首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Saccharomyces cerevisiae anthranilate synthase:indole-3-glycerol phosphate synthase is a multifunctional hetero-oligomeric enzyme encoded by genes TRP2 and TRP3. TRP2, encoding anthranilate synthase Component I, was cloned by complementation of a yeast trp2 mutant. The nucleotide sequence of TRP2 as well as that of TRP3 were determined. The deduced anthranilate synthase Component I primary structure from yeast exhibits only limited similarity to that of the corresponding Escherichia coli subunit encoded by trpE. On the other hand, yeast anthranilate synthase Component II and indole-3-glycerol phosphate synthase amino acid sequences from TRP3 are clearly homologous with the corresponding sequences of the E. coli trpG and trpC polypeptide segments and thereby establish the bifunctional structure of TRP3 protein. Based on comparisons of TRP3 amino acid sequence with homologous sequences from E. coli and Neurospora crassa, an 11-amino acid residue connecting segment was identified which fuses the trpG and trpC functions of the bifunctional TRP3 protein chain. These comparisons support the conclusion that the amino acid sequence of connectors in homologous multifunctional enzymes need not be conserved. Connector function is thus not dependent on a specific sequence. Nuclease S1 mapping was used to identify mRNA 5' termini. Heterogeneous 5' termini were found for both TRP2 and TRP3 mRNA. TRP2 and TRP3 5'-flanking regions were analyzed for sequences that might function in regulation of these genes by the S. cerevisiae general amino acid control system. The 9 base pair direct repeat (Hinnebusch, A.G., and Fink, G.R. (1983) J. Biol. Chem. 258, 5238-5247) and inverted repeats were identified in the 5'-flanking sequences of TRP2 and TRP3.  相似文献   

2.
The recombinant synthase domain of the bifunctional enzyme N-(5'-phosphoribosyl)anthranilate isomerase:indole-3-glycerol-phosphate synthase from Escherichia coli has been crystallized, and the structure has been solved at 4 A resolution. Two closely related crystal forms grown from ammonium sulphate diffract to 2 A resolution. One form (space group R32, a = 163 A, alpha = 29.5 degrees) contains the unliganded synthase domain; the second crystal form (space group P6(3)22, a = 144 A, c = 158 A) is co-crystallized with the substrate analogue N-(5'-phosphoribit-1-yl)anthranilate. The structure of the synthase-inhibitor complex has been solved by the molecular replacement method. This achievement represents the first successful use of a (beta alpha)8-barrel monomer as a trial model. The recombinant synthase domain associates as a trimer in the crystal, the molecules being related by a pseudo-crystallographic triad. The interface contacts between the three domains are mediated by those residues that are also involved in the domain interface of the bifunctional enzyme. This system provides a model for an interface which is used in both intermolecular and intramolecular domain contacts.  相似文献   

3.
The N-1-(5'-phosphoribosyl)-ATP transferase (ATP-PRTase) encoded by the hisG locus catalyzes the condensation of ATP with PRPP, the first reaction in the biosynthesis of histidine. Unlike the homohexameric forms of the enzyme found in Escherichia coli and Salmonella typhimurium, the ATP-PRTase from Lactococcus lactis and a number of other bacterial species consists of two different polypeptides, both of which are required for catalytic activity (Sissler et al. (1999) Proc. Natl. Acad. Sci. 96, 8985-8990). The first of these is a truncated version of HisG that is approximately 100 amino acids shorter than the canonical versions. The second, HisZ, is a 328-residue version of a class II aminoacyl-tRNA synthetase catalytic domain that possesses no aminoacylation function. Here, the molecular mass and subunit composition of the L. lactis HisZ-HisG heteromeric ATP-PRTase is investigated using liquid chromatography, analytical ultracentrifugation, and quantitative protein sequencing. Individually, HisZ and HisG form inactive but stable dimers with association constants in the range of 2.5-3.3 x 10(5) M(-1). When both types of subunits are present, a quaternary octamer complex is formed with a sedimentation coefficient of 10.1 S. Incubation of this complex with ATP promotes a shift to 10.7 S. By contrast, incubation with the allosteric modulators AMP and histidine destabilizes the complex, resulting in a shift to multiple species in equilibrium with an average of 9.3 S. While this octameric structure is unique to both the phosphoribosyl transferases and the aminoacyl-tRNA synthetases, the change in sedimentation behavior elicited by substrates and inhibitors suggests the presence of allosteric regulatory mechanisms reminiscent of other multisubunit enzymes of metabolic importance.  相似文献   

