首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In soybean ( Glycine max L.), salicylic acid (SA) is converted primarily to SA 2- O - β - d -glucose (SAG) in the cytoplasm and then accumulates exclusively in the vacuole. However, the mechanism involved in the vacuolar transport of SAG has not been investigated. The vacuolar transport of SAG was characterized by measuring the uptake of [14C]SAG into tonoplast vesicles isolated from etiolated soybean hypocotyls. The uptake of SAG was stimulated about six-fold when MgATP was included in the assay media. In contrast, the uptake of SA was only stimulated 1.25-fold by the addition of MgATP and was 2.2-fold less than the uptake of SAG providing an indication that the vacuolar uptake of SA is promoted by glucosylation. The ATP-dependent uptake of SAG was inhibited by increasing concentrations of vanadate (64% inhibition in the presence of 500 μ M ) but was not very sensitive to inhibition by bafilomycin A1 (a specific inhibitor of vacuolar H+-ATPase; EC 3.6.1.3), and dissipation of the transtonoplast H+-electrochemical gradient. The SAG uptake exhibited Michaelis–Menten-type saturation kinetics with a K m value of 90 μ M for SAG. SAG uptake was inhibited 60% by β ‐estradiol 17-( β - d -glucuronide), but glutathione conjugates and uncharged glucose conjugates were only slightly inhibitory. Based on the characteristics of SAG uptake into soybean tonoplast vesicles it is likely that this uptake occurs through an ATP-binding cassette transporter-type mechanism. However, this vacuolar uptake mechanism is not universal since the uptake of SAG by red beet ( Beta vulgaris L) tonoplast vesicles appears to involve an H+-antiport mechanism.  相似文献   

2.
Dean JV  Mohammed LA  Fitzpatrick T 《Planta》2005,221(2):287-296
The metabolism of salicylic acid (SA) in tobacco (Nicotiana tabacum L. cv. KY 14) cell suspension cultures was examined by adding [7–14C]SA to the cell cultures for 24 h and identifying the metabolites through high performance liquid chromatography analysis. The three major metabolites of SA were SA 2-O--D-glucose (SAG), methylsalicylate 2-O--D-glucose (MeSAG) and methylsalicylate. Studies on the intracellular localization of the metabolites revealed that all of the SAG associated with tobacco protoplasts was localized in the vacuole. However, the majority of the MeSAG was located outside the vacuole. The tobacco cells contained an SA inducible SA glucosyltransferase (SAGT) enzyme that formed SAG. The SAGT enzyme was not associated with the vacuole and appeared to be a cytoplasmic enzyme. The vacuolar transport of SAG was characterized by measuring the uptake of [14C]SAG into tonoplast vesicles isolated from tobacco cell cultures. SAG uptake was stimulated eightfold by the addition of MgATP. The ATP-dependent uptake of SAG was inhibited by bafilomycin A1 (a specific inhibitor of the vacuolar H+-ATPase) and dissipation of the transtonoplast H+-electrochemical gradient. Vanadate was not an inhibitor of SAG uptake. Several -glucose conjugates were strong inhibitors of SAG uptake, whereas glutathione and glucuronide conjugates were only marginally inhibitory. The SAG uptake exhibited Michaelis–Menten type saturation kinetics with a Km and Vmax value of 11 M and 205 pmol min–1 mg–1, respectively, for SAG. Based on the transport characteristics it appears as if the vacuolar uptake of SAG in tobacco cells occurs through an H+-antiport-type mechanism.  相似文献   

