首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The primary goal of this study was to gain a better understanding of the effect of environment and ionic strength on the pK values of histidine residues in proteins. The salt-dependence of pK values for two histidine residues in ribonuclease Sa (RNase Sa) (pI=3.5) and a variant in which five acidic amino acids have been changed to lysine (5K) (pI=10.2) was measured and compared to pK values of model histidine-containing peptides. The pK of His53 is elevated by two pH units (pK=8.61) in RNase Sa and by nearly one pH unit (pK=7.39) in 5K at low salt relative to the pK of histidine in the model peptides (pK=6.6). The pK for His53 remains elevated in 1.5M NaCl (pK=7.89). The elevated pK for His53 is a result of screenable electrostatic interactions, particularly with Glu74, and a non-screenable hydrogen bond interaction with water. The pK of His85 in RNase Sa and 5K is slightly below the model pK at low salt and merges with this value at 1.5M NaCl. The pK of His85 reflects mainly effects of long-range Coulombic interactions that are screenable by salt. The tautomeric states of the neutral histidine residues are changed by charge reversal. The histidine pK values in RNase Sa are always higher than the pK values in the 5K variant. These results emphasize that the net charge of the protein influences the pK values of the histidine residues. Structure-based pK calculations capture the salt-dependence relatively well but are unable to predict absolute histidine pK values.  相似文献   

2.
The pH dependence of the proton NMR chemical shifts of met-cyano and deoxy forms of native and reconstituted myoglobins reflects a structural transition in the heme pocket modulated by a single proton with pK 5.1-5.6. Comparison of this pH dependence of sperm whale and elephant myoglobin and that of the former protein reconstituted with esterified hemin eliminates both the distal histidine as well as the heme propionates as the titrating residue. Reconstitution of sperm whale met-cyano myoglobin with hemin modified at the 2,4-positions leads to a systematic variation in the pK for the structural transition, thus indicating the presence of a coupling between the titrating group and the heme pi system. The results are consistent with histidine FG3 (His-FG3) being the titrating group, and a donor-acceptor pi-pi interaction between its imidazole and the heme is proposed.  相似文献   

3.
Quaternary amine of diethylaminoethyl rosin ester (QRMAE), chemically synthesized biocompatible rosin based cationic surfactant, has various biological applications including its use as a food product additive. In this study, we examined the amorphous aggregation behavior of mammalian serum albumins at pH 7.5, i.e., two units above their isoelectric points (pI ~5.5), and the roles played by positive charge and hydrophobicity of exogenously added rosin surfactant QRMAE. The study was carried out on five mammalian serum albumins, using various spectroscopic methods, dye binding assay, circular dichroism and electron microscopy. The thermodynamics of the binding of mammalian serum albumins to cationic rosin modified surfactant were established using isothermal titration calorimetry (ITC). It was observed that a suitable molar ratio of protein to QRMAE surfactant enthusiastically induces amorphous aggregate formation at a pH above two units of pI. Rosin surfactant QRMAE-albumins interactions revealed a unique interplay between the initial electrostatic and the subsequent hydrophobic interactions that play an important role towards the formation of hydrophobic interactions-driven amorphous aggregate. Amorphous aggregation of proteins is associated with varying diseases, from the formation of protein wine haze to the expansion of the eye lenses in cataract, during the expression and purification of recombinant proteins. This study can be used for the design of novel biomolecules or drugs with the ability to neutralize factor(s) responsible for the aggregate formation, in addition to various other industrial applications.  相似文献   

4.
Isoelectric spectra of serum albumins isolated from blood of patients with heart ischemia were studied using isoelectric focusing in borate-polyolic systems in a polyacrylamide gel. In patients with heart ischemia the amount of fractions with pI 4.3-4.9 and 5.2-7.4 is found to increase with a simultaneous decrease in the fraction with pI 4.9-5.2 as compared with these indices in healthy people from the control group. Especially pronounced changes in isoelectrophoregrams were observed for blood albumins of patients with transmural myocardium infraction.  相似文献   

