首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
吕同汝  蒋勇军  吴泽  茆杨  邱菊  吴超 《生态学报》2022,42(3):1047-1058
植物蒸腾是水循环的重要组成部分,为了解亚热带岩溶区树木的蒸腾耗水情况,探究气候和水文地质条件对植物蒸腾的影响,运用Granier热耗散探针技术,对亚热带岩溶区次生林内的常绿树种女贞(L.lucidum)和落叶树种刺槐(R.pseudoacacia)的树干液流进行了连续监测,并同步监测了气象因子及土壤含水率(SMC),探讨在不同时间尺度下两种生活型树种的蒸腾特征及其对环境因子的响应。结果表明:(1)在季节尺度下,影响两树种整树蒸腾量(ET)的主要因子为太阳辐射强度(Rs)、气温(T)和水汽压亏缺(VPD);女贞蒸腾量(ETL)表现为夏季(1.29 kg/h)>春季(0.57 kg/h)>冬季(0.15 kg/h)>秋季(0.13 kg/h),刺槐蒸腾量(ETR)表现为夏季(0.90 kg/h)>春季(0.31 kg/h)>秋季(0.16 kg/h)>冬季(0.04 kg/h)。(2)在日尺度下,晴天两树种ET呈现出明显的单峰日变化,且主要影响因子均为T、VPD和Rs;但由于常绿和落叶树种的生理特征差异,降雨时...  相似文献   

2.
The objective of the study was to compare the water relations of two indigenous [Podocarpus falcatus (Thunb.) Endl., Croton macrostachys Hochst. ex. Del.] and two exotic tree species (Eucalyptus globulus Labille., Cupressus lusitanica Miller) growing in the same location in the montane Munessa State Forest, southern Ethiopia. Stem flow was measured with Granier type thermal dissipation probes. Sap flux, normalized per unit sapwood area, and the total sapwood areas of the particular trees were used to estimate daily transpiration. Maximum daily transpiration values (60 kg water) were recorded for Croton when at full foliage. After shedding most of its leaves in the dry season transpiration was reduced to 8 kg per day. Eucalyptus had the next highest transpiration (55 kg), in this case at the peak of the dry season. It transpired 4–5 times more than Podocarpus and Cupressus trees of similar size. Maximum stem flux density was tree-size dependent only in Croton. Diurnal patterns of stem flux indicated that Croton, Eucalyptus and Podocarpus, in contrast to Cupressus, responded more directly to light than to atmospheric water pressure deficit. At high VPD (>1.0 kPa) stem flux reached a plateau in Croton and Podocarpus indicating stomatal limitation. Per unit leaf area Croton had the highest and Podocarpus and Cupressus the lowest daily transpiration rates. In summary, the pioneer tree Croton had the lowest and Podocarpus the highest water use efficiency. The contribution of the study to the understanding of the role of each tree species in the hydrology of the natural forest and the plantations is discussed.  相似文献   

3.
Stem water storage capacity and diurnal patterns of water use were studied in five canopy trees of a seasonal tropical forest in Panama. Sap flow was measured simultaneously at the top and at the base of each tree using constant energy input thermal probes inserted in the sapwood. The daily stem storage capacity was calculated by comparing the diurnal patterns of basal and crown sap flow. The amount of water withdrawn from storage and subsequently replaced daily ranged from 4 kg d–1 in a 0·20-m-diameter individual of Cecropia longipes to 54 kg d–1 in a 1·02-m-diameter individual of Anacardium excelsum, representing 9–15% of the total daily water loss, respectively. Ficus insipida, Luehea seemannii and Spondias mombin had intermediate diurnal water storage capacities. Trees with greater storage capacity maintained maximum rates of transpiration for a substantially longer fraction of the day than trees with smaller water storage capacity. All five trees conformed to a common linear relationship between diurnal storage capacity and basal sapwood area, suggesting that this relationship was species-independent and size-specific for trees at the study site. According to this relationship there was an increment of 10 kg of diurnal water storage capacity for every 0·1 m2 increase in basal sapwood area. The diurnal withdrawal of water from, and refill of, internal stores was a dynamic process, tightly coupled to fluctuations in environmental conditions. The variations in basal and crown sap flow were more synchronized after 1100 h when internal reserves were mostly depleted. Stem water storage may partially compensate for increases in axial hydraulic resistance with tree size and thus play an important role in regulating the water status of leaves exposed to the large diurnal variations in evaporative demand that occur in the upper canopy of seasonal lowland tropical forests.  相似文献   

