首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
A new MALDI-TOF based detection assay was developed for analysis of single nucleotide polymorphisms (SNPs). It is a significant modification on the classic three-step minisequencing method, which includes a polymerase chain reaction (PCR), removal of excess nucleotides and primers, followed by primer extension in the presence of dideoxynucleotides using modified thermostable DNA polymerase. The key feature of this novel assay is reliance upon deoxynucleotide mixes, lacking one of the nucleotides at the polymorphic position. During primer extension in the presence of depleted nucleotide mixes, standard thermostable DNA polymerases dissociate from the template at positions requiring a depleted nucleotide; this principal was harnessed to create a genotyping assay. The assay design requires a primer- extension primer having its 3'-end one nucleotide upstream from the interrogated site. The assay further utilizes the same DNA polymerase in both PCR and the primer extension step. This not only simplifies the assay but also greatly reduces the cost per genotype compared to minisequencing methodology. We demonstrate accurate genotyping using this methodology for two SNPs run in both singleplex and duplex reactions. We term this assay nucleotide depletion genotyping (NUDGE). Nucleotide depletion genotyping could be extended to other genotyping assays based on primer extension such as detection by gel or capillary electrophoresis.  相似文献   

2.
We report an approach using solid phase capturable biotinylated dideoxynucleotides (biotin-ddNTPs) in single base extension for multiplex genotyping by mass spectrometry (MS). In this method, oligonucleotide primers that have different molecular weights and that are specific to the polymorphic sites in the DNA template are extended with biotin-ddNTPs by DNA polymerase to generate 3′-biotinylated DNA products. These products are then captured by streptavidin-coated solid phase magnetic beads, while the unextended primers and other components in the reaction are washed away. The pure extension DNA products are subsequently released from the solid phase and analyzed by matrix-assisted laser desorption/ionization time-of-flight MS. The mass of the extension products is determined using a stable oligonucleotide as a common internal mass standard. Since only the pure extension DNA products are introduced to the MS for analysis, the resulting mass spectrum is free of non-extended primer peaks and their associated dimers, which increases the accuracy and scope of multiplexing in single nucleotide polymorphism (SNP) analysis. The solid phase purification approach also facilitates desalting of the captured oligonucleotides, which is essential for accurate mass measurement by MS. We selected four biotin-ddNTPs with distinct molecular weights to generate extension products that have a 2-fold increase in mass difference compared to that with conventional ddNTPs. This increase in mass difference provides improved resolution and accuracy in detecting heterozygotes in the mass spectrum. Using this method, we simultaneously distinguished six nucleotide variations on synthetic DNA templates mimicking mutations in the p53 gene and two disease-associated SNPs in the human hereditary hemochromatosis gene.  相似文献   

3.
Previously, we established the feasibility of using solid phase capturable (SPC) dideoxynucleotides to generate single base extension (SBE) products which were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) for multiplex genotyping, an approach that we refer to as SPC-SBE. We report here the expanding of the SPC-SBE method as a single-tube assay to simultaneously detect 20 single nucleotide variations in a model system and 3 single nucleotide polymorphisms (SNPs) in the human beta2-adrenergic receptor (beta2AR) gene. Twenty primers were designed to have a sufficient mass difference between all extension products for accurate detection of nucleotide variants of the synthetic templates related to the p53 gene. These primers were extended simultaneously in a single tube with biotin-ddNTPs to generate 3(')-biotinylated DNA products, which were first captured by streptavidin-coated magnetic beads and then released from the beads and analyzed with MALDI-TOF MS. This approach generates a mass spectrum free of primer peaks and their associated dimers, increasing the scope of multiplexing SNPs. We also simultaneously genotyped 3 SNPs in the beta2AR gene (5(')LC-Cys19Arg, Gly16Arg, and Gln27Glu) from the genomic DNA of 20 individuals. Comparison of this approach with direct sequencing and the restriction fragment length polymorphism method indicated that the SPC-SBE method is superior for detecting nucleotide variations at known SNP sites.  相似文献   

4.
Combinatorial fluorescence energy transfer (CFET) tags, constructed by exploiting energy transfer and combinatorial synthesis, allow multiple biological targets to be analyzed simultaneously. We here describe a multiplex single nucleotide polymorphism (SNP) assay based on single base extension (SBE) using CFET tags and biotinylated dideoxynucleotides (biotin-ddNTPs). A library of CFET-labeled oligonucleotide primers was mixed with biotin-ddNTPs, DNA polymerase and the DNA templates containing the SNPs in a single tube. The nucleotide at the 3′-end of each CFET-labeled oligonucleotide primer was complementary to a particular SNP in the template. Only the CFET-labeled primer that is fully complementary to the DNA template was extended by DNA polymerase with a biotin-ddNTP. We isolated the DNA extension fragments that carry a biotin at the 3′-end by capture with streptavidin-coated magnetic beads, while the unextended primers were eliminated. The biotinylated fluorescent DNA fragments were subsequently analyzed in a multicolor fluorescence electrophoresis system. The distinct fluorescence signature and electrophoretic mobility of each DNA extension product in the electropherogram coded the SNPs without the use of a sizing standard. We simultaneously distinguished six nucleotide variations in synthetic DNA templates and a PCR product from the retinoblastoma tumor suppressor gene. The use of CFET-labeled primers and biotin-ddNTPs coupled with the specificity of DNA polymerase in SBE offered a multiplex method for detecting SNPs.  相似文献   

