首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Environmental stress factors induce oxidative stress in fungi by increasing the intracellular concentrations of reactive oxygen species (ROS). In the mycelium, ROS act as signal molecules needed for cytodifferentiation at certain stages of the development of fungi. Generation of ROS in cells induces the activation of antioxidant protective mechanisms. The purpose of this communication is to analyze the role of ROS in light signal transduction, mediated in Neurospora crassa cells by the White Collar Complex.  相似文献   

2.
Reactive oxygen species (ROS) are formed by fungi in the course of metabolic activity. ROS production increases in fungi due to various stress agents such as starvation, light, mechanical damage, and interactions with some other living organisms. Regulation of ROS level appears to be very important during development of the fungal organism. ROS sources in fungal cells, their sensors, and ROS signal transduction pathways are discussed in this review. Antioxidant defense systems in different classes of fungi are characterized in detail. Particular emphasis is placed on ROS functions in interactions of phytopathogenic fungi with plant cells.  相似文献   

3.
CTBT (7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine) is an antifungal and chemosensitizing agent that induces oxidative stress in yeast and filamentous fungi and enhances the cytotoxic activity of 5-fluorocytosine and azole antimycotics. This study reports the effect of CTBT on bacterial cells. CTBT inhibited the growth of both Gram-positive and Gram-negative bacterial species. The action of CTBT was bactericidal. In Escherichia coli, CTBT induced an increased formation of reactive oxygen species (ROS), as determined with a ROS specific probe 2′,7′-dichlorodihydrofluorescein diacetate. In zone inhibition assays, bacterial cells were more sensitive to CTBT compared with paraquat, menadione and hydrogen peroxide. The deletion of oxidative stress related genes resulted in increased susceptibility of E. coli mutant strains to CTBT treatment. Exogenous antioxidants such as ascorbic acid, cysteine and glutathione exhibited a protective effect against the growth inhibition induced by CTBT. CTBT may be a useful tool in the studies of ROS generation, oxidant sensing and oxidative stress response in different bacterial species.  相似文献   

4.
5.
Mitochondrial reactive oxygen species (ROS) regulate a variety of biological processes by networking with signal transduction pathways to maintain homeostasis and support adaptation to stress. In this capacity, ROS have been shown to promote the differentiation of progenitor cells, including mammalian embryonic and hematopoietic stem cells and Drosophila hematopoietic progenitors (prohemocytes). However, many questions remain about how ROS alter the regulatory machinery to promote progenitor differentiation. Here, we provide evidence for the hypothesis that ROS reduce E-cadherin levels to promote Drosophila prohemocyte differentiation. Specifically, we show that knockdown of the antioxidants, Superoxide dismutatase 2 and Catalase reduce E-cadherin protein levels prior to the loss of Odd-skipped-expressing prohemocytes. Additionally, over-expression of E-cadherin limits prohemocyte differentiation resulting from paraquat-induced oxidative stress. Furthermore, two established targets of ROS, Enhancer of Polycomb and FOS, control the level of E-cadherin protein expression. Finally, we show that knockdown of either Superoxide dismutatase 2 or Catalase leads to an increase in the E-cadherin repressor, Serpent. As a result, antioxidants and targets of ROS can control E-cadherin protein levels, and over-expression of E-cadherin can ameliorate the prohemocyte response to oxidative stress. Collectively, these data strongly suggest that ROS promote differentiation by reducing E-cadherin levels. In mammalian systems, ROS promote embryonic stem cell differentiation, whereas E-cadherin blocks differentiation. However, it is not known if elevated ROS reduce E-cadherin to promote embryonic stem cell differentiation. Thus, our findings may have identified an important mechanism by which ROS promote stem/progenitor cell differentiation.  相似文献   