4.
白岩  朱高峰  张琨  马婷 《生态学报》2015,35(23):7821-7831
针对西北干旱区绿洲经济作物葡萄树冠层蒸腾及蒸散发特征的相关问题,在甘肃省敦煌市南湖绿洲开展无核白葡萄树液流速率及蒸散发观测试验,采用基于热平衡原理的包裹式茎流计,详细分析了典型生长季7—9月份葡萄树蒸腾耗水规律,使用"单位叶面积上的平均液流速率SF×叶面积指数LAI"的方法,实现了从单株到林分冠层蒸腾的尺度扩展,并通过与涡动相关技术所测蒸散发数据对比,详细研究了葡萄地冠层蒸腾及蒸散发规律。结果表明:典型生长季中葡萄树液流速率日变化为单峰型曲线,日均耗水量从2.76 kg到10 kg不等,胸径越大的葡萄树日均耗水量越大;冠层蒸腾及蒸散发日变化曲线亦为单峰型,白天8:00—12:00与17:00—20:00期间,葡萄冠层蒸腾与蒸散发曲线均比较吻合,该时间段葡萄地蒸散发绝大部分来源于葡萄冠层蒸腾,而12:00—17:00之间由于午后太阳辐射强烈土壤蒸发量增加,葡萄蒸散发大于冠层蒸腾;典型生长季3个月中,葡萄冠层蒸腾量的变化范围在1.88—8.12 mm/d之间,日均冠层蒸腾量为6.12 mm/d,蒸散发在1.74 mm/d至10.78 mm/d之间,日均蒸散发量为7.13 mm/d;日均土壤蒸发量约为1.01 mm/d,只占总蒸散发量的14.2%,日均冠层蒸腾占日均蒸散发的比重达到85.8%,说明该生长阶段冠层蒸散发以作物蒸腾为主。  相似文献   

5.
Sap flow and potential evapotranspiration rates were analyzed for two coniferous tree species (Douglas-fir and Scots pine) and one broadleaf species (sessile oak) in a mixed Carpineto-Quercetum forest during the growing season 2005. The relationship between sap flow and potential evapotranspiration rates, effective crown area as a measure of the relative transpiration and daily relative proportion of the storage water used for transpiration were used as indicators of the tree water dynamics. These indicators were determined on four consecutive days and all three showed good reliability concerning tree water dynamics.  相似文献   

6.
We studied regulation of whole-tree water use in individuals of five diverse canopy tree species growing in a Panamanian seasonal forest. A construction crane equipped with a gondola was used to access the upper crowns and points along the branches and trunks of the study trees for making concurrent measurements of sap flow at the whole-tree and branch levels, and vapor phase conductances and water status at the leaf level. These measurements were integrated to assess physiological regulation of water use from the whole-tree to the single-leaf scale. Whole-tree water use ranged from 379 kg day−1 in a 35 m-tall Anacardium excelsum tree to 46 kg day−1 in an 18 m-tall Cecropia longipes tree. The dependence of whole-tree and branch sap velocity and sap flow on sapwood area was essentially identical in the five trees studied. However, large differences in transpiration per unit leaf area (E) among individuals and among branches on the same individual were observed. These differences were substantially reduced when E was normalized by the corresponding branch leaf area:sapwood area ratio (LA/SA). Variation in stomatal conductance (g s) and crown conductance (g c), a total vapor phase conductance that includes stomatal and boundary layer components, was closely associated with variation in the leaf area-specific total hydraulic conductance of the soil/leaf pathway (G t). Vapor phase conductance in all five trees responded similarly to variation in G t. Large diurnal variations in G t were associated with diurnal variation in exchange of water between the transpiration stream and internal stem storage compartments. Differences in stomatal regulation of transpiration on a leaf area basis appeared to be governed largely by tree size and hydraulic architectural features rather than physiological differences in the responsiveness of stomata. We suggest that reliance on measurements gathered at a single scale or inadequate range of scale may result in misleading conclusions concerning physiological differences in regulation of transpiration. Received: 1 October 1997 / Accepted: 6 March 1998  相似文献   