4.
Phytophthora capsici is an aggressive plant pathogen that affects solanaceous and cucurbitaceous hosts. Necrosis-inducing Phytophthora proteins (NPPs) are a group of secreted toxins found particularly in oomycetes. Several NPPs from Phytophthora species trigger plant cell death and activate host defense gene expression. We isolated 18 P. capsici NPP genes, of which 12 were active during hypha growth from a Phytophthora stain isolated from pepper (Capsicum annuum) plants in China. The 18 predicted proteins had a sequence homology of 46.26%. The 18 Pcnpp sequences had a conserved GHRHDWE motif and fell into two groups. Eleven sequences in group 1 had two conserved cysteine residues, whereas the other seven sequences in group 2 lacked these two cysteine residues. A phylogenetic tree was constructed on the basis of the alignment of the predicted protein sequences of 52 selected NPP genes from oomycetes, fungi and bacteria from Genbank. The tree did not rigorously follow the taxonomic classification of the species; all the NPPs from oomycetes formed their own clusters, while fungal sequences were grouped into two separate clades, indicating that based on NPPs, we can separate oomycetes from fungi and bacteria, and that expansion of the NPP family was a feature of Phytophthora evolution.  相似文献   

5.
6.
The active-site geometry of the first crystal structure of a Delta(3)-Delta(2)-enoyl-coenzyme A (CoA) isomerase (the peroxisomal enzyme from the yeast Saccharomyces cerevisiae) shows that only one catalytic base, Glu158, is involved in shuttling the proton from the C2 carbon atom of the substrate, Delta(3)-enoyl-CoA, to the C4 atom of the product, Delta(2)-enoyl-CoA. Site-directed mutagenesis has been performed to confirm that this glutamate residue is essential for catalysis. This Delta(3)-Delta(2)-enoyl-CoA isomerase is a hexameric enzyme, consisting of six identical subunits. It belongs to the hydratase/isomerase superfamily of enzymes which catalyze a wide range of CoA-dependent reactions. The members of the hydratase/ isomerase superfamily have only a low level of sequence identity. Comparison of the crystal structure of the Delta(3)-Delta(2)-enoyl-CoA isomerase with the other structures of this superfamily shows only one region of large structural variability, which is in the second turn of the spiral fold and which is involved in defining the shape of the binding pocket.  相似文献   

7.
Summary The polymorphism of phosphohexose isomerase has been investigated in 428 subhuman Primates. 9 phosphohexose isomerase variants were found to be present. All of these are more negatively charged than the major band of PHI 1, the most common phenotype of human population. The distribution of the various PHI phenotypes has been estimated.
Zusammenfassung Die Phosphohexoseisomerasen der Primaten zeigen eine genetisch determinierte Variabilität. Bei der Untersuchung von 428 subhumanen Primaten konnten wir 9 PHI-Varianten nachweisen, die stärker negativ geladen sind und daher mehr anodisch wandern als das Isoenzym PHI 1, das bei allen Menschenpopulationen weitaus am häufigsten vorkommt. Sie werden abweichend von der beim Menschen üblichen Nomenklatur als PHI B-J bezeichnet; PHI 1 des Menschen wäre als PHI A in dieses System einzuordnen.


Supported by the Deutsche Forschungsgemeinschaft.  相似文献   

8.
To gain insight into the evolution of rodent major histocompatibility complex (MHC) class I genes and identify important (conserved) nonclassical class I (class Ib) gene products and residues in these proteins, sixPeromyscus maniculatus MHC (Pema) class I cDNA clones were isolated and sequenced. FivePema class I cDNAs appeared most similar to mouse and rat classical class I (class Ia) genes. One exhibited highest similarity to anH2 class Ib gene,H2-T23 (encoding the Qa1 antigen). Phylogenetic trees constructed withPema, RT1, andH2 class I sequences suggested that the lineages of some rodent class Ib genes (e.g.,T23 andT24) originated prior toMus andPeromyscus speciation [>50 million years (My) ago]. Sequences of four Qa1-like proteins from three species permitted the identification of ten Qa1-specific amino acids. On the basis of molecular modeling, three residues showed the potential to interact with T-cell receptors and three residues (all corresponding to polymorphic positions among H2 class Ia proteins) were predicted to influence antigen binding. The recognition of mouse Qa1 proteins by a subset of T-cells in influenced by a locus,Qdm, which encodes the H2-D leader peptide. One of thePema class I cDNA clones classified asH2-K, D/L-like (class Ia) is predicted to encode an identical peptide, implying that an antigen binding protein (Qa1) and the antigen to which it binds (the product ofQdm) has been conserved for over 50 My. The nucleotide sequence data reported in this paper have been submitted to the GenBank nucleotide sequence database and have been assigned the accession numbers U12822 (Pm13), U12885 (Pm41), U12886 (Pm52), U12887 (Pm62), U16846 (Pm11), and U16847 (Pm53)  相似文献   