3.
4.
A β-(1→4)-xylosyltransferase (XylTase; EC 2.4.2.24) participating in the synthesis of arabinoxylans was investigated using microsomal membranes prepared from developing barley ( Hordeum vulgare L.) endosperms. The microsomal fraction transferred Xyl from uridine 5'-diphosphoxylose (UDP-Xyl) into exogenous β-(1→4)-xylooligosaccharides derivatized at their reducing ends with 2-aminopyridine. HPLC analysis showed chain elongation of pyridylaminated β-(1→4)-xylotriose (Xyl3-PA) by repeated attachment of one to five single xylosyl residues depending on the reaction time, leading to the formation of Xyl4−8-PA. Methylation analysis and enzymatic digestions with β-xylosidase (EC 3.2.1.37) and endo -β-(1→4)-xylanase (EC 3.2.1.8) confirmed that the transfer of xylosyl residues into the newly synthesized products occurred through β-(1→4)-linkages. The activity of the XylTase was maximal at pH 6.8 and 20°C and most enhanced in the presence of 0.5% Triton X-100 and 5 m M MnCl2. The apparent Michaelis constant and maximal velocity of the enzyme for Xyl3-PA were 2.1 m M and 25 400 pmol min−1 mg protein−1, respectively. The enzyme also transferred [14C]Xyl from UDP-[14C]Xyl into higher β-(1→4)-xylooligosaccharides and birchwood xylans through β-(1→4)-linkages. The enzyme activity varied according to the stage of development (7–35 days after flowering) of the endosperms. Maximal activity occurred at 13–16 days; no activity was detectable in mature seeds. A comparison of endosperms from 10 different cultivars of barley harvested 11–22 days after flowering showed no correlation between enzyme activity and the amount of Xyl in the cell walls.  相似文献   

5.
A toluene-degrading microbial consortium was enriched directly in a BTEX-contaminated aquifer under sulfate-reducing conditions using in situ microcosms consisting of toluene-loaded activated carbon pellets. Degradation of toluene and concomitant sulfide production by the consortium was subsequently demonstrated in laboratory microcosms. The consortium was physiologically and phylogenetically characterized by isotope tracer experiments using nonlabeled toluene, [13C]-α-toluene or [13C7]-toluene as growth substrates. Cells incubated with [13C]-α-toluene or [13C7]-toluene incorporated 8–15 at.%13C and 51–57 at.%13C into total lipid fatty acids, respectively, indicating a lower specific incorporation of 13C from [13C7]-toluene. In order to identify the toluene-assimilating bacteria, the incorporation of carbon from both [13C]-α-toluene and [13C7]-toluene into rRNA was analyzed by stable isotope probing. Time and buoyant density-resolved 16S rRNA gene-based terminal restriction fragment length polymorphism profiles, combined with cloning and sequencing, revealed that an uncultured bacterium (99% sequence similarity) related to the genus Desulfocapsa was the main toluene-degrading organism in the consortium. The ratio of the respective terminal restriction fragments changed over time, indicating trophic interactions within this consortium.  相似文献   

6.
Abstract— The uptake of [14C]GABA, [14C]taurine, [3H] β -alanine and [14C]dopamine was compared in slices of rat cerebral cortex of three different sizes (0.1 × 0.1 × 2 mm, 0.2 × 0.2 × 2 mm and 0.4 × 0.4 × 2 mm prepared with a mechanical tissue chopper). [14C]Taurine and [3H] β -alanine uptake increased whereas [14C]GABA uptake decreased with increasing slice size. [14C]Dopamine uptake was optimal in 0.2 × 0.2 × 2 mm slices. Increasing slice size was shown to decrease inhibition of [3H] β -alanine and [14C]GABA uptake by l -2,4-diaminobutyric acid. Lactate dehydrogenase activity increased with increasing slice size indicating decreased tissue damage or increased cellular integrity. The possibility that varying slice size can be used to distinguish between neuronal and glial uptake is discussed. It is suggested that taurine uptake in the cerebral cortex is predominantly glial.  相似文献   

7.
When N 6 [8–14C] furfuryladenine was applied to the intact root system of Pisum sativum L. cv. Meteor seedlings it was almost completely metabolised to other compounds within 24 h. Of the total activity recovered from the plants 94.5% was retained in the root system itself. 14C was recovered in a number of ethanol-soluble compounds and in ribonucleic acid, deoxyribonucleic acid and protein fractions of roots, stems, leaves and axillary buds. In rapidly growing axillary buds released from apical dominance by removal of the shoot apex the combined nucleic acid fractions accounted for 63.3% of the total 14C recovered from these organs. Xylem exudate collected from decapitated plants 0 to 12 h after supplying N 5[8–14C]furfuryladenine to the roots consistently contained a single major 14C-labelled compound which, in three different solvent systems, had the same Rf values as a major endogenous cytokinin isolated from the xylem of unlabelled plants. The content of N 6 [8–14C] furfuryladenine itself in the xylem exudate was always low and in some experiments it could not be detected.
It is suggested that part of the label from N 6 [8- 14CJfurfuryladenine taken up by the intact root system may have become incorporated in an endogenous cylokinin before export to the shoot.  相似文献   