7.
Summary The diurnal course of the xylem water flow in a solitary Salix fragilis L. tree in a wet grassland was measured using the tissue heat-balance method. There was considerable variation due to meteorological factors. Maximum flow rate was 0.4 kg h-1 m-2 of crown projection area, or 5.9 kg h-1 kg-1 leaf dry weight. The daily total was 2.4 kg m-2 day-1 or 36 kg kg-1 day-1. Water flow decreased immediately at the tree base and at the branches after start of rain, and in a branch, after cutting it off: the time constant of the system was 600–700 s in both cases. The part of the crown oriented to the sun transpired up to ten times as much as the shaded part. Over 70% of the total cross-sectional area of the conductive xylem vessels of the trunk was used by the transpiration flow. The water content of the trunk tracked the diurnal changes of the xylem water flow rate with a short time-lag. During the day, 1% of the trunk volume was temporarily exploited as water reserve, an amount equalling 3% of daily water loss. The stereometric configuration of the crown significantly influenced its water loss. During the summer period, about 33 mature (polycormic) trees per ha may drain 100% of water consumed by the present-day sedge-grass marsh.  相似文献   

8.
Transpiration of a central European endemic tree species, Pinus rotundata Link, growing on a wooded peat bog in the Třeboň Basin, Czech Republic, was studied in 1999–2000. Transpiration was measured by sap flow techniques (heat field deformation method) on individual trees and scaled up to stand level. The radial patterns of sap flow density showed narrow peaks in the outer part of the xylem, sapwood accounted for 47–60% of the xylem radius and 72–84% of the xylem basal area. Adult trees tolerated well both short-term flooding during the growing season and drawdown of the water table to a depth of 60 cm below ground level. The maximum and mean daily transpiration rates were 3.0 and 1.8 mm per day, and were thus similar to published data for Scots pine. The seasonal total transpiration (25 April–20 October 2000, 180 days) amounted to 322 mm, or 62% of the potential evapotranspiration over this period. This canopy transpiration was compensated by 319 mm of precipitation. The difference between the accumulated precipitation and the accumulated transpiration (derived from seasonal sap flow measurements) closely mimicked the seasonal course of the water table.  相似文献   

9.
黄土高原地区植被建设已达到土壤水分承载力的阈值,需要对现有林分进行结构优化并提升其生态功能。不合理的林分密度是导致黄土丘陵区刺槐林土壤干化、生长衰退的主要原因之一。疏伐可以优化林分结构,并能够通过控制蒸腾耗水来调控土壤水分,是促进刺槐林可持续生长的有效手段。疏伐对黄土丘陵区刺槐林蒸腾有何影响,目前并不清楚。研究基于树干液流法估算了4个不同疏伐强度(样地1:52%、样地2:48%、样地3:35%、样地4:未疏伐)下刺槐单株尺度的液流速率与林分尺度的日平均蒸腾量,并分析了不同时间尺度下液流速率与环境因子的关系,以阐明疏伐对黄土丘陵区刺槐林蒸腾的影响。结果表明:(1) 单株尺度刺槐蒸腾速率(即液流速率)随疏伐强度减小(林分密度增大)呈现下降趋势(样地1:0.53 kg cm-2 d-1、样地2:0.41 kg cm-2 d-1、样地3:0.31 kg cm-2 d-1、样地4:0.33 kg cm-2 d-1);(2) 观测期林分尺度日平均蒸腾量随疏伐强度减小呈现上升趋势(样地1:0.90 mm/d、样地2:1.18 mm/d、样地3:1.04 mm/d、样地4:1.44 mm/d);(3) 在半小时尺度与日尺度上,各样地液流速率与环境因子的关系没有显著差异,半小时尺度单株液流速率均与太阳辐射相关性最高(相关系数0.883-0.908),液流速率日变化过程与环境因子日变化过程存在时滞现象;日尺度单株液流速率与饱和水汽压亏缺相关性最高(相关系数0.843-0.913),样地间日尺度单株液流速率的差异性随着饱和水汽压亏缺增大而增大。研究结果初步反映了疏伐导致的林分密度变化对刺槐蒸腾的影响,将为黄土丘陵区刺槐林的结构改造、功能提升和土壤水分调控提供理论支持。  相似文献   