5.
E Stellwagen  J Babul 《Biochemistry》1975,14(23):5135-5140
Increasing concentrations of chloride were found to increase the resolution between two visible absorbance spectral transitions associated with acidification of ferricytochrome c. Analysis of a variety of spectral and viscosity measurements indicates that protonation of a single group having an apparent pK of 2.1 +/- 0.2 and an intrinsic pK of about 5.3 displaces the methionine ligand without significantly perturbing the native globular conformation. Analysis of methylated ferricytochrome c suggests that protonation of a carboxylate ion, most likely a heme propionate residue, is responsible for displacement of the methionine ligand. Addition of a proton to a second group having an apparent pK of 1.2 +/- 0.1 displaces the histidine ligand and unfolds the protein from a globular conformation into a random coil. It is most likely that the second protonation occurs on the imidazole ring of the histidine ligand itself. Chloride is proposed to perturb these transitions by ligation in the fifth coordination position of the heme ion. Such ligation stabilizes a globular conformation of ferricytochrome c at pH 0.0 and 25 degrees.  相似文献   

6.
The titration curves of the histidine residues of porcine lutropin and its isolated alpha and beta subunits have been determined by following the pH-dependence of the imidazole C-2 proton resonances. The isolated alpha subunit contains a buried histidine, whose C-2 proton does not exchange with solvent, and which has the unusually low pK of 3.3. In the native hormone all the histidine residues have relatively normal pK values (between 5.7 and 6.2). The four histidine C-2 proton resonances have been assigned to specific residues in the amino-acid sequence, by means of deuterium and tritium exchange experiments on the alpha subunit and its des(92-96) derivative. The histidine with a pK of 3.3 is identified as His-alpha87. The effects of pH on tyrosine and methyl proton resonances show that the titration of His-87 in the isolated alpha subunit is accompanied by a significant conformational change which involves loosening of the protein structure but which is not a normal unfolding transition. The role of conformational changes in the generation of biological activity by subunit association in the glycoprotein hormones is discussed.  相似文献   

7.
The method of proton magnetic resonance was used to obtain information on the active site of the guanyl-specific ribonuclease from Penicillium chrysogenum, strain 152A. Four pH-dependent signals in the aromatic region of the proton NMR spectrum of the enzyme were assigned to the C-2 and C-4 protons of the two histidine residues. To determine the pK values and the environment of the histidine residues the pH dependence of their chemical shifts was studied and experimental curves thus obtained were analyzed taking into account the effect of other dissociating groups of the enzyme. The pK values of the histidine residues were found to be equal to 7.92 +/- 0.04 and 7.86 +/- 0.09. The results of the calculations indicate that each histidine residue should interact with an acidic group (carboxylic) of the protein (pK 4.33 and 3.48) and the distance between two histidine residues does not exceed 0.85 nm. The rate constants for the quasi-first order reaction of deuterium exchange of the histidine residues (11.2 s-1 and 3.7 x-1) suggest that both residues are accessible, though to a different degree to solvent. Formation of a complex between the enzyme and guanosine 3'-phosphate (Guo3'P) is accompanied by the shift of the histidine pK toward the alkaline region by 0.5. The existence of the complex is controlled by dissociation of a histidine residue with pK 8.7 in alkaline medium and by protonation of the N-7 of Guo3'P (pK 2.4) in acid medium. Nuclear Overhauser effect measurements were used to determine the glycosidic torsion angle for the Guo3'P in the complex and to estimate the distances between the histidine residues of the enzyme and ribose ring of Guo-3'P. The results obtained suggest that the nucleotide in the complex has an anti conformation and the least exposed histidine is spaced not more than 0.5 nm from the C-1' proton of the nucleotide ribose ring. A model for the enzyme-nucleotide complex is presented.  相似文献   

8.
The folding kinetics and thermodynamics of the isolated C-terminal domain of the ribosomal protein L9 (CTL9) have been studied as a function of pH. CTL9 is an alpha-beta protein that contains a single beta-sheet with an unusual mixed parallel, anti-parallel topology. The folding is fully reversible and two-state over the entire pH range. Stopped-flow fluorescence and CD experiments yield the same folding rate, and the chevron plots have the characteristic V-shape expected for two-state folding. The values of DeltaG*(H2O) and the m value calculated from the kinetic experiments are in excellent agreement with the equilibrium measurements. The extrapolated initial amplitudes of both the stopped-flow fluorescence and CD measurements show that there is no detectable burst phase intermediate. The domain contains three histidine residues, two of which are largely buried in the native state. They do not participate in salt-bridges or take part in a hydrogen bonded network. NMR measurements reveal that the buried histidine residues have significantly perturbed pK(a) values in the native state. The equilibrium stability and the folding rate are found to be strongly dependent upon their ionization state. There is a linear relationship between the log of the folding rate and DeltaG* (H2O) . The protein is much more stable and folds noticeably faster at pH values above the native state pK(a) values. DeltaG*(H2O) of unfolding increases from 2.90 kcal mol(-1) at pH 5.0 to 6.40 kcal mol(-1) at pH 8.0 while the folding rate increases from 0.60 to 18.7 s(-1). Tanford linkage analysis revealed that the interactions involving the two histidine residues are largely developed in the transition state. The results are compared to other studies of the pH-dependence of folding.  相似文献   

