首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Effects of glucose concentration and anoxia upon the metabolite concentrations and rates of glycolysis and respiration have been investigated in the perfused liver of the fetal guinea pig. In most cases the metabolite concentrations in the perfused liver were similar to those observed in vivo. Between 50 days and term there was a fall in the respiratory rate and in the concentration of ATP and fructose 1,6-diphosphate and an increase in the concentration of glutamate, glycogen and glucose. Reducing the medium glucose concentration from 10 mM to 1 mM or 0.1 mM depressed lactate production and the concentration of most of the phosphorylated intermediates (except 6-phosphogluconate) in the liver of the 50-day fetus. This indicates a fall in glycolytic rate which is not in accord with the known kinetic properties of hexokinase in the fetal liver. Anoxia increased lactate production by, and the concentrations of, the hexose phosphates ADP and AMP in the 50-day to term fetal liver, while the concentration of ribulose 5-phosphate, ATP and some triose phosphates fell. These results are consistent with an activation of glycolysis, particularly at phosphofructokinase and of a reduction in pentose phosphate pathway activity, particularly at 6-phosphogluconate dehydrogenase. The calculated cytosolic NAD+/NADH ratio for the perfused liver was similar to that measured in vivo and evidence is presented to suggest that the dihydroxyacetone phosphate/glycerol 3-phosphate ratio gives a better indication of cytosolic redox than the lactate/pyruvate ratio. The present observations indicate that phosphofructokinase hexokinase and possibly pyruvate kinase control the glycolytic rate and that glyceraldehyde-3-phosphate dehydrogenase is at equilibrium in the perfused liver of the fetal guinea pig.  相似文献   

2.
Effects of glucose concentration and anoxia upon the metabolite concentrations and rates of glycolysis and respiration have been investigated in the perfused liver of the fetal guinea pig. In most cases the metabolite concentrations in the perfused liver were similar to those observed in vivo. Between 50 days and term there was a fall in the respiratory rate and in the concentration of ATP and fructose 1,6-diphosphate and an increase in the concentration of glutamate, glycogen and glucose. Reducing the medium glucose concentration from 10 mM to 1 mM or 0.1 mM depressed lactate production and the concentration of most of the phosphorylated intermediates (except 6-phosphogluconate) in the liver of the 50-day fetus. This indicates a fall in glycolytic rate which is not in accord with the known kinetic properties of hexokinase in the fetal liver. Anoxia increased lactate production by, and the concentrations of, the hexose phosphates ADP and AMP in the 50-day to term fetal liver, while the concentration of ribulose 5-phosphate, ATP and some triose phosphates fell. These results are consistent with an activation of glycolysis, particularly at phosphofructokinase and of a reduction in pentose phosphate pathway activity, particularly at 6-phosphogluconate dehydrogenase.The calculated cytosolic NAD+/NADH ratio for the perfused liver was similar to that measured in vivo and evidence is presented to suggest that the dihydroxyacetone phosphate/glycerol 3-phosphate ratio gives a better indication of cytosolic redox than the lactate/pyruvate ratio. The present observations indicate that phosphofructokinase and hexokinase and possibly pyruvate kinase control the glycolytic rate and that glyceraldehyde-3-phosphate dehydrogenase is at equilibrium in the perfused liver of the fetal guinea pig.  相似文献   

3.
Pyruvate kinase from Propionibacterium shermanii was shown to be activated by glucose-6-phosphate (G-6-P) at non-saturating phosphoenol pyruvate (PEP) concentrations but other glycolytic and hexose monophosphate pathway intermediates and AMP were without effect. Half-maximal activation was obtained at 1 mM G-6-P. The presence of G-6-P decreased both the PEP0.5V and ADP0.5V values and the slope of the Hill plots for both substrates. The enzyme was strongly inhibited by ATP and inorganic phosphate (Pi) at all PEP concentrations. At non-saturating (0.5 mM) PEP, half-maximal inhibition was obtained at 1.8 mM ATP or 1.4 mM Pi. The inhibition by both Pi and ATP was largely overcome by 4 mM G-6-P. The specific activity of pyruvate kinase was considerably higher in lactate-, glucose- and glycerol-grown cultures than that of the enzyme catalysing the reverse reaction, pyruvate, phosphate dikinase. It is suggested that the activity of pyruvate kinase in vivo is determined by the balance between activators and inhibitors such that it is inhibited during gluconeogenesis while, during glycolysis, the inhibition is relieved by G-6-P.Abbreviations PEP phosphoenolpyruvate - G-6-P glucose-6-phosphate - Pi inorganic phosphate  相似文献   