10.
Summary Leaf gas exchange, transpiration, water potential and xylem water flow measurements were used in order to investigate the daily water balance of intact, naturally growing, adult Larix and Picea trees without major injury. The total daily water use of the tree was very similar when measured as xylem water flow at breast height or at the trunk top below the shade branches, or as canopy transpiration by a porometer or gas exchange chamber at different crown positions. The average canopy transpiration is about 12% lower than the transpiration of a single twig in the sun crown of Larix and Picea. Despite the similarity in daily total water flows there are larger differences in the actual daily course. Transpiration started 2 to 3 h earlier than the xylem water flow and decreased at noon before the maximum xylem water flow was reached, and stopped in the evening 2 to 3 h earlier than the water flow though the stem. The daily course of the xylem water flow was very similar at the trunk base and top below the lowest branches with shade needles. The difference in water efflux from the crown via transpiration and the water influx from the trunk is caused by the use of stored water. The specific capacitance of the crown wood was estimated to be 4.7 x 10-8 and 6.3 x 10-8 kg kg-1 Pa-1 and the total amount of available water storage was 17.8 and 8.7 kg, which is 24% and 14% of the total daily transpiration in Larix and Picea respectively. Very little water was used from the main tree trunk. With increasing transpiration and use of stored water from wood in the crown, the water potential in the foliage decreases. Plant water status recovers with the decrease of transpiration and the refilling of the water storage sites. The liquid flow conductance in the trunk was 0.45 x 10-9 and 0.36 x 10-9 mol m-2s-1 Pa-1 in Larix and Picea respectively. The role of stomata and their control by environmental and internal plant factors is discussed.  相似文献   

11.
The productivity of short‐rotation coppice (SRC) plantations with poplar (Populus spp.) strongly depends on soil water availability, which limits the future development of its cultivation, and makes the study of the transpirational water loss particularly timely under the ongoing climate change (more frequent drought and floods). This study assesses the transpiration at different scales (leaf, tree and stand) of four poplar genotypes belonging to different species and from a different genetic background grown under an SRC regime. Measurements were performed for an entire growing season during the third year of the third rotation in a commercial scale multigenotype SRC plantation in Flanders (Belgium). Measurements at leaf level were performed on specific days with a contrasted evaporative demand, temperature and incoming shortwave radiation and included stomatal conductance, stem and leaf water potential. Leaf transpiration and leaf hydraulic conductance were obtained from these measurements. To determine the transpiration at the tree level, single‐stem sap flow using the stem heat balance (SHB) method and daily stem diameter variations were measured during the entire growing season. Sap flow‐based canopy transpiration (Ec), seasonal dry biomass yield, and water use efficiency (WUE; g aboveground dry matter/kg water transpired) of the four poplar genotypes were also calculated. The genotypes had contrasting physiological responses to environmental drivers and to soil conditions. Sap flow was tightly linked to the phenological stage of the trees and to the environmental variables (photosynthetically active radiation and vapor pressure deficit). The total Ec for the 2016 growing season was of 334, 350, 483 and 618 mm for the four poplar genotypes, Bakan, Koster, Oudenberg and Grimminge, respectively. The differences in physiological traits and in transpiration of the four genotypes resulted in different responses of WUE.  相似文献   

12.
介绍了Granier热消散探针在树干液流测定中的工作原理,并利用该系统长期监测广东鹤山马占相思林14株样树的液流密度,分析了树木个体内和个体之间液流密度的差异、整树和林段水分利用的量化特征.由于树木边材结构以及周围微环境的差别,树木内和个体间的液流密度差异非常明显,变异系数的平均值分别为15.51%-37.26%、37.46%-50.73%.尽管液流密度的差异较大,但同一株树木不同方位的液流密度之间却呈现明显的线性相关(p<0.0001),这是重要的特征值,使得只需测定某一方位的液流密度经尺度外推计算整树和林段蒸腾成为可能.树木液流对环境因子响应的变化规律取决于所参照的时间尺度,日变化主要受光辐射、水汽压差等气候因子的控制,而土壤水份对液流的季节变化影响较大.形态特征明显影响树木的液流,高大树木由于边材较厚、树干粗壮和冠幅较宽而承载较多的辐射能量,因而水分蒸腾较高.对树木液流密度在径向和方位上进行适当的整合,可较准确地计算整树和林段蒸腾.由液流估测的马占相思整树和林段蒸腾的结果显示,该群落的水分利用在时间和空间上均有明显的分化.  相似文献   

