erythrocytes. It was noted however that ubiquitin preparations were less active in stimulating proteolysis than preparations of the polypeptide cofactor. This decreased activity has been shown to be due to the presence of an inactive form of ubiquitin in some preparations. The two forms of ubiquitin are separable by high performance liquid chromatography. The active form of ubiquitin has the COOH-terminal sequence -Arg-Gly-Gly at residues number 74 to 76. The inactive form terminates in -Arg74 as previously reported in the sequence studies of ubiquitin. Limited tryptic digestion of active ubiquitin yields the inactive, later eluting form and the dipeptide glycylglycine. This preteolytic cleavage apparently occurs during purification from most tissues. We thus propose reserving the term ubiquitin for the intact 76-amino acid sequence and designating the 74-amino acid sequence as ubiquitin-t to indicate its derivation by a tryptic-like protease cleavage. This 76-residue sequence is consistent with the covalent structure of protein A-24, a conjugate where carboxyl group of the COOH-terminal glycylglycine of ubiquitin is linked by an amide bond to the epsilon-amino group of Lys-119 of histone H2A. Thus, the structural requirements of the protein and ubiquitin molecules are identical for formation of protein A-24 and for forming the covalent conjugates thought to be intermediates in ATP-dependent protein degradation.  相似文献   

16.
In the ubiquitin (Ub) pathway, proteins are ligated with polyUb chains and then are degraded by a 26 S protease complex. We describe an enzyme, called isopeptidase T, that acts on polyUb chains. It is a monomeric Ub-binding protein abundant in erythrocytes and reticulocytes. The activity of the isopeptidase is inhibited by iodoacetamide and Ub aldehyde. Treatment of the enzyme with Ub aldehyde increased its affinity for free Ub, indicating the existence of two different Ub-binding sites and cooperativity between the two sites. Isopeptidase T acts on polyUb-protein conjugates, but not on conjugates in which the formation of polyUb chains was prevented by the use of reductively methylated Ub or on abnormal polyUb chains formed with a mutant Ub that contains a Lys----Arg substitution at residue 48. The enzyme converts high molecular mass polyUb-protein conjugates to lower molecular mass forms with the release of free Ub, but not of free protein substrate. The lower molecular mass Ub-protein conjugate products are resistant to further action of the enzyme. Isopeptidase T stimulates protein degradation in a system reconstituted from purified enzyme components. The enzyme also stimulates the degradation of proteins ligated to polyUb chains by the 26 S protease complex. Preincubation of polyUb-protein conjugates with the isopeptidase did not much increase their susceptibility to proteolysis by the 26 S complex. On the other hand, preincubation of conjugates with the 26 S protease complex and ATP increased the release of free Ub upon further incubation with the isopeptidase. It thus seems that a role of this isopeptidase in protein breakdown is to remove polyUb chain remnants following the degradation of the protein substrate moiety by the 26 S complex.  相似文献   

17.
To produce ubiquitinated substrates for studies on ATP-dependent proteolysis, 125I-lysozyme was incubated in hemin-inhibited rabbit reticulocyte lysates. A portion of the labeled molecules became linked to ubiquitin in large covalent complexes. When these were partially purified and returned to uninhibited lysates containing ATP, the conjugated lysozyme molecules were degraded 10 times faster than free lysozyme. Purification of covalently modified lysozyme from hemin-inhibited lysates containing 125I-ubiquitin and 131I-lysozyme confirmed that both molecules were present in the complexes. The doubly labeled conjugates also permitted us to determine the fate of each molecule in uninhibited lysates. Besides degradation of lysozyme, there was a progressive release of intact lysozyme molecules from the complexes. This disassembly, which was the only fate of the complexes in the absence of ATP, proceeded through a series of smaller intermediates, several having molecular weights expected for ubiquitin-lysozyme conjugates, and eventually free lysozyme was regenerated. The behavior of labeled ubiquitin was similar, though not identical, to that of lysozyme. Even in lysates containing ATP ubiquitin emerged from the complex undegraded. Furthermore, ubiquitin was present in a greater number of species than was lysozyme. The demonstration that ubiquitin-lysozyme conjugates are rapidly degraded provides support for the hypothesis of Hershko, Rose, Ciechanover, and their colleagues that a key function of ubiquitin is to modify the proteolytic substrate. Further support for the hypothesis is presented in the following paper where we show that the conjugated lysozyme molecules are substrates for an ATP-dependent protease that does not degrade free lysozyme.  相似文献   

18.
ATP-dependent release of TCA-precipitable peptides from mitochondria-containing stroma (MCS) is described. The process is independent of ubiquitin, but is sensitive to hemin and to heat treatment. Neither chloramphenicol nor EGTA inhibit. 50% of the activity is dependent on charged tRNA. The peptides released from MCS possess a molecular mass of about 1–5 kDa and are degraded to TCA-soluble compounds by a cytosolic protease system (fraction II) without ubiquitin.  相似文献   

19.
A soluble ATP-dependent system for protein degradation has been demonstrated in reticulocyte lysates, but not in extracts of nucleated cells. We report that extracts of undifferentiated murine erythroleukemia (MEL) cells contain a labile ATP-stimulated proteolytic system. The addition of ATP to MEL cell extracts at alkaline pH enhances degradation of endogenous cell proteins and various radiolabeled exogenous polypeptides from 2-15-fold. Nonhydrolyzable ATP analogs had no effect. In reticulocytes, one role of ATP in proteolysis is for ubiquitin conjugation to protein substrates. MEL cells also contain ubiquitin and extracts can conjugate 125I-ubiquitin to cell proteins; however, this process in MEL cells seems unrelated to protein breakdown. After removal of ubiquitin from these extracts by DEAE- or gel chromatography, the stimulation of proteolysis by ATP was maintained and readdition of purified ubiquitin had no further effect. In addition, these extracts degraded in an ATP-dependent fashion casein whose amino groups were blocked and could not be conjugated to ubiquitin. After gel filtration or DEAE-chromatography of the MEL cell extracts (unlike those from reticulocytes), we isolated a high molecular weight (600,000) ATP-dependent proteolytic activity, which exhibits many of the properties of energy-dependent proteolysis seen in crude cell extracts. For example, both the protease and crude extracts are inhibited by hemin and N-ethylmaleimide and both hydrolyze casein, globin, and lysozyme rapidly and denatured albumin relatively slowly. The protease, like the crude extracts, is also stimulated by UTP, CTP, and GTP, although not as effectively as ATP. Also, nonhydrolyzable ATP analogs and pyrophosphate do not stimulate the protease. Thus, some mammalian cells contain a cytosolic proteolytic pathway that appears independent of ubiquitin and involves and ATP-dependent protease, probably similar to that found in Escherichia coli or mitochondria.  相似文献   

20.
Degradation of proteins by the ubiquitin system involves two discrete steps. Initially, ubiquitin is covalently linked in an ATP-dependent mode to the protein substrate. The protein moiety of the conjugate is subsequently degraded by a specific protease into peptides and free amino acids with the release of free and reutilizable ubiquitin. The degradation process also requires energy. In this review we shall discuss the mechanisms involved in ubiquitin activation, selection of substrates for conjugation, and subsequent degradation of ubiquitin-conjugated proteins. In addition, we shall briefly summarize what is currently known of the role of the ubiquitin system in protein degradation in vitro and in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号