8.
Metabolism of indole-3-acetic acid in soybean [ Glycine max (L.) Merr.] was investigated with [1-14C]- and [2-14C]-indole-3-acetic acid (IAA) applied by injection into soybean hypocotyl sections and by incubation with soybean callus. Free IAA and its metabolites were extracted with 80% methanol and separated by high performance liquid chromatography with [3H]-IAA as an internal standard. Metabolism of IAA in soybean callus was much greater than that in tobacco ( Nicotiana tabacum L.) callus used for comparison. High performance liquid chromatography of soybean extracts showed at least 10 metabolite peaks including both decarboxylated and undecarboxylated products. A major unstable decarboxylated metabolite was purified. [14C]-indole-3-methanol (IM) was three times more efficient than [2-14C]-IAA as substrate for producing this metabolite. It was hydrolyzable by β-glucosidase (EC 3.2.1.21), yielding an indole and D-glucose. The indole possessed characteristics of authentic IM. Thus, the metabolite is tentatively identified as indole-3-methanol-β-D-glucopyranoside. The results suggest that soybean tissues are capable of oxidizing IAA via the decarboxylative pathway with indole-3-methanol-glucoside as a major product. The high rate of metabolism of IAA may be related to the observed growth of soybean callus with high concentrations of IAA in the culture medium.  相似文献   

9.
Abstract A rapid and simple procedure for labelling bacterial cells based on binding of [14C]palmitic acid to the bacterial surface is described. The method was found convenient for both Gram-positive and Gram-negative bacteria such as staphylococci, streptococci and Salmonella . Some factors affecting the binding of [14C]palmitic acid to the surface of streptococci were examined. Treatment of bacteria with heat, trypsin or β-galactosidase had no effect on labelling. The binding was relatively independent of ionic strength in the range 0.1–1 M NaCl, but was dependent on pH and presence of detergents. The [14C]palmitic acid labelling method was tested in studies of aggregation of oral streptococci. The aggregation assay was sensitive and very reproducible.  相似文献   

10.
Abstract— Properties of both a transglucosylation reaction and the hydrolytic activity of a partially purified calf brain β -glucosidase were investigated. Sodium taurocholate and a 'Gaucher factor' stimulated both activities. A purified 'stimulatory' factor from human liver did not appear to significantly affect the hydrolytic activity towards either 4-methylumbelliferone- β - d -glucoside or [14C]glucosyl ceramide. Several compounds were found to be competitive inhibitors of the hydrolytic activity, conduritol B epoxide and norjirimycin being the most effective. Glucosyl ceramide hydrolysis was more sensitive to inhibition by p -chloromercuribenzenesulfonate than 4-methylumbelliferone- β -glucoside cleavage. The partially purified enzyme preparation catalyzed the formation of [14C]glucosyl ceramide with N -[14C]oleoyl sphingosine as the acceptor and several β -glucosides as the donor.  相似文献   

11.
The mechanism of cobalt uptake was investigated using cells of the giant alga Chara corallina in which it is possible to resolve separately uptake by the cell wall and actual influx across the cell membrane. The absorption of 60Co by Chara cells appeared to saturate within 2 h, but this was mainly due to rapid uptake into the cell wall which accounted for 87–92% of the total activity. Even after prolonged desorption most of the cell‐associated 60Co was found on the cell wall. The intracellular distribution of absorbed 60Co was investigated by fractionating the cell into cytoplasm and vacuole. It was shown that 60Co influx to the vacuole occurs simultaneously with influx to the cytoplasm. The transported species appears to be Co2+ rather than the less charged Co(OH)+ or Co(OH)2. 60Co influx is pH dependent (optimum pH 7–9), and is sensitive to some other divalent metals. Influx from solutions containing 1 µ M 60Co was inhibited by 5 µ M Cd2+, Cu2+, and Zn2+, but Mn2+ and Ni2+ had no significant effect. The sensitivity of Co uptake to N ‐ethyl maleimide (NEM) and cysteine suggests that the transport system involves direct binding of CO2+ to ‐SH groups.  相似文献   