6.
植物盐胁迫应答蛋白质组学分析   总被引:3,自引:0,他引:3  
张恒  郑宝江  宋保华  王思宁  戴绍军 《生态学报》2011,31(22):6936-6946
土壤盐渍化是限制植物生长和分布的关键因素之一,揭示植物盐胁迫应答的分子机理是借助分子生物学手段提高植物耐盐性的基础.近年来,人们利用高通量蛋白质组学技术分析了拟南芥、水稻等19种植物的盐胁迫应答蛋白质表达图谱.从植物类群(盐生植物和甜土植物)、组织器官(根、地上部分/茎、胚根和胚轴、叶片、花序和配子体)、细胞(悬浮培养细胞、愈伤组织细胞和单细胞生物)和亚细胞结构(叶绿体、质膜和质外体)几方面整合分析了植物盐胁迫应答蛋白质组表达模式特征,主要特征包括:(1)盐生植物通过全面调节细胞骨架重塑、离子转运和区隔化、渗透平衡、活性氧(ROS)清除、信号转导、光合作用和能量代谢等信号与代谢网络体系,获得相对较高的抗/耐盐能力;(2)植物地上部分(叶片、茎、配子体)或光合组织细胞(悬浮培养细胞、愈伤组织细胞和单细胞盐藻)通过调节参与光合作用、碳和能量代谢、ROS清除过程蛋白质的表达模式应对盐胁迫环境;(3)植物地下部分(根、胚根)通过调控信号转导和离子转运相关蛋白质感知/传递盐胁迫信号并维持离子平衡;(4)花序中参与渗透调节、转录调控、蛋白质加工和ROS清除的蛋白质在盐胁迫条件下变化显著;(5)叶绿体通过调控参与光合作用、蛋白质加工和周转,以及氧化还原系统平衡等过程应对盐胁迫;(6)质外体中参与细胞壁代谢、胁迫防御和信号转导过程的蛋白质受盐胁迫影响明显;(7)细胞膜中参与维持膜结构稳定、物质/离子运输和信号转导过程的蛋白质对植物盐胁迫应答具有重要作用.这些分析为深入研究植物耐盐的分子机制提供了重要信息.  相似文献   

7.
The airways of patients with cystic fibrosis (CF) are frequently colonized by various filamentous fungi, mainly Aspergillus fumigatus and Scedosporium species. To establish within the respiratory tract and cause an infection, these opportunistic fungi express pathogenic factors allowing adherence to the host tissues, uptake of extracellular iron, or evasion to the host immune response. During the colonization process, inhaled conidia and the subsequent hyphae are exposed to reactive oxygen species (ROS) and reactive nitrogen species (RNS) released by phagocytic cells, which cause in the fungal cells an oxidative stress and a nitrosative stress, respectively. To cope with these constraints, fungal pathogens have developed various mechanisms that protect the fungus against ROS and RNS, including enzymatic antioxidant systems. In this review, we summarize the different works performed on ROS- and RNS-detoxifying enzymes in fungi commonly encountered in the airways of CF patients and highlight their role in pathogenesis of the airway colonization or respiratory infections. The potential of these enzymes as serodiagnostic tools is also emphasized. In addition, taking advantage of the recent availability of the whole genome sequence of S. apiospermum, we identified the various genes encoding ROS- and RNS-detoxifying enzymes, which pave the way for future investigations on the role of these enzymes in pathogenesis of these emerging species since they may constitute new therapeutics targets.  相似文献   

8.
The fungal strain Humicola lutea 103 was used as a model organism to examine the relationship between copper toxicity and oxidative stress in low eukaryotes such as filamentous fungi. Spores or submerged cultures were treated with different copper concentrations and the oxidative stress-inducing agent paraquat (PQ). Oxidative stress biomarkers such as reactive oxygen species (ROS), cyanide-resistant respiration, protein carbonyls, reserve carbohydrates, and antioxidant defence were identified in cells treated or not treated with either copper ions or PQ. Copper inhibited the growth and conidiospore formation of H. lutea 103 in a concentration-dependent manner. This treatment also resulted in increased superoxide anion radical formation. Copper stress was furthermore accompanied by transient accumulation of trehalose and glycogen, as well as increased protein carbonyl content. Compared to control cultures, copper-treated mycelia demonstrated a marked increase in the activity of protective enzymes (superoxide dismutase, catalase, and glucose-6-phosphate dehydrogenase). These increased antioxidant enzyme activities were blocked by inhibitors of protein synthesis, suggesting that de novo enzyme formation was involved. Biomarker response to the heavy metal was similar to treatment with known ROS generators such as PQ. The observed hyper-oxidative status and increased oxidative damage suggest a relationship between acute metal treatment and oxidative stress in fungal cells.  相似文献   