9.
The salt dependence of histidine pK(a) values in sperm whale and horse myoglobin and in histidine-containing peptides was measured by (1)H-NMR spectroscopy. Structure-based pK(a) calculations were performed with continuum methods to test their ability to capture the effects of solution conditions on pK(a) values. The measured pK(a) of most histidines, whether in the protein or in model compounds, increased by 0.3 pH units or more between 0.02 M and 1.5 M NaCl. In myoglobin two histidines (His(48) and His(36)) exhibited a shallower dependence than the average, and one (His(113)) showed a steeper dependence. The (1)H-NMR data suggested that the salt dependence of histidine pK(a) values in the protein was determined primarily by the preferential stabilization of the charged form of histidine with increasing salt concentrations rather than by screening of electrostatic interactions. The magnitude and salt dependence of interactions between ionizable groups were exaggerated in pK(a) calculations with the finite-difference Poisson-Boltzmann method applied to a static structure, even when the protein interior was treated with arbitrarily high dielectric constants. Improvements in continuum methods for calculating salt effects on pK(a) values will require explicit consideration of the salt dependence of model compound pK(a) values used for reference in the calculations.  相似文献   

10.
The blue copper protein rusticyanin isolated from the acidophilic proteobacterium Thiobacillus ferrooxidans displays a pH-dependent redox midpoint potential with a pK value of 7 on the oxidized form of the protein. The nature of the alterations of optical and EPR spectra observed above the pK value indicated that the redox-linked deprotonation occurs on the epsilon-nitrogen of the histidine ligands to the copper ion. Complex formation between rusticyanin and its probable electron transfer partner, cytochrome c(4), induced a decrease of rusticyanin's redox midpoint potential by more than 100 mV together with spectral changes similar to those observed above the pK value of the free form. Complex formation thus substantially modifies the pK value of the surface-exposed histidine ligand to the copper ion and thereby tunes the redox midpoint potential of the copper site. Comparisons with reports on other blue copper proteins suggest that the surface-exposed histidine ligand is employed as a redox tuning device by many members of this group of soluble electron carriers.  相似文献   

11.
Summary Bovine serum albumin (BSA) is one of the most widely studied proteins; its structure is well known and its antigenic properties have been described in animal models. The aim of our work was to evaluate the role of conformation on antigenicity of serum albumins. This study was performed using electrophoresis associated with the immunoblotting technique, where sera from children allergic to BSA were used. Data obtained in this research indicate that serum albumin antigenicity is only partially correlated to its native three-dimensional structure. Heat treatment and chemical denaturation (SDS treatment) are not able to significantly decrease its capability to bind circulating IgEs. Only the reducing treatment is able to modify the antigenicity of this protein. Moreover, a direct correlation between the cross-reactivity observed in immunoblotting between different serum albumins and the percentage of their sequence identity (phylogenetic similarity of the species) was shown.  相似文献   