4.
Upon differential centrifugation of cell-free extracts of Trypanosoma brucei, 6-phosphofructo-2-kinase and fructose-2,6-bisphosphatase behaved as cytosolic enzymes. The two activities could be separated from each other by chromatography on both blue Sepharose and anion exchangers. 6-phosphofructo-2-kinase had a Km for both its substrates in the millimolar range. Its activity was dependent on the presence of inorganic phosphate and was inhibited by phosphoenolpyruvate but not by citrate or glycerol 3-phosphate. The Km of fructose-2,6-bisphosphatase was 7 microM; this enzyme was inhibited by fructose 1,6-bisphosphate (Ki = 10 microM) and, less potently, by fructose 6-phosphate, phosphoenolpyruvate and glycerol 3-phosphate. Melarsen oxide inhibited 6-phosphofructo-2-kinase (Ki less than 1 microM) and fructose-2,6-bisphosphatase (Ki = 2 microM) much more potently than pyruvate kinase (Ki greater than 100 microM). The intracellular concentrations of fructose 2,6-bisphosphate and hexose 6-phosphate were highest with glucose, intermediate with fructose and lowest with glycerol and dihydroxyacetone as glycolytic substrates. When added with glucose, salicylhydroxamic acid caused a decrease in the concentration of fructose 2,6-bisphosphate, ATP, hexose 6-phosphate and fructose 1,6-bisphosphate. These studies indicate that the concentration of fructose 2,6-bisphosphate is mainly controlled by the concentration of the substrates of 6-phosphofructo-2-kinase. The changes in the concentration of phosphoenolpyruvate were in agreement with the stimulatory effect of fructose 2,6-bisphosphate on pyruvate kinase. At micromolar concentrations, melarsen oxide blocked almost completely the formation of fructose 2,6-bisphosphate induced by glucose, without changing the intracellular concentrations of ATP and of hexose 6-phosphates. At higher concentrations (3-10 microM), this drug caused cell lysis, a proportional decrease in the glycolytic flux, as well as an increase in the phosphoenolypyruvate concentrations which was restricted to the extracellular compartment. Similar changes were induced by digitonin. It is concluded that the lytic effect of melarsen oxide on the bloodstream form of T. brucei is not the result of an inhibition of pyruvate kinase.  相似文献   

5.
The concentrations of following metabolites were determined in freeze-clamped gastrocnemius muscle samples: glucose 1-phosphate, glucose 6-phosphate, glucose, fructose 1,6-diphosphate, fructose 6-phosphate, D-glyceraldehyde 3-phosphate. dihydroxyacetone phosphate, phosphoenolpyruvate, pyruvate, glycerol 3-phosphate, glycerol, creatine phosphate, creatine, glycerate 3-phosphate, glycerate 2-phosphate, adenosine monophosphate, adenosine diphosphate, adenosine triphosphate, inorganic phosphate. The results showed that within the limits of experimental error, concentration homeostasis for this metabolites is founded at least in some cases on equilibria between enzymic transformations. Discrepancies between constant mass ratios measured in this study and equilibrium constants allow the free energy variation delta G to keep creatine phosphate at high concentration to be calculated. For the phosphoglycerate mutase system, the equilibrium constant in controls and trained animals is unchanged and corresponds to that in vitro. Training hindered glycolysis and favoured phosphorylation of creatine by glycerol 3-phosphate. Metabolites of the pyruvate kinase and hexokinase system cannot be homogeneously distributed in one space. The creatine kinase system is also separated from the hexokinase und pyruvate kinase system. A compartition of glycolytic process in gastrocnemius muscle seems to be inferred from these results.  相似文献   