9.
10.
Paracoccidioides brasiliensis, a thermally dimorphic fungus, is the causative agent of paracoccidioidomycosis, a systemic mycosis that is widespread in Latin America. This fungus is a facultative intracellular pathogen able to survive and replicate inside non-activated macrophages. Therefore, the survival of P. brasiliensis inside the host depends on the ability to adapt to oxidative stress induced by immune cells, especially alveolar macrophages. For several years, reactive oxygen species (ROS) were only associated with pathological processes. Currently, a plethora of roles for ROS in cell signaling have emerged. We have previously reported that low ROS concentrations cause cell proliferation in the human pathogenic fungus P. brasiliensis. In the present report, we investigated the influence of phosphorylation events in that process. Using a mass spectrometry-based approach, we mapped 440 phosphorylation sites in 230 P. brasiliensis proteins and showed that phosphorylation at different sites determines fungal responses to oxidative stress, which are regulated by phosphatases and kinases activities. Furthermore, we present additional evidence for a functional two-component signal transduction system in P. brasiliensis. These findings will help us to understand the phosphorylation events involved in the oxidative stress response.  相似文献   

11.
《Fungal biology》2014,118(12):990-995
Entomopathogenic fungi are predisposed to ROS induced by heat and UV–A radiation when outside the insect host. When inside the host, they are subject to phagocytic cells that generate ROS to eliminate invading pathogens. The oxidative stress tolerance of the entomopathogenic fungi Aschersonia aleyrodis (ARSEF 430 and 10276), Aschersonia placenta (ARSEF 7637), Beauveria bassiana (ARSEF 252), Isaria fumosorosea (ARSEF 3889), Lecanicillium aphanocladii (ARSEF 6433), Metarhizium acridum (ARSEF 324), Metarhizium anisopliae (ARSEF 5749), Metarhizium brunneum (ARSEF 1187 and ARSEF 5626), Metarhizium robertsii (ARSEF 2575), Tolypocladium cylindrosporum (ARSEF 3392), Tolypocladium inflatum (ARSEF 4877), and Simplicillium lanosoniveum (ARSEF 6430 and ARSEF 6651) was studied based on conidial germination on a medium supplemented with menadione. Conidial germination was evaluated 24 h after inoculation on potato dextrose agar (PDA) (control) or PDA supplemented with menadione. The two Aschersonia species (ARSEF 430, 7637, and 10276) were the most susceptible fungi, followed by the two Tolypocladium species (ARSEF 3392 and 4877) and the M. acridum (ARSEF 324). Metarhizium brunneum (ARSEF 5626) and M. anisopliae (ARSEF 5749) were the most tolerant isolates with MIC 0.28 mM. All fungal isolates, except ARSEF 5626 and ARSEF 5749, were not able to germinate at 0.20 mM.  相似文献   

12.
Upon apoptotic stimuli, epithelial cells compensate the gaps left by dead cells by activating proliferation. This has led to the proposal that dying cells signal to surrounding living cells to maintain homeostasis. Although the nature of these signals is not clear, reactive oxygen species (ROS) could act as a signaling mechanism as they can trigger pro-inflammatory responses to protect epithelia from environmental insults. Whether ROS emerge from dead cells and what is the genetic response triggered by ROS is pivotal to understand regeneration of Drosophila imaginal discs. We genetically induced cell death in wing imaginal discs, monitored the production of ROS and analyzed the signals required for repair. We found that cell death generates a burst of ROS that propagate to the nearby surviving cells. Propagated ROS activate p38 and induce tolerable levels of JNK. The activation of JNK and p38 results in the expression of the cytokines Unpaired (Upd), which triggers the JAK/STAT signaling pathway required for regeneration. Our findings demonstrate that this ROS/JNK/p38/Upd stress responsive module restores tissue homeostasis. This module is not only activated after cell death induction but also after physical damage and reveals one of the earliest responses for imaginal disc regeneration.  相似文献   