12.
The amino groups of ribonuclease A (RNase-A) have been methylated with formaldehyde and borohydride to provide observable resonances for proton magnetic resonance (PMR) studies. Although enzymatic activity is lost, PMR difference spectroscopy and PMR studies of thermal denaturation show native conformation is largely preserved in methylated RNase-A. Resonances corresponding to the NH2-terminal alpha-amino and 10 xi-amino N-methyl groups are titrated at 220 MHz to obtain pK values. After correction for the effects of methylation, using values previously derived from model compound studies, a pK of 6.6 is found for the alpha-amino group, a pK of 8.6 for the xi-amino group of lysine-41 and pK values ranging from 10.6 to 11.2 for the other lysine xi-amino groups. Interactions between lysine-7 and lysine-41 or between the alpha-amino and xi-amino groups of lysine-1 have been proposed to account for deviations from simple titration behaviour. The correct continuities for the titration curves of the histidine H-2 proton resonances have been confirmed by selective deuteration of the H-2 protons. Titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A show deviations from the titration curves for the native enzyme, indicating some alteration of the active-site conformation. In the presence of phosphate, titration curves for the H-2 proton resonances of histidine-12 and histidine-119 of methylated RNase-A indicate binding of phosphate at the active site, but these curves continue to show deviations from the titration behaviour of native RNase-A. The titration curve for the N-methyl resonance of lysine-41 is perturbed considerably by the presence of phosphate, which indicates a possible catalytic role for lysine-41.  相似文献   

13.
Virtually all of the eukaryotic low-molecular weight protein tyrosine phosphatases (LMW PTPases) studied to date contain a conserved, high-pK(a) histidine residue that is hydrogen bonded to a conserved active site asparagine residue of the phosphate binding loop. However, in the putative enzyme encoded by the genome of the trichomonad parasite Tritrichomonas foetus, this otherwise highly conserved histidine is replaced with a glutamine residue. We have cloned the gene, expressed the enzyme, demonstrated its catalytic activity, and examined the structural and functional roles of the glutamine residue using site-directed mutagenesis, kinetic measurements, and NMR spectroscopy. Titration studies of the two native histidine residues in the T. foetus enzyme as monitored by (1)H NMR revealed that H44 has a pK(a) of 6.4 and H143 has a pK(a) of 5.3. When a histidine residue was introduced in place of the native glutamine at position 67, a pK(a) of 8.2 was measured for this residue. Steady state kinetic methods were employed to study how mutation of the native glutamine to alanine, asparagine, and histidine affected the catalytic activity of the enzyme. Examination of k(cat)/K(m) showed that Q67H exhibits a substrate selectivity comparable to that of the wild-type (WT) enzyme, while Q67N and Q67A show reduced activity. The effect of pH on the reaction rate was examined. Importantly, the pH-rate profile of the WT TPTP enzyme revealed a much more clearly defined acidic limb than that which can be observed for other wild-type LMW PTPases. The pH-rate curve of the Q67H mutant shows a shift to a lower pH optimum relative to that seen for the wild-type enzyme. The Q67N and Q67A mutants showed curves that were shifted to higher pH optima. Although the active site of this enzyme is likely to be similar to that of other LMW PTPases, the hydrogen bonding and electrostatic changes afford new insight into factors affecting the pH dependence and catalysis by this family of enzymes.  相似文献   

14.
Bovine serum albumin (BSA) is one ofthe most widely studied proteins; its structure iswell known and its antigenic properties have beendescribed in animal models. The aimof our work was to evaluate the role of conformationon antigenicity of serum albumins. This study was performed using electrophoresisassociated with the immunoblotting technique, wheresera from children allergic to BSA were used.Data obtained in this research indicatethat serum albumin antigenicity is only partiallycorrelated to its native three-dimensional structure.Heat treatment and chemical denaturation(SDS treatment) are not able to significantly decrease its capability to bind circulating IgEs. Only thereducing treatment is able to modify the antigenicityof this protein. Moreover, a direct correlationbetween the cross-reactivity observed inimmunoblotting between different serum albumins andthe percentage of their sequence identity(phylogenetic similarity of the species) was shown.  相似文献   

15.
1. Channel catfish (Ictalurus punctatus) have a remarkably high concentration of zinc (Zn) in their blood serum, about 20 micrograms/ml. However, compared to mammals, the concentrations of Zn in their tissues are not remarkable. The serum Zn is dialyzable against a solution containing 1 mM EDTA. 2. Following separation of serum proteins by gel-filtration most of the Zn was recovered in a fraction with the same peak volume of elution for the Zn and protein concentrations and having a molecular weight similar to bovine serum albumin. 3. Binding of Zn to such sites was not changed by Cu2+, Cd2+, Ca2+, or La3+. N-ethylemaleimide (NEM) appeared to decrease binding slightly. 4. Equilibrium dialysis with a Scatchard plot analysis of these data suggested that a single set of binding sites was present on the protein(s) with KD of 2 x 10(-5) M. There were binding sites for 35 x 10(-8) M Zn/mg protein. 5. Parallel equilibrium dialysis measurements using human, rabbit and chicken albumins indicated that the catfish serum protein(s) had a much higher affinity and binding capacity for Zn than the albumins in these species. 6. The catfish Zn serum-binding protein may be an albumin. The possible physiological significance of such a serum protein in freshwater fish is discussed.  相似文献   