9.
10.
11.
12.
13.
14.
In extracellular fluids the insulin-like growth factors (IGFs) are bound to specific binding proteins (IGBPs). The genes for two members of this protein family have been mapped, the IGBP1 gene to human chromosomal region 7p14-p12 and the IGBP2 gene to region 2q33-q34. In this study, somatic cell hybrid analysis indicated that IGBP3 is also located on chromosome 7. Pulsed-field gel electrophoresis was used to demonstrate the close physical linkage between IGBP1 and IGBP3. Overlapping cosmid clones encompassing these genes were isolated, and restriction endonuclease mapping showed that the genes are arranged in a tail-to-tail fashion separated by 20 kb of DNA. Further characterization of the IGBP1 DNA sequence disclosed a duplication of the intron 3-exon 4 junction within the third intron. In addition, we report RFLPs for ApaLI and TaqI in the IGBP1 locus.  相似文献   

15.
16.
Glucose (xylose) isomerase is an important enzyme in high fructose syrup industry. The enzyme generally occurs intracellularly and is specific for both glucose and xylose. A rare actinomycete Chainia sp. (NCL 82-5-1) produces extracellular specific glucose and xylose isomerases and an intracellular glucose (xylose) isomerase. The intracellular enzyme is isolated by cell autolysis and purified by preparative polyacrylamide gel electrophoresis. Its properties are studied and compared with those of extracellular specific xylose isomerase. The intracellular enzyme has a molecular weight of 1,58,000 daltons with four equal subunits of 40,700 daltons. The N-terminal amino acid sequence analysis shows Arg at the N-terminal. Diethylpyrocarbonate inhibited the enzyme and the inhibition kinetics study shows the presence of at least 2 essential His residues. The amino acid analysis shows the absence of Cys and a high proportion of hydrophobic and acidic amino acids.  相似文献   

17.
18.
New esters of indole-3-acetic acid and d-glucose have been isolated from mature sweet-corn kernels of Zea mays. The esters were resolved by t.l.c. into two fractions having RF values distinct from that of authentic 1-O-(indole-3-acetyl)-β-d-glucopyranose. Analysis of the trimethylsilyl ethers of the two fractions by combined gas-liquid chromatography-mass spectrometry (g.l.c.-m.s.) showed that the esters have a free carbonyl group. Labeling of the carbonyl carbon atom with an O-methyloxime group, and analysis of the O-trimethylsilyl O-methyloxime derivatives by g.l.c.-m.s. permitted the new compounds to be identified as a mixture of 2-O-(indole-3-acetyl)-d-glucopyranose, 4-O-(indole-3-acetyl)-d-glucopyranose, and 6-O-(indole-3-acetyl)-d-glucopyranose.  相似文献   

19.
Genomic clones for the largest human neurofilament protein (NF-H) were isolated, the intron/exon boundaries mapped and the entire protein-coding regions (exons) sequenced. The predicted protein contains a central region that obeys the structural criteria identified for alpha-helical 'rod' domains typically present in all IF protein components: it is approximately 310 amino acids long, shares amino acid sequence homology with other IF protein rod domains and displays the characteristic heptad repeats of apolar amino acids which facilitate coiled-coil interaction. Nevertheless, anomalies are noted in the structure of the NF-H rod which could explain observations of its poor homopolymeric assembly in vitro. The protein segment on the carboxy-terminal side of the human NF-H rod is uniquely long (greater than 600 amino acids) compared to other IF proteins and is highly charged (greater than 24% Glu, greater than 25% Lys), rich in proline (greater than 12%) and impoverished in cysteine, methionine and aromatic amino acids. Its most remarkable feature is a repetitive sequence that covers more than half its length and includes the sequence motif, Lys-Ser-Pro (KSP) greater than 40 times. Together with the recent identification of the serine in KSP as the main target for NF-directed protein kinases in vivo, this repetitive character explains the massive phosphorylation of the NF-H subunit that can occur in axons. The human NF-H gene has three introns, two of which interrupt the protein-coding sequence at identical points to introns in the genes for the two smaller NF proteins, NF-M and NF-L.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号