6.
Selected glycolytic enzymes (including phosphoglucose isomerase, aldolase, glyceraldehyde phosphate dehydrogenase, enolase, pyruvate kinase and lactate dehydrogenase), as well as glycogen phosphorylase, creatine kinase, and adenylate kinase, bound to phosphofructokinase immobilized on an agarose gel. The affinity of phosphofructokinase to these various proteins differed, with phosphorylase exhibiting the strongest binding. Binding was reversed either by: (1) elution with high-ionic-strength buffer (0.4 M KCl); (2) the addition of a 5-10 mM concentration of ATP; or (3) high concentrations of fructose 6-phosphate (5 mM).  相似文献   

7.
Control of gluconeogenesis from lactate was studied by titrating rat liver cells with lactate and pyruvate in a ratio of 10:1 in a perifusion system. At different steady states of glucose formation, the concentration of key gluconeogenic intermediates was measured and plotted against gluconeogenic flux (J glucose). Complete saturation was observed only in the plot relating J glucose to the extracellular pyruvate concentration. Measurement of pyruvate distribution in the cell showed that the mitochondrial pyruvate translocator operates close to equilibrium at high lactate and pyruvate concentrations. It can therefore be concluded that pyruvate carboxylase limits maximal gluconeogenic flux. Addition of glucagon did not cause a shift in the plots relating J glucose to glucose 6-phosphate, dihydroxyacetone phosphate, 3-phosphoglycerate, and phosphoenolpyruvate. It can thus be concluded that glucagon does not affect the kinetic parameters of the enzymes involved in the conversion of phosphoenolpyruvate to glucose. Addition of glucagon led to a shift in the curves relating J glucose to the concentration of cytosolic oxalacetate and extracellular pyruvate. The shift in the curve relating J glucose to oxalacetate is due to glucagon-induced inhibition of pyruvate kinase. The stimulation of gluconeogenesis by glucagon can be accounted for almost completely by inhibition of pyruvate kinase. There was almost no stimulation by glucagon of pyruvate carboxylation. In the absence of glucagon, control on gluconeogenesis from lactate is distributed among different steps including pyruvate carboxylase and pyruvate kinase. Assuming that in the presence of glucagon all pyruvate kinase flux is inhibited, the control of gluconeogenesis in the presence of the hormone is confined exclusively to pyruvate carboxylase.  相似文献   

8.
Glucose requirement for postischemic recovery of perfused working heart   总被引:5,自引:0,他引:5  
The quantitative importance of glycolysis in cardiomyocyte reenergization and contractile recovery was examined in postischemic, preload-controlled, isolated working guinea pig hearts. A 25-min global but low-flow ischemia with concurrent norepinephrine infusion to exhaust cellular glycogen stores was followed by a 15-min reperfusion. With 5 mM pyruvate as sole reperfusion substrate, severe contractile failure developed despite normal sarcolemmal pyruvate transport rate and high intracellular pyruvate concentrations near 2 mM. Reperfusion dysfunction was characterized by a low cytosolic phosphorylation potential [( ATP]/[( ADP][Pi]) due to accumulations of inorganic phosphate (Pi) and lactate. In contrast, with 5 mM glucose plus pyruvate as substrates, but not with glucose as sole substrate, reperfusion phosphorylation potential and function recovered to near normal. During the critical ischemia-reperfusion transition at 30 s reperfusion the cytosolic creatine kinase appeared displaced from equilibrium, regardless of the substrate supply. When under these conditions glucose and pyruvate were coinfused, glycolytic flux was near maximum, the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase reaction was enhanced, accumulation of Pi was attenuated, ATP content was slightly increased, and adenosine release was low. Thus, glucose prevented deterioration of the phosphorylation potential to levels incompatible with reperfusion recovery. Immediate energetic support due to maximum glycolytic ATP production and enhancement of the glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase reaction appeared to act in concert to prevent detrimental collapse of [ATP]/[( ADP][Pi]) during creatine kinase dysfunction in the ischemia-reperfusion transition. Dichloroacetate (2 mM) plus glucose stimulated glycolysis but failed fully to reenergize the reperfused heart; conversely, 10 mM 2-deoxyglucose plus pyruvate inhibited glycolysis and produced virtually instantaneous de-energization during reperfusion. The following conclusions were reached. (1) A functional glycolysis is required to prevent energetic and contractile collapse of the low-flow ischemic or reperfused heart (2). Glucose stabilization of energetics in pyruvate-perfused hearts is due in part to intensification of glyceraldehyde-3-phosphate dehydrogenase/3-phosphoglycerate kinase activity. (3) 2-Deoxyglucose depletes the glyceraldehyde-3-phosphate pool and effects intracellular phosphate fixation in the form of 2-deoxyglucose 6-phosphate, but the cytosolic phosphorylation potential is not increased and reperfusion failure occurs instantly. (4) Consistent correlations exist between cytosolic ATP phosphorylation potential and reperfusion contractile function. The findings depict glycolysis as a highly adaptive emergency mechanism which can prevent deleterious myocyte deenergization during forced ischemia-reperfusion transitions in presence of excess oxidative substrate.  相似文献   