12.
The metabolism of the herbicide, diclofop-methyl (methyl-2-[4-(2', 4'-dichlorophenoxy) phenoxy]propanoate), in cell suspension cultures of Avena sativa L. (cv. Garry) and in callus of Avena fatua L. (transferred to liquid) was determined as a function of time (8 h to about 3 weeks) and was compared to previous metabolism data from intact plants. A. fatua metabolized 14C-labeled diclofop-methyl more rapidly than A. sativa, but the metabolites formed were similar if not identical. Within 2 days, approximately 50% of the total 14C recovered was in A. fatua cells whereas less than 15% was in A. sativa cells. In older cultures of A. fatua, the amounts of 14C in the cells and in the medium were about 45% each; 10 to 12% was in the non-extractable cell residue. The 14C recovered from A. sativa cells increased to a maximum of about 35% at 7 days and then slowly decreased to about 18% by 21 days, whereas the 14C in the medium of A. sativa decreased to about 60% at 7 days and then increased to over 75% by 21 days. The nonextractable 14C residue was 5% or less even after 21 days. Major metabolites in methanolic extracts of cells of both A. sativa and A. fatua were diclofop (2-[4-(2', 4'-dichlorophenoxy)phenoxy] propanoate), diclofop hydroxylated at an undetermined position on the 2,4-dichlorophenyl ring (ring OH-diclofop), and conjugates of diclofop and ring-OH diclofop.  相似文献   

13.
Abstract: The aim of this study was to investigate the effect of long-term treatment with interferon (IFN)-α on the noradrenaline transporter of bovine adrenal medullary cells. Treatment of cultured adrenal medullary cells with IFN-α caused a decrease in uptake of [3H]noradrenaline by the cells in time (4–48 h)- and concentration (300–1,000 U/ml)-dependent manners. IFN-β also inhibited [3H]noradrenaline uptake to a lesser extent than did IFN-α, whereas IFN-γ had little effect. An anti-IFN-α antibody reduced the effect of IFN-α on [3H]noradrenaline uptake. Saturation analysis of [3H]noradrenaline uptake showed that the inhibitory effect of IFN-α was due to a reduction in the maximal uptake velocity ( V max) values without altering apparent Michaelis constant ( K m) values. Incubation of cells with IFN-α caused a translocation of protein kinase C from the soluble to the particulate fraction in the cells. The effect of IFN-α on [3H]noradrenaline uptake was diminished in protein kinase C-down-regulated cells. Incubation of cells with IFN-α for 48 h significantly reduced the specific binding of [3H]desipramine to crude plasma membranes isolated from cells. Scatchard analysis of [3H]desipramine binding revealed that IFN-α decreased the maximal binding ( B max) values without any change in the dissociation constant ( K D) values. These findings suggest that IFN-α suppresses the function of noradrenaline transporter by reducing the density of the transporter in cell membranes through, at least in part, a protein kinase C pathway.  相似文献   

14.
Polyamine content and the activity of arginine decarboxylase (EC 4.1.1.19) and ornithine decarboxylase (EC 4.1.1.17) were studied with respect to meristematic activity in primary roots and in developing lateral roots of Zea mays L. (cv. Neve Ya'ar 170) seedlings. Comparative localization of active ornithine decarboxylase and of meristematic activity were determined by labelling roots either with α-[5-14C]-difluoromethyl ornithine or with [3H]-thymidine, respectively.
Lateral roots were formed during the 72 h post-decapitation period, accompanied by an initial decline in putrescine content and by a significant increase in spennidine con-tent at 48–72 h. High levels of spermidine and lower levels of putrescine were found in the primary root apex as well. A marked increase in ornithine and arginine decarboxylase activity, as measured by 14CO2 release, was found during the 72 h post-decapitation period of lateral root development. This increase in ornithine decarboxylase activity was confirmed also by a parallel rise in the incorporation of α-[5-14C]-difluoromethyl ornithine into trichloroacetic acid-insoluble fractions. Microautoradiographs of longitudinal and cross sections of roots, labelled with α-[5-14C]-difluoromethyl ornithine, showed that ornithine decarboxylase is localized mainly in the meristematic zones, as evidenced by [3H]-thymidine incorporation. A close correlation between meristematic activity and polyamines was demonstrated in situ , suggesting that polyamine content and biosynthesis may have a role in meristematic activity in corn roots.  相似文献   