13.
Simultaneous field measurements of transpiration and sap flow were performed on short-rotation Salix viminalis trees ranging in diameter from 1.5 to 3.5 cm (2-year-old shoots on 8-year-old stumps). Transpiration was measured using an open-top ventilated chamber enclosing the whole foliage of a tree. Sap flow was measured using a tree-trunk heat balance (THB) technique with a constant temperature difference and variable heat input. Both the instantaneous and daily values of water flux measured by the two absolute techniques agreed well with a difference of up to about 5%. In July, the hourly transpiration reached a maximum of about 0.2 kg m–2 (leaf area) or 0.45 kg tree–1, whereas maximum daily integrals reached 4 kg tree–1. The response of sap flow rate to abrupt flux change when inducing emboli by cutting-off the stem was very rapid: the registered signal dropped by 85% within 10 min for a specimen with a projected leaf area of 2 m2. For S. viminalis trees, transpiration was linearly correlated with stem cross-sectional area and with leaf area.  相似文献   

14.
半干旱区城市环境下油松林分蒸腾特征及其影响因子   总被引:2,自引:0,他引:2  
在城市环境下,由于不透水地面面积的增加,土壤-植物-大气之间水汽循环减弱,水汽调节能力差,因而研究城市树木蒸腾对环境因子的响应对于城市进行合理的水汽调节具有重要意义。于2017年生长季,在内蒙古呼和浩特市区树木园内选择58年生油松(Pinus tabulaeformis Carr.)作为研究树种,采用热扩散法测定其树干液流,并同步监测气象因子和土壤含水量变化,利用彭曼公式计算冠层气孔导度。结果表明:(1)生长季内,油松林分蒸腾存在明显日、月变化,晴天天气下林分蒸腾日变化呈单峰曲线,月林分蒸腾量5月最大,其次是7月、8月、6月和9月,分别为20.96、19.89、18.09、17.25 mm和7.49 mm。(2)油松林分蒸腾与饱和水汽压差、太阳总辐射、土壤含水量和风速均存在极显著相关关系(P0.01),太阳总辐射、饱和水汽压差和土壤含水量是影响林分蒸腾的主要环境因子(R~2=0.47、R~2=0.31和R~2=0.16),风速对林分蒸腾的影响程度最小(R~2=0.12);不同降雨量对林分蒸腾的影响作用不同,10 mm以上的日降雨量对油松林分蒸腾作用明显。(3)除环境因子外,油松叶片气孔通过响应环境变化控制蒸腾作用,当饱和水汽压差1.5 kPa时,叶片气孔对饱和水汽压差的响应更敏感;当太阳总辐射250 W/m~2时,叶片气孔对蒸腾起促进作用,超过该阈值,叶片气孔关闭从而抑制树木蒸腾。  相似文献   

15.
在半干旱区连续2年监测华北落叶松(Larix principis-rupprechtii)的树干液流、气象因子和土壤体积含水量,分析不同时间尺度下人工林冠层蒸腾与环境因子的关系。结果表明:不同时间尺度下,华北落叶松人工林冠层蒸腾的季节变化均呈单峰曲线,即先增大后减小的趋势;2016年、2017年日蒸腾量分别为1.58 mm/d和1.71 mm/d,生长季蒸腾总量分别为241.30 mm和260.97 mm。在日尺度下,气温、太阳辐射强度和饱和水汽压差是影响华北落叶松人工林冠层蒸腾主要环境因子;月尺度下,气温、风速、降水和土壤水分是冠层蒸腾的主要影响因子;冠层蒸腾与降水、大气相对湿度的相关关系由日尺度下的负相关到月尺度的正相关,相关性增强。总体来看,随时间尺度由小到大,气温、风速、大气相对湿度、降水、土壤水分对冠层蒸腾的影响作用增大,而太阳辐射强度、饱和水汽压差的作用减弱;在未来增温增雨趋势下,研究区生长季将延长,华北落叶松人工林冠层蒸腾量可能会加大。  相似文献   