16.
1. Kinetic studies of lipoamide dehydrogenase and its modified enzymes catalyzing lipoamide oxidoreduction and ancillary reactions at various pH are compared. 2. The asymptotic kinetics of lipoamide oxidoreductions switch between the ping pong and ordered mechanisms by varying pH of the reactions. 3. pH-rate profiles of these reactions are bell-shaped suggesting the participation of 2 ionizable residues with pK values of 6.6 +/- 0.5 and above 8 respectively. 4. The unusually high pK value for the catalytic site histidine is attributed to its involvement in an ion-pair formation. 5. In the absence of the catalytic site histidine, the pH-rate profile for the lipoamide reduction of the photooxidized enzyme is no longer bell-shaped but it is similar to those of the transhydrogenation and NADH-oxidation of the native enzyme. 6. This implies the participation of a low-pK protonated group in these reactions.  相似文献   

17.
The role of internal lysine residues of different serum albumins, viz. from human, rabbit, goat, sheep and buffalo (HSA, RbSA, GSA, SSA and BuSA), in conformational stability and bilirubin binding was investigated after blocking them using acetylation, succinylation and guanidination reactions. No significant change in the secondary structure was noticed whereas the tertiary structure of these proteins was slightly altered upon acetylation or succinylation as revealed by circular dichroism (CD), fluorescence and gel filtration results. Guanidination did not affect the native protein conformation to a measurable extent. Scatchard analysis, CD and absorption spectroscopic results showed marked reductions (5-21-fold decrease in K(a) and approximately 50% decrease in the CD Cotton effect intensity) in the affinity of albumins for bilirubin upon acetylation or succinylation whereas guanidination produced a small change. Interestingly, monosignate CD spectra of bilirubin complexed with GSA, SSA and BuSA were transformed to bisignate CD spectra upon acetylation or succinylation of internal lysine residues whereas spectra remained bisignate in the case of bilirubin bound to acetylated or succinylated derivatives of HSA and RbSA. When probed by CD spectroscopy, bilirubin bound to acetylated or succinylated derivatives of GSA and SSA rapidly switched over to native albumins and not vice versa. These results suggested that salt linkage(s) contributed by internal lysine residue(s) play an important role in the high-affinity binding of bilirubin to albumin and provide stability to the native three-dimensional conformation of the bound pigment. Chloroform severely decreased the intensity of both positive and negative CD Cotton effects of bilirubin complexed with acetylated or succinylated derivatives of all albumins which otherwise increased significantly in the case of bilirubin complexed with native and guanidinated albumin derivatives, except the bilirubin-RbSA complex which showed a small decrease in intensity. These results suggest that the presence of salt linkage(s) in bilirubin-albumin complexation is(are) crucial to bring about effective and efficient stereochemical changes in the bound pigment by co-binding of chloroform which seems to have at least one conserved binding site on these albumins that is shared with bilirubin.  相似文献   

18.
Secretin has a single histidine residue located at the amino terminus which plays a crucial role in its biological activity. The chemical properties, viz. pK and reactivity, of the alpha-amino and imidazole groups of this residue were determined at a secretin concentration of 10(-6) M in 0.1 M KCl at 37 degrees C. Competitive labelling using tritiated 1-fluoro-2,4-dinitrobenzene (DNP-F) as the labelling reagent was the experimental approach employed. The alpha-amino group was found to have a pK value of 8.83 and a reactivity 5-times that of the alpha-amino group in the model compound, histidylglycine. For the imidazole function a pK value of 8.24 and a reactivity 26-times that of the imidazole function in histidylglycine was found. Both these groups in secretin had pK values which were shifted one pK unit higher than in histidylglycine, but like the model compound the reactivity of the imidazole function was still linked to the state of ionization of the alpha-amino group. These observations are interpreted as evidence for the existence of a major conformational state in dilute aqueous solution in which the amino-terminal histidine of secretion is interacting with a negatively charged carboxyl group.  相似文献   