9.
1. The production of pyruvate, glycerol and glycerol-3-phosphate by intact and digitonin-permeabilized Trypanosoma brucei brucei has been studied with glucose or the glycolytic intermediates as substrates. 2. Under aerobic conditions hexosephosphates gave maximal glycolysis in the presence of 40-60 micrograms digitonin/10(8) trypanosomes while the triosephosphates gave it at 20-30 micrograms digitonin/10(8) trypanosomes. 3. In the presence of salicylhydroxamic acid, and the glycolytic intermediates, permeabilized trypanosomes produced equimolar amounts of pyruvate and glycerol-3-phosphate and no glycerol. Under the same conditions, glucose catabolism produced glycerol in addition to pyruvated and glycerol-3-phosphate. 4. In the presence of salicylhydroxamic acid and ATP or ADP intact trypanosomes produced equimolar amounts of pyruvate and (glycerol plus glycerol-3-phosphate) with glucose as substrate. 5. A carrier for ATP and ADP at the glycosomal membrane is implicated. 6. It is apparent that glycerol formation is regulated by the ATP/ADP ratio and that it needs intact glycosomal membrane and the presence of glucose.  相似文献   

10.
Summary Rana ridibunda erythrocytes have a complete sequence of glycolytic enzymes but not the tricarboxylic acid cycle enzymes.The steady state contents of the glycolytic intermediates were measured in quick frozenRana ridibunda erythrocytes. A comparison of the mass action ratios with the equilibrium constants for the glycolytic reactions showed that phosphoglucomutase, phosphoglucose isomerase, aldolase, triosephosphate isomerase, phosphoglycerate mutase and enolase reactions are all near equilibrium whilst hexokinase, phosphofructokinase and pyruvate kinase are displaced from equilibrium.The steady state contents of glycolytic intermediates, lactate, adenine nucleotides, inorganic phosphate have been measured during various periods up to 4 h of incubation of erythrocytes in the presence of glucose. In the incubation experiment glycolysis had been stimulated by the high pH-value of the medium. After 4 h of incubation 3 patterns of changes can be distinguished. One group of intermediates (glucose, glucose 6-phosphate, 2-phosphoglycerate and inorganic phosphate) in which the concentration of metabolites was lower than the zero time values. A second group of metabolites (fructose 6-phosphate, fructose 1,6-bisphosphate, phosphoenolpyruvate and AMP) in which the concentration was about the same at zero time and after 4 h of incubation. The metabolites of the third group (dihydroxyacetone phosphate, glyceraldehyde 3-phosphate, 1,3-diphosphoglycerate, 2,3-diphosphoglycerate, 3-phosphoglycerate, pyruvate, lactate, ADP, ATP and glucose 1-phosphate) all increased their content during the 4 h of incubation in comparison to the zero time values.From the results it appears that in the amphibian erythrocyte glycolysis seems to be similar to that of mammalian erythrocytes as far its control and organisation is concerned down to the level of PEP, with the exception of the low concentration of phosphoglycerate compounds.Abbreviations 2,3DPG 2,3-diphosphoglycerate - EDTA [ethylene dinitrilo]-tetra-acetic acid - P i inorganic phosphate - DTNB 5,5-dithio-bis-(2-nitrobenzoic acid) - PEP phosphoenolpyruvate - RBC red blood cells  相似文献   