16.
Summary Tree transpiration was determined by xylem sap flow and eddy correlation measurements in a temperate broad-leaved forest of Nothofagus in New Zealand (tree height: up to 36 m, one-sided leaf area index: 7). Measurements were carried out on a plot which had similar stem circumference and basal area per ground area as the stand. Plot sap flux density agreed with tree canopy transpiration rate determined by the difference between above-canopy eddy correlation and forest floor lysimeter evaporation measurements. Daily sap flux varied by an order of magnitude among trees (2 to 87 kg day–1 tree–1). Over 50% of plot sap flux density originated from 3 of 14 trees which emerged 2 to 5 m above the canopy. Maximum tree transpiration rate was significantly correlated with tree height, stem sapwood area, and stem circumference. Use of water stored in the trees was minimal. It is estimated that during growth and crown development, Nothofagus allocates about 0.06 m of circumference of main tree trunk or 0.01 m2 of sapwood per kg of water transpired over one hour.Maximum total conductance for water vapour transfer (including canopy and aerodynamic conductance) of emergent trees, calculated from sap flux density and humidity measurements, was 9.5 mm s–1 that is equivalent to 112 mmol m–2 s–1 at the scale of the leaf. Artificially illuminated shoots measured in the stand with gas exchange chambers had maximum stomatal conductances of 280 mmol m–2 s–1 at the top and 150 mmol m–2 s–1 at the bottom of the canopy. The difference between canopy and leaf-level measurements is discussed with respect to effects of transpiration on humidity within the canopy. Maximum total conductance was significantly correlated with leaf nitrogen content. Mean carbon isotope ratio was –27.76±0.27 (average ±s.e.) indicating a moist environment. The effects of interactions between the canopy and the atmosphere on forest water use dynamics are shown by a fourfold variation in coupling of the tree canopy air saturation deficit to that of the overhead atmosphere on a typical fine day due to changes in stomatal conductance.This paper is dedicated to Prof. Dr. O.L. Lange on the occasion of his 65th birthday  相似文献   

17.
We assessed the daily time‐courses of CO2 assimilation rate (A), leaf transpiration rate (E), stomatal conductance for water vapour (gs), leaf water potential ( Ψ w) and tree transpiration in a wet and a dry season for three late‐stage canopy rainforest tree species in French Guiana differing in leaf carbon isotope composition ( δ 13C). The lower sunlit leaf δ 13C values found in Virola surinamensis ( ? 29·9‰) and in Diplotropis purpurea ( ? 30·9‰), two light‐demanding species, as compared to Eperua falcata ( ? 28·6‰), a shade‐semi‐tolerant species, were clearly associated with higher maximum gs values of sunlit leaves in the two former species. These two species were also characterized by a high sensitivity of gs, sap flow density (Ju) and canopy conductance (gc) to seasonal soil drought, allowing maintenance of high midday Ψ w values in the dry season. The data for Diplotropis provided an original picture of increasing midday Ψ w with increasing soil drought. In Virola, stomata were extremely sensitive to seasonal soil drought, leading to a dramatic decrease in leaf and tree transpiration in the dry season, whereas midday Ψ w remained close to ? 0·3 MPa. The mechanisms underlying such an extremely high sensitivity of stomata to soil drought remain unknown. In Eperua, gs of sunlit leaves was non‐responsive to seasonal drought, whereas Ju and gc were lower in the dry season. This suggests a higher stomatal sensitivity to seasonal drought in shaded leaves than in sunlit ones in this species.  相似文献   