19.
Bandi S  Bowler BE 《Biochemistry》2011,50(46):10027-10040
The alkaline transition of cytochrome c involves substitution of the Met80 heme ligand of the native state with a lysine ligand from a surface Ω-loop (residues 70 to 85). The standard mechanism for the alkaline transition involves a rapid deprotonation equilibrium followed by the conformational change. However, recent work implicates multiple ionization equilibria and stable intermediates. In previous work, we showed that the kinetics of formation of a His73-heme alkaline conformer of yeast iso-1-cytochrome c requires ionization of the histidine ligand (pK(HL) ~ 6.5). Furthermore, the forward and backward rate constants, k(f) and k(b), respectively, for the conformational change are modulated by two auxiliary ionizations (pK(H1) ~ 5.5, and pK(H2) ~ 9). A possible candidate for pK(H1) is His26, which has a strongly shifted pK(a) in native cytochrome c. Here, we use the AcH73 iso-1-cytochrome c variant, which contains an H26N mutation, to test this hypothesis. pH jump experiments on the AcH73 variant show no change in k(obs) for the His73-heme alkaline transition from pH 5 to 8, suggesting that pK(H1) has disappeared. However, direct measurement of k(f) and k(b) using conformationally gated electron transfer methods shows that the pH independence of k(obs) results from coincidental compensation between the decrease in k(b) due to pK(H1) and the increase in k(f) due to pK(HL). Thus, His26 is not the source of pK(H1). The data also show that the H26N mutation enhances the dynamics of this conformational transition from pH 5 to 10, likely as a result of destabilization of the protein.  相似文献   

20.
The enzyme glycinamide ribonucleotide transformylase (GART) catalyzes the transfer of a formyl group from formyl tetrahydrofolate (fTHF) to glycinamide ribonucleotide (GAR), a process that is pH-dependent with pK(a) of approximately 8. Experimental studies of pH-rate profiles of wild-type and site-directed mutants of GART have led to the proposal that His108, Asp144, and GAR are involved in catalysis, with His108 being an acid catalyst, while forming a salt bridge with Asp144, and GAR being a nucleophile to attack the formyl group of fTHF. This model implied a protonated histidine with pK(a) of 9.7 and a neutral GAR with pK(a) of 6.8. These proposed unusual pK(a)s have led us to investigate the electrostatic environment of the active site of GART. We have used Poisson-Boltzmann-based electrostatic methods to calculate the pK(a)s of all ionizable groups, using the crystallographic structure of a ternary complex of GART involving the pseudosubstrate 5-deaza-5,6,7,8-THF (5dTHF) and substrate GAR. Theoretical mutation and deletion analogs have been constructed to elucidate pairwise electrostatic interactions between key ionizable sites within the catalytic site. Also, a construct of a more realistic catalytic site including a reconstructed pseudocofactor with an attached formyl group, in an environment with optimal local van der Waals interactions (locally minimized) that imitates closely the catalytic reactants, has been used for pK(a) calculations. Strong electrostatic coupling among catalytic residues His108, Asp144, and substrate GAR was observed, which is extremely sensitive to the initial protonation and imidazole ring flip state of His108 and small structural changes. We show that a proton can be exchanged between GAR and His108, depending on their relative geometry and their distance to Asp144, and when the proton is attached on His108, catalysis could be possible. Using the formylated locally minimized construct of GART, a high pK(a) for His108 was calculated, indicating a protonated histidine, and a low pK(a) for GAR(NH(2)) was calculated, indicating that GAR is in neutral form. Our results are in qualitative agreement with the current mechanistic picture of the catalytic process of GART deduced from the experimental data, but they do not reproduce the absolute magnitude of the pK(a)s extracted from fits of k(cat)-pH profiles, possibly because the static time-averaged crystallographic structure does not describe adequately the dynamic nature of the catalytic site during binding and catalysis. In addition, a strong effect on the pK(a) of GAR(NH(2)) is produced by the theoretical mutations of His108Ala and Asp144Ala, which is not in agreement with the observed insensitivity of the pK(a) of GAR(NH(2)) modeled from the experimental data using similar mutations. Finally, we show that important three-way electrostatic interactions between highly conserved His137, with His108 and Asp144, are responsible for stabilizing the electrostatic microenvironment of the catalytic site. In conclusion, our data suggest that further detailed computational and experimental work is necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号