15.
Abstract: The metabolic fate of glutamate in astrocytes has been controversial since several studies reported >80% of glutamate was metabolized to glutamine; however, other studies have shown that half of the glutamate was metabolized via the tricarboxylic acid (TCA) cycle and half converted to glutamine. Studies were initiated to determine the metabolic fate of increasing concentrations of [U-13C]glutamate in primary cultures of cerebral cortical astrocytes from rat brain. When astrocytes from rat brain were incubated with 0.1 m M [U-13C]glutamate 85% of the 13C metabolized was converted to glutamine. The formation of [1,2,3-13C3]glutamate demonstrated metabolism of the labeled glutamate via the TCA cycle. When astrocytes were incubated with 0.2–0.5 m M glutamate, 13C from glutamate was also incorporated into intracellular aspartate and into lactate that was released into the media. The amount of [13C]lactate was essentially unchanged within the range of 0.2–0.5 m M glutamate, whereas the amount of [13C]aspartate continued to increase in parallel with the increase in glutamate concentration. The amount of glutamate metabolized via the TCA cycle progressively increased from 15.3 to 42.7% as the extracellular glutamate concentration increased from 0.1 to 0.5 m M , suggesting that the concentration of glutamate is a major factor determining the metabolic fate of glutamate in astrocytes. Previous studies using glutamate concentrations from 0.01 to 0.5 m M and astrocytes from both rat and mouse brain are consistent with these findings.  相似文献   

16.
Salmonella typhimurium invades host macrophages and can either induce a rapid cell death or establish an intracellular niche within the phagocytic vacuole. Rapid cell death requires the Salmonella pathogenicity island (SPI)1 and the host protein caspase-1, a member of the pro-apoptotic caspase family of proteases. Salmonella that do not cause this rapid cell death and instead reside in the phagocytic vacuole can trigger macrophage death at a later time point. We show here that the human pathogen Salmonella typhi also triggers both rapid, caspase-1-dependent and delayed cell death in human monocytes. The delayed cell death has previously been shown with S. typhimurium to be dependent on SPI2-encoded genes and ompR . Using caspase-1 –/– bone marrow-derived macrophages and isogenic S. typhimurium mutant strains, we show that a large portion of the delayed, SPI2-dependent death is mediated by caspase-1. The two known substrates of activated caspase-1 are the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18, which are cleaved to produce bioactive cytokines. We show here that IL-1β is released during both SPI1- and SPI2-dependent macrophage killing. Using IL-1β –/– bone marrow-derived macrophages and a neutralizing anti-IL-18 antibody, we show that neither IL-1β nor IL-18 is required for rapid or delayed macrophage death. Thus, both rapid, SPI1-mediated killing and delayed, SPI2-mediated killing require caspase-1 and result in the secretion of IL-1β, which promotes inflammation and may facilitate the spread of Salmonella beyond the gastrointestinal tract in systemic disease.  相似文献   

17.
Abstract. In the marine environment, the range of values of carbon isotope fractionation between particulate tissue of phytoplankton and inorganic carbon can be more than 20‰ (− 35‰ < δ13C < − 14‰). This review considers the influence of seawater temperature, lipid content of phytoplanktonic cells, kinetic fractionation, and carbon pathway on δ13C values observed at sea.
In order to study the contribution of carboxylases (RUBISCO and the β-carboxylases phosphoenolpyruvate carboxylase, phosphoenoplpyruvate carboxykinase and pyruvate carboxylase) to variations of particulate δ13C values at sea, we present results obtained simultenously on carboxylase activities and δ13C in various environmental conditions. The lowest δ13C values are clearly associated with predominance of ribulose-1.5-bisphosphate carboxylase activity, but it was more difficult to explain the high δ13C values. Different hypotheses are discussed.  相似文献   