11.
Physiological properties of mutants of Escherichia coli defective in glyceraldehyde 3-phosphate dehydrogenase, glycerate 3-phosphate kinase, or enolase are described. Introduction of a lesion in any one of the reversible steps catalyzed by these enzymes impaired both the glycolytic and gluconeogenic capabilities of the cell and generated an obligatory requirement for a source of carbon above the block (gluconeogenic) and one below (oxidative). A mixture of glycerol and succinate supported the growth of these mutants. Mutants lacking glyceraldehyde 3-phosphate dehydrogenase and glycerate 3-phosphate kinase could grow also on glycerol and glyceric acid, and enolase mutants could grow on glycerate and succinate, whereas double mutants lacking the kinase and enolase required l-serine in addition to glycerol and succinate. Titration of cell yield with limiting amounts of glycerol with Casamino Acids in excess, or vice versa, showed the gluconeogenic requirement of a growing culture of E. coli to be one-twentieth of its total catabolic and anabolic needs. Sugars and their derivatives inhibited growth of these mutants on otherwise permissive media. The mutants accumulated glycolytic intermediates above the blocked enzyme on addition of glucose or glycerol to resting cultures. Glucose inhibited growth and induced lysis. These effects could be substantially overcome by increasing the osmotic strength of the growth medium and, in addition, including 5 mM cyclic adenosine 3',5'-monophosphate therein. This substance countered to a large extent the severe repression of beta-galactosidase synthesis that glucose caused in these mutants.  相似文献   

12.
Control properties of the gluconeogenic pathway in hepatocytes isolated from starved rats were studied in the presence of glucose. The following observations were made. (1) Glucose stimulated the rate of glucose production from 20 mM-glycerol, from a mixture of 20 mM-lactate and 2 mM-pyruvate, or from pyruvate alone; no stimulation was observed with 20 mM-alanine or 20 mM-dihydroxyacetone. Maximal stimulation was obtained between 2 and 5 mM-glucose, depending on the conditions. At concentrations above 6 mM, gluconeogenesis declined again, so that at 10 mM-glucose the glucose production rate became equal to that in its absence. (2) With glycerol, stimulation of gluconeogenesis by glucose was accompanied by oxidation of cytosolic NADH and reduction of mitochondrial NAD+ and was insensitive to the transaminase inhibitor amino-oxyacetate; this indicated that glucose accelerated the rate of transport of cytosolic reducing equivalents to the mitochondria via the glycerol 1-phosphate shuttle. (3) With lactate plus pyruvate (10:1) as substrates, stimulation of gluconeogenesis by glucose was almost additive to that obtained with glucagon. From an analysis of the effect of glucose on the curves relating gluconeogenic flux and the steady-state intracellular concentrations of gluconeogenic intermediates under various conditions, in the absence and presence of glucagon, it was concluded that addition of glucose stimulated both phosphoenolpyruvate carboxykinase and pyruvate carboxylase activity.  相似文献   