13.
Oxidative stress (OS), as a signal of aberrant intracellular mechanisms, plays key roles in maintaining homeostasis for organisms. The occurrence of OS due to the disorder of normal cellular redox balance indicates the overproduction of reactive oxygen species (ROS) and/or deficiency of antioxidants. Once the balance is broken down, repression of oxidative stress is one of the most effective ways to alleviate it. Ongoing studies provide remarkable evidence that oxidative stress is involved in reproductive toxicity induced by various stimuli, such as environmental toxicants and food toxicity. Zearalenone (ZEA), as a toxic compound existing in contaminated food products, is found to induce mycotoxicosis that has a significant impact on the reproduction of domestic animals, especially pigs. However, there is no information about how ROS and oxidative stress is involved in the influence of ZEA on porcine granulosa cells, or whether the stress can be rescued by curcumin. In this study, ZEA-induced effect on porcine granulosa cells was investigated at low concentrations (15 μM, 30 μM and 60 μM). In vitro ROS levels, the mRNA level and activity of superoxide dismutase, glutathione peroxidase and catalase were obtained. The results showed that in comparison with negative control, ZEA increased oxidative stress with higher ROS levels, reduced the expression and activity of antioxidative enzymes, increased the intensity of fluorogenic probes 2’, 7’-Dichlorodihydrofluorescin diacetate and dihydroethidium in flow cytometry assay and fluorescence microscopy. Meanwhile, the activity of glutathione (GSH) did not change obviously following 60 μM ZEA treatment. Furthermore, the underlying protective mechanisms of curcumin on the ZEA-treated porcine granulosa cells were investigated. The data revealed that curcumin pre-treatment significantly suppressed ZEA-induced oxidative stress. Collectively, porcine granulosa cells were sensitive to ZEA, which may induce oxidative stress. The findings from this study clearly demonstrate that curcumin is effective to reduce the dysregulation of cellular redox balance on porcine granulosa cells in vitro and should be further investigated for its protective role against ZEA in animals.  相似文献   

14.
15.
16.
Aluminum (Al) stress represses mitochondrial respiration and produces reactive oxygen species (ROS) in plants. Mitochondrial alternative oxidase (AOX) uncouples respiration from mitochondrial ATP production and may improve plant performance under Al stress by preventing excess accumulation of ROS. We tested respiratory changes and ROS production in isolated mitochondria and whole cell of tobacco (SL, ALT 301) under Al stress. Higher capacities of AOX pathways relative to cytochrome pathways were observed in both isolated mitochondria and whole cells of ALT301 under Al stress. AOX1 when studied showed higher AOX1 expression in ALT 301 than SL cells under stress. In order to study the function of tobacco AOX gene under Al stress, we produced transformed tobacco cell lines by introducing NtAOX1 expressed under the control of the cauliflower mosaic virus (CaMV) 35 S promoter in sensitive (SL) Nicotiana tabacum L. cell lines. The enhancement of endogenous AOX1 expression and AOX protein with or without Al stress was in the order of transformed tobacco cell lines > ALT301 > wild type (SL). A decreased respiratory inhibition and reduced ROS production with a better growth capability were the significant features that characterized AOX1 transformed cell lines under Al stress. These results demonstrated that AOX plays a critical role in Al stress tolerance with an enhanced respiratory capacity, reducing mitochondrial oxidative stress burden and improving the growth capability in tobacco cells.  相似文献   