18.
人工林面积不断增大,这不仅能解决由于森林砍伐引起的一系列社会问题,而且还对解决水土保持、二氧化碳减排等环境问题起到重要作用。了解人工林的生长特性和蒸腾效率,对植被生长、恢复和管理有着重要意义。为此,该研究连续监测了华南地区12棵不同高度荷木人工林的液流密度,对样树以高度划分等级,采取错位相关法分析不同高度等级胸高处液流与冠层蒸腾的时滞效应。结果表明:气候环境相同时,所有样树胸高处液流日格型相似;荷木林蒸腾量优势木中间木劣势木,所有树木湿季月蒸腾量大于干季月蒸腾量;不同高度等级之间时滞差异显著,劣势木时滞50min,优势木和中间木时滞20min;所有样树干湿季时滞差异不显著,同一高度级两季节时滞差少于10min。这些说明:在干季华南地区土壤水分仍然相对较充足,植物输水阻力没有受到土壤水分降低和长距离水分传导的影响;中间木和优势木时滞短,水力阻力小,蒸腾量大并占据着林段的有利资源;劣势木长势低矮,时滞长,导管阻力大,蒸腾量少,光合作用需要的水热资源少,所以回馈根部的营养物质少,不均衡的营养循环使得林段分化愈明显,劣势木将逐渐从林段中被淘汰。该文指出在荷木人工林生长后期,对于长势低矮,生命力极弱的劣势木应定期砍伐,这样能增加优势木和中间木对光照及水分等有利资源的分配,提高林分质量,增加林地生产力。  相似文献   

19.
Seasonal variations in environmental conditions influence the functioning of the whole ecosystem of tropical rain forests, but as yet little is known about how such variations directly influence the leaf gas exchange and transpiration of individual canopy tree species. We examined the influence of seasonal variations in relative extractable water in the upper soil layers on predawn leaf water potential, saturated net photosynthesis, leaf dark respiration, stomatal conductance, and tree transpiration of 13 tropical rain forest canopy trees (eight species) over 2 yr in French Guiana. The canopies were accessed by climbing ropes attached to the trees and to a tower. Our results indicate that a small proportion of the studied trees were unaffected by soil water depletion during seasonal dry periods, probably thanks to efficient deep root systems. The trees showing decreased tree water status (i.e., predawn leaf water potential) displayed a wide range of leaf gas exchange responses. Some trees strongly regulated photosynthesis and transpiration when relative extractable water decreased drastically. In contrast, other trees showed little variation, thus indicating good adaptation to soil drought conditions. These results have important applications to modeling approaches: indeed, precise evaluation and grouping of these response patterns are required before any tree‐based functional models can efficiently describe the response of tropical rain forest ecosystems to future changes in environmental conditions.  相似文献   

20.
北京山区元宝枫夜间液流活动特征及影响因素   总被引:3,自引:0,他引:3  
树木夜间会维持部分气孔开放,从而能够在一定环境驱动因子的情况下进行夜间蒸腾。夜间液流作为储存水的重要来源,能够补充植物白天的水分亏缺,使其恢复水分储备,对植物生长发育有重要意义。采用TDP热探针法测定了位于八达岭林场的元宝枫树干液流密度,同步监测了主要环境因子,以深入揭示树木夜间蒸腾耗水规律和植被应对环境胁迫的调控机制,为山区植被建设、森林健康经营和挑选节水树种提供理论依据。结果表明:以0:00为界区分前半夜和后半夜,元宝枫夜间液流速率前半夜较后半夜活跃,且前半夜夜间累积液流量占夜间累积液流量的53.85%—64.10%,而后半夜夜间累积液流量占夜间累积液流量的35.9%—46.15%。5月的夜间累积液流量最大,平均夜间液流通量为5月6月8月9月7月。存在水分胁迫的条件下降雨之后夜间液流会增大,而当土壤水分条件较好,土壤水分不再是夜间液流的限制因子时,夜间液流通量并不高。不同树木形态的夜间液流通量有显著差异,在一定范围内,胸径树高冠幅越大的样木,夜间液流通量越大。用于夜间蒸腾的夜间液流通量与饱和水汽压差、温度、空气相对湿度、风速相关,其中夜间蒸腾存在于前半夜,表现为前半夜夜间液流通量与环境因子的相关性相较后半夜相关性较为显著,后半夜则以补水为主,补水量取决于土壤含水量和日蒸腾强度。存在干旱胁迫的条件下,夜间液流既用于夜间蒸腾,又有一部分用来补水;而土壤水分条件好时夜间液流则主要用于补水,此时夜间树干液流与环境因子相关性不高。元宝枫夜间液流通量的日蒸腾贡献率5、6月份大于7、8月份,即干季比湿季贡献率更高。夜间液流通量的日蒸腾贡献率与白天总蒸腾量相关性较高,并与累积太阳辐射成负相关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号