13.
Extracts of Pseudomonas citronellolis cells grown on glucose or gluconate possessed all the enzymes of the Entner-Doudoroff pathway. Gluconokinase and either or both 6-phosphogluconate dehydratase and KDPG aldolase were induced by growth on these substrates. Glucose and gluconate dehydrogenases and 6-phosphofructokinase were not detected. Thus catabolism of glucose proceeds via an inducible Entner-Doudoroff pathway. Metabolism of glyceraldehyde 3-phosphate apparently proceeded via glyceraldehyde 3-phosphate dehydrogenase, phosphoglycerate kinase, phosphoglycerate mutase, enolase and pyruvate kinase. These same enzymes plus triose phosphate isomerase were present in lactate-grown cells indicating that synthesis of triose phosphates from gluconeogenic substrates also occurs via this pathway. Extracts of lactate grown-cells possessed fructose diphosphatase and phosphohexoisomerase but apparently lacked fructose diphosphate aldolase thus indicating either the presence of an aldolase with unusual properties or requirements or an alternative pathway for the conversion of triose phosphate to fructose disphosphate. Cells contained two species of glyceraldehyde 3-phosphate dehydrogenase, one an NAD-dependent enzyme which predominated when the organism was grown on glycolytic substrates and the other, an NADP-dependent enzyme which predominated when the organism was grown on gluconeogenic substrates.  相似文献   

14.
1) In intact Ehrlich ascites tumour cells the anaerobic glycolytic flux rate and pattern of intermediates have been investigated at different pH values of the extracellular medium. 2) As predicted from the dependence of the lactic acid dehydrogenase equilibrium on pH a strong negative correlation between log ([lactate]/[pyruvate]) and pH has been found. 3) The steady state fluxes of glycolysis at pH 8.0 and 7.4 are rather equal, despite significant differences in the intracellular concentrations of glycolytic intermediates. At pH 8.0 the concentrations of ATP, glucose 6-phosphate, and fructose 6-phosphate are lower, and the concentrations of ADP, AMP, fructose 1,6-bisphosphate, triose phosphates, phosphoglycerates, and phosphoenolpyruvate are higher than at pH 7.4. 4) From the analysis of the pH dependent changes of metabolites it follows that different mechanisms are responsible for maintaining equal actual activities of hexokinase, phosphofructokinase and pyruvate kinase at pH 7.4 and 8.0. 5) From an application of the linear theory of enzymatic chains and a calculation of the control strength of the regulatory important enzymes results that hexokinase is evidently rate-limiting for glycolysis, and phosphofructokinase is also significantly influencing the glycolytic flux. Pyruvate kinase and glyceraldehyde phosphate dehydrogenase, on the other hand, do not significantly affect the rate of the overall glycolytic flux in ascites.  相似文献   

15.
In renal tubules isolated from fed rabbits glycerol is not utilized as a glucose precursor, probably due to the rate-limiting transfer of reducing equivalents from cytosol to mitochondria. Pyruvate and glutamate stimulated an incorporation of [14C]glycerol to glucose by 50- and 10-fold, respectively, indicating that glycerol is utilized as a gluconeogenic substrate under these conditions. Glycerol at concentration of 1.5 mM resulted in an acceleration of both glucose formation and incorporation of [14C]pyruvate and [14C]glutamate into glucose by 2- and 9-fold, respectively, while it decreased the rates of these processes from lactate as a substrate. In the presence of fructose, glycerol decreased the ATP level, limiting the rate of fructose phosphorylation and glucose synthesis. As concluded from the 'cross-over' plots, the ratios of both 3-hydroxybutyrate/acetoacetate and glycerol 3-phosphate/dihydroxyacetone phosphate, as well as from experiments performed with methylene blue and acetoacetate, the stimulatory effect of glycerol on glucose formation from pyruvate and glutamate may result from an acceleration of fluxes through the first steps of gluconeogenesis as well as glyceraldehyde-3-phosphate dehydrogenase. As inhibition by glycerol of gluconeogenesis from lactate is probably due to a marked elevation of the cytosolic NADH/NAD+ ratio resulting in a decline of flux through lactate dehydrogenase.  相似文献   