18.
Abstract: Ubiquinone synthesis has been studied in cultured C-6 glial and neuroblastoma cells by utilizing an inhibitor, 3-β-(2-diethylaminoethoxy) androst-5-en-17-one hydrochloride (U18666A), of cholesterol biosynthesis. Exposure of C-6 glial cells to nanomolar quantities of U18666A caused a marked inhibition of total sterol synthesis from [14C]acetate or [3H]mevalonate within minutes. A 95% inhibition was apparent after a 3-h exposure to 200 ng/ml of U18666A. These observations, together with studies of the incorporation of radioactivity from the two precursors into cholesterol, desmosterol, lanosterol, and squalene, indicated that although the most sensitive site to inhibition by U18666A is desmosterol reduction to cholesterol, a major site of inhibition is demonstrable at a more proximal site, perhaps squalene synthetase. As a consequence of the latter inhibition, exposure of C-6 glial cells to U18666A caused a marked stimulation of incorporation of [14C]acetate or [3H]mevalonate into ubiquinone. Over a wide range of U18666A concentrations, the increase in ubiquinone synthesis was accompanied by an approximately similar decrease in total sterol synthesis. Whereas in the absence of U18666A only approximately 7% of the radioactivity incorporated from [3H]mevalonate into isoprenoid compounds was found in ubiquinone, in the presence of the drug approximately 90% of incorporated radioactivity was found in ubiquinone. The reciprocal effects of U18666A on ubiquinone and sterol syntheses were apparent also in the neuronal cells. The data thus demonstrate a tight relationship between ubiquinone and sterol biosyntheses in cultured cells of neural origin. In such cells ubiquinone synthesis is exquisitely sensitive to the availability of isoprenoid precursors derived from the cholesterol biosynthetic pathway.  相似文献   

19.
Developing grains of pearl millet ( Pennisetum typhoides Burm. S & H cv. PIB 155) were sampled and analyzed for starch and its free-sugar precursors. The activities of invertase, sucrose-ADP (UDP) glucosyl transferase and of α-amylase and β-amylase in relation to the rate of starch accumulation in the developing grain were assayed. By culturing detached ears, the incorporation of 14C from free sugar precursors to starch was studied. The starch content gradually increased until grain maturity. The rate of starch accumulation was maximum around 12 days after anthesis. Around this period, the activities of sucrose-ADP(UDP) glucosyl transferase and α-amylase, β-amylase were also at a peak. Invertase activity was high during the early period of grain development but gradually declined as the grains matured. In the most actively metabolising milky grains, incorporation of 14C from [14C]-sugars to starch was maximum in the mid mid-milky grains. Addition of 20 m M K+ to the culture solution did not affect the incorporation of 14C from supplied sucrose to the free sugar pool and to the starch of the grain, but Mg2+ supply at 20 m M concentration lowered 14C incorporation from exogenous sucrose to grain free sugars, although the utilization of the latter for starch synthesis was enhanced.  相似文献   

20.
Abstract. It is proposed that the growing plant can be divided into three compartments with reference to carbon: soluble, storage and structural. Experiments carried out at 10, 15, 20 and 30°C in the light followed changes in size of these compartments in barley plants 10–24 days old. The redistribution of I4C photo-assimilated by 10 day old plants was monitored simultaneously. The soluble and storage compartments are a higher percentage of plant weight at lower temperatures, and are turned over rapidly at all temperatures; they form the source of respired 14C. About 30% of the 14C fixed enters structural material; in the first 24 h after labelling, for each unit of 14C entering the structural compartment, between 0–9 (at 15°C) and 3.2 (at 30°C) units of 14C are lost by respiration. At 15°C in the dark, respiratory loss of 14C is initially from soluble and storage compartments; thereafter respiration of I4C occurs at the expense of structural material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号