17.
18.
Generation of reactive oxygen species (ROS) during infection is an immediate host defense leading to microbial killing. APE1 is a multifunctional protein induced by ROS and after induction, protects against ROS-mediated DNA damage. Rac1 and NAPDH oxidase (Nox1) are important contributors of ROS generation following infection and associated with gastrointestinal epithelial injury. The purpose of this study was to determine if APE1 regulates the function of Rac1 and Nox1 during oxidative stress. Gastric or colonic epithelial cells (wild-type or with suppressed APE1) were infected with Helicobacter pylori or Salmonella enterica and assessed for Rac1 and NADPH oxidase-dependent superoxide production. Rac1 and APE1 interactions were measured by co-immunoprecipitation, confocal microscopy and proximity ligation assay (PLA) in cell lines or in biopsy specimens. Significantly greater levels of ROS were produced by APE1-deficient human gastric and colonic cell lines and primary gastric epithelial cells compared to control cells after infection with either gastric or enteric pathogens. H. pylori activated Rac1 and Nox1 in all cell types, but activation was higher in APE1 suppressed cells. APE1 overexpression decreased H. pylori-induced ROS generation, Rac1 activation, and Nox1 expression. We determined that the effects of APE1 were mediated through its N-terminal lysine residues interacting with Rac1, leading to inhibition of Nox1 expression and ROS generation. APE1 is a negative regulator of oxidative stress in the gastrointestinal epithelium during bacterial infection by modulating Rac1 and Nox1. Our results implicate APE1 in novel molecular interactions that regulate early stress responses elicited by microbial infections.  相似文献   

19.
Glioblastoma multiforme is a devastating disease of the central nervous system and, at present, no effective therapeutic interventions have been identified. Celastrol, a natural occurring triterpene, exhibits potent anti-tumor activity against gliomas in xenograft mouse models. In this study, we describe the cell death mechanism employed by celastrol and identify secondary targets for effective combination therapy against glioblastoma cell survival. In contrast to the previously proposed reactive oxygen species (ROS)-dependent mechanism, cell death in human glioblastoma cells is shown here to be mediated by alternate signal transduction pathways involving, but not fully dependent on, poly(ADP-ribose) polymerase-1 and caspase-3. Our studies indicate that celastrol promotes proteotoxic stress, supported by two feedback mechanisms: (i) impairment of protein quality control as revealed by accumulation of polyubiquitinated aggregates and the canonical autophagy substrate, p62, and (ii) the induction of heat-shock proteins, HSP72 and HSP90. The Michael adduct of celastrol and N-acetylcysteine, 6-N-acetylcysteinyldihydrocelastrol, had no effect on p62, nor on HSP72 expression, confirming a thiol-dependent mechanism. Restriction of protein folding stress with cycloheximide was protective, while combination with autophagy inhibitors did not sensitize cells to celastrol-mediated cytotoxicity. Collectively, these findings imply that celastrol targets proteostasis by disrupting sulfyhydryl homeostasis, independently of ROS, in human glioblastoma cells. This study further emphasizes that targeting proteotoxic stress responses by inhibiting HSP90 with 17-N-Allylamino-17-demethoxygeldanamycin sensitizes human glioblastoma to celastrol treatment, thereby serving as a novel synergism to overcome drug resistance.  相似文献   

20.
Conidiophore development of fungi belonging to the genus Aspergillus involves dynamic changes in cellular polarity and morphogenesis. Synchronized differentiation of phialides from the subtending conidiophore vesicle is a good example of the transition from isotropic to multi-directional polarized growth. Here we report a small GTPase, RacA, which is essential for reactive oxygen species (ROS) production in the vesicle as well as differentiation of phialides in Aspergillus fumigatus. We found that wild type A. fumigatus accumulates ROS in these conidiophore vesicles and that null mutants of racA did not, resulting in the termination of conidiophore development in this early vesicle stage. Further, we found that stress conditions resulting in atypical ROS accumulation coincide with partial recovery of phialide emergence but not subsequent apical dominance of the phialides in the racA null mutant, suggesting alternative means of ROS generation for the former process that are lacking in the latter. Elongation of phialides was also suppressed by inhibition of NADPH-oxidase activity. Our findings provide not only insights into role of ROS in fungal cell polarity and morphogenesis but also an improved model for the developmental regulatory pathway of conidiogenesis in A. fumigatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号