16.
1. To examine the role of the hepatic redox state on the rate of gluconeogenesis the effects of sodium crotonate injection (6mmol/kg body wt.) on rat liver metabolite concentrations and gluconeogenesis from lactate were studied in vivo. 2. Crotonate caused a marked oxidation of cytoplasmic and mitochondrial redox couples; decreases were observed in the ratios of [lactate]/[pyruvate], [glycerol 3-phosphate]/[dihydroxyacetone phosphate], [hydroxybutyrate]/[acetoacetate] and measured [NAD(+)]/[NADH]. 3. Increases occurred in the liver concentrations of all gluconeogenic intermediates from pyruvate through to glucose 6-phosphate, but there was no change in lactate concentration. 4. To determine whether gluconeogenesis from lactate was altered by the more-oxidized hepatic redox state l-[2-(14)C]lactic acid was infused into the inferior vena cava (50mumol/min per kg body wt.) and the incorporation of radioactivity into blood glucose was measured. 5. Administration of crotonate transiently decreased the rate of lactate incorporation into glucose but within a few minutes the rate of incorporation returned to that of the controls. 6. The results indicate that in these experiments alteration of the NAD(+)-NADH systems of cytoplasm and mitochondria to a more-oxidized state did not change the rate of gluconeogenesis.  相似文献   

17.
Phosphocreatine production catalyzed by a cytosolic fraction from cardiac muscle containing all glycolytic enzymes and creatine kinase in a soluble form has been studied in the presence of creatine, adenine nucleotides and different glycolytic intermediates as substrates. Glycolytic depletion of glucose, fructose 1,6-bis(phosphate) and phosphoenolpyruvate to lactate was coupled to efficient phosphocreatine production. The molar ratio of phosphocreatine to lactate produced was close to 2.0 when fructose 1,6-bis(phosphate) was used as substrate and 1.0 with phosphoenolpyruvate. In these processes the creatine kinase reaction was not the rate-limiting step: the mass action ratio of the creatine kinase reaction was very close to its equilibrium value and the maximal rate of the forward creatine kinase reaction exceeded that of glycolytic flux by about 6-fold when fructose 1,6-bis(phosphate) was used as a substrate. Therefore, the creatine kinase raction was continuously in the state of quasiequilibrium and the efficient synthesis of phosphocreatine observed is a result of constant removal of ADP by the glycolytic system at an almost unchanged level of ATP ([ATP] ? [ADP]), this leading to a continuous shift of the creatine kinase equilibrium position.When phosphocreatine was added initially at concentrations of 5–15 mM the rate of the coupled creatine kinase and glycolytic reactions was very significantly inhibited due to a sharp decrease in the steady-state concentration of ADP. Therefore, under conditions of effective phosphocreatine production in heart mitochondria, which maintain a high phosphocreatine: creatine ratio in the myoplasm in vivo, the glycolytic flux may be suppressed due to limited availability of ADP restricted by the creatine kinase system. The possible physiological role of the control of the glycolytic flux by the creatine kinase system is discussed.  相似文献   

18.
Experiments performed at micromolar concentrations of inorganic phosphate support the conclusion that liver phosphofructokinase 2 would be completely inactive in the absence of inorganic phosphate or arsenate. The concentration of inorganic phosphate that allowed half-maximal activity decreased with increasing pH, being approximately 0.11 mM at pH 6.5 and 0.05 mM at pH 8. The effect of phosphate was to increase V and to decrease Km for fructose 6-phosphate, without affecting Km for ATP. Citrate and P-enolpyruvate inhibited the enzyme non-competitively with fructose 6-phosphate and independently of the concentration of inorganic phosphate. Phosphorylation of the enzyme by the catalytic subunit of cyclic-AMP-dependent protein kinase did not markedly modify the phosphate requirement and its effect of inactivating phosphofructokinase 2 could not be counteracted by excess phosphate. A nearly complete phosphate dependency was also observed with phosphofructokinase 2 purified from Saccharomyces cerevisiae or from spinach leaves. By contrast, the fructose 2,6-bisphosphatase activity of the liver bifunctional enzyme was not dependent on the presence of inorganic phosphate. Phosphate increased this activity about threefold when measured in the absence of added fructose 6-phosphate and a half-maximal effect was reached at approximately 0.5 mM phosphate. Like glycerol phosphate, phosphate counteracted the inhibition of fructose 2,6-bisphosphatase by fructose 6-phosphate, but a much higher concentration of phosphate than of glycerol phosphate was required to reach this effect.  相似文献   

19.
The effects of D-glyceraldehyde on the hepatocyte contents of various metabolites were examined and compared with the effects of fructose, glycerol and dihydroxyacetone, which all enter the glycolytic/gluconeogenic pathways at the triose phosphate level. D-Glyceraldehyde (10 MM) caused a substantial depletion of hepatocyte ATP, as did equimolar concentrations of fructose and glycerol. D-Glyceraldehyde and fructose each caused a 2-fold increase in fructose 1,6-bisphosphate and the accumulation of millimolar quantities of fructose 1-phosphate in the cells. D-Glyceraldehyde caused an increase in the glycerol 3-phosphate content and a decrease in the dihydroxyacetone phosphate content, whereas dihydroxyacetone increased the content of both metabolites. The increase in the [glycerol 3-phosphate]/[dihydroxyacetone phosphate] ratio caused by D-glyceraldehyde was not accompanied by a change in the cytoplasmic [NAD+]/[NADH] ratio, as indicated by the unchanged [lactate]/[pyruvate] ratio. The accumulation of fructose 1-phosphate from D-glyceraldehyde and dihydroxyacetone phosphate in the hepatocyte can account for the depletion of the intracellular content of the latter. Presumably ATP is depleted as the result of the accumulation of millimolar amounts of a phosphorylated intermediate, as is the case with fructose and glycerol. It is suggested that the accumulation of fructose 1-phosphate during hepatic fructose metabolism is the result of a temporary increase in the D-glyceraldehyde concentration because of the high rate of fructose phosphorylation compared with triokinase activity. The equilibrium constant of aldolase favours the formation and thus the accumulation of fructose 1-phosphate.  相似文献   

20.
Changes were measured in the rates of respiration and in the levels of glycolytic intermediates during the first 5 min after addition of 1.6 mM glucose to a suspension (5%, v/v) of respiring Ehrlich ascites carcinoma cells incubated in an isotonic 50 mM tris(hydroxymethyl)methylglycine buffer (pH 7.4) at 38 °C. The rates of accumulation of lactate and glycolytic intermediates were used to calculate the in vitro velocities of glycolytic enzymes.The initial velocities of hexokinase (EC 2.7.1.1), fructose-6-phosphate kinase (EC 2.7.1.11) and lactate dehydrogenase (EC 1.1.1.27) in μmoles glucose equivalents/ ml cells per min were 14, 11 and 4, respectively. The velocities of the two kinases fell sharply to less than 5 between 5 and 10 s, while the velocity of the dehydrogenase declined gradually over the first minute. The initial burst of activity in the kinases, which lasted for about 8 s, was associated with a rapid accumulation of phosphate ester and a negative net ATP generation by glycolysis. The accumulation of phosphate ester is almost exactly matched by the generation of ATP by the “tail end” of glycolysis (triose-P to lactate) in this period. After this time (10–25 s) the rate of oxidative phosphorylation calculated as six times the rate of O2 consumption, is nearly identical to the combined rate of ATP utilization by hexokinase and fructose-6-phosphate kinase. As observed previously, oxamate (42 mM) blocked lactate dehydrogenase but did not depress the rate of phosphate ester accumulation.These various observations and correlations can be interpreted in terms of a dual glycolytic system. The accumulation of phosphate ester during the first 8 s is attributed to the operation of a partial glycolytic system, System B, which includes only the first three or four enzymes of glycolysis, and which draws upon an ATP pool (Pool I) previously employed in assorted cytoplasmic phosphorylations. The ADP generated by System B is rephosphorylated by and regulates the rate of a complete glycolytic system A, which converts glucose to lactate with little intermediate accumulation. The tail end of System A generates a new pool of ATP (Pool II) and controls the rate of glucose input through its head end, which is supplied by ATP being produced by oxidative phosphorylation. This scheme of interlocking controls is transient and alters after 8 s, when System B slows to a stop.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号