5.
We have developed a locus-specific DNA target preparation method for highly multiplexed single nucleotide polymorphism (SNP) genotyping called MARA (Multiplexed Anchored Runoff Amplification). The approach uses a single primer per SNP in conjunction with restriction enzyme digested, adapter-ligated human genomic DNA. Each primer is composed of common sequence at the 5′ end followed by locus-specific sequence at the 3′ end. Following a primary reaction in which locus-specific products are generated, a secondary universal amplification is carried out using a generic primer pair corresponding to the oligonucleotide and genomic DNA adapter sequences. Allele discrimination is achieved by hybridization to high-density DNA oligonucleotide arrays. Initial multiplex reactions containing either 250 primers or 750 primers across nine DNA samples demonstrated an average sample call rate of ~95% for 250- and 750-plex MARA. We have also evaluated >1000- and 4000-primer plex MARA to genotype SNPs from human chromosome 21. We have identified a subset of SNPs corresponding to a primer conversion rate of ~75%, which show an average call rate over 95% and concordance >99% across seven DNA samples. Thus, MARA may potentially improve the throughput of SNP genotyping when coupled with allele discrimination on high-density arrays by allowing levels of multiplexing during target generation that far exceed the capacity of traditional multiplex PCR.  相似文献   

6.
We have developed a rapid, cost-effective, high-throughput readout for single nucleotide polymorphism (SNP) genotyping using flow cytometric analysis performed on a Luminex 100 flow cytometer. This robust technique employs a PCR-derived target DNA containing the SNP, a synthetic SNP-complementary ZipCode-bearing capture probe, a fluorescent reporter molecule, and a thermophilic DNA polymerase. An array of fluorescent microspheres, covalently coupled with complementary ZipCode sequences (cZipCodes), was hybridized to the reaction products and sequestered them for flow cytometric analysis. The single base chain extension (SBCE) reaction was used to assay 20 multiplexed SNPs for 633 patients in 96-well format. Comparison of the microsphere-based SBCE assay results to gel-based oligonucleotide ligation assay (OLA) results showed 99.3% agreement in genotype assignments. Substitution of direct-labeled R6G dideoxynucleotide with indirect-labeled phycoerythrin dideoxynucleotide enhanced signal five- to tenfold while maintaining low noise levels. A new assay based on allele-specific primer extension (ASPE) was validated on a set of 15 multiplexed SNPs for 96 patients. ASPE offers both the advantage of streamlining the SNP analysis protocol and the ability to perform multiplex SNP analysis on any mixture of allelic variants.  相似文献   

7.
SNP genotyping on a genome-wide amplified DOP-PCR template   总被引:4,自引:1,他引:3       下载免费PDF全文
With the increasing demand for higher throughput single nucleotide polymorphism (SNP) genotyping, the quantity of genomic DNA often falls short of the number of assays required. We investigated the use of degenerate oligonucleotide primed polymerase chain reaction (DOP-PCR) to generate a template for our SNP genotyping methodology of fluorescence polarization template-directed dye-terminator incorporation detection. DOP-PCR employs a degenerate primer (5′-CCGACTCGAGNNNNNNATGTGG-3′) to produce non-specific uniform amplification of DNA. This approach has been successfully applied to microsatellite genotyping. We compared genotyping of DOP-PCR-amplified genomic DNA to genomic DNA as a template. Results were analyzed with respect to feasibility, allele loss of alleles, genotyping accuracy and storage conditions in a high-throughput genotyping environment. DOP-PCR yielded overall satisfactory results, with a certain loss in accuracy and quality of the genotype assignments. Accuracy and quality of genotypes generated from the DOP-PCR template also depended on storage conditions. Adding carrier DNA to a final concentration of 10 ng/µl improved results. In conclusion, we have successfully used DOP-PCR to amplify our genomic DNA collection for subsequent SNP genotyping as a standard process.  相似文献   

8.
We have developed a robust microarray genotyping chip that will help advance studies in genetic epidemiology. In population-based genetic association studies of complex disease, there could be hidden genetic substructure in the study populations, resulting in false-positive associations. Such population stratification may confound efforts to identify true associations between genotype/haplotype and phenotype. Methods relying on genotyping additional null single nucleotide polymorphism (SNP) markers have been proposed, such as genomic control (GC) and structured association (SA), to correct association tests for population stratification. If there is an association of a disease with null SNPs, this suggests that there is a population subset with different genetic background plus different disease susceptibility. Genotyping over 100 null SNPs in the large numbers of patient and control DNA samples that are required in genetic association studies can be prohibitively expensive. We have therefore developed and tested a resequencing chip based on arrayed primer extension (APEX) from over 2000 DNA probe features that facilitate multiple interrogations of each SNP, providing a powerful, accurate, and economical means to simultaneously determine the genotypes at 110 null SNP loci in any individual. Based on 1141 known genotypes from other research groups, our GC SNP chip has an accuracy of 98.5%, including non-calls.  相似文献   

9.
There is a need for simple and inexpensive methods for genotyping single nucleotide polymorphisms (SNPs) and short insertion/deletion variations (InDels). In this work, I demonstrate that a single-stranded DNA (ssDNA) binding dye can be used as a donor fluorophore for fluorescence resonance energy transfer (FRET). The method presented is a homogenous assay in which detection is based on the FRET from the fluorescence of the ssDNA dye bound to the unmodified detection primer to the fluorescent nucleotide analog incorporated into this detection primer during cyclic template directed primer extension reaction. Collection of the FRET emission spectrum with a scanning fluorescence spectrophotometer allows powerful data analysis. The fluorescence emission signal is modified by the optical properties of the assay vessel. This seems to be a completely neglected parameter. By proper selection of the optical properties of the assay plate one can improve the detection of the fluorescence emission signal.  相似文献   

10.
Whole genome amplification (WGA) procedures such as primer extension preamplification (PEP) or multiple displacement amplification (MDA) have the potential to provide an unlimited source of DNA for large-scale genetic studies. We have performed a quantitative evaluation of PEP and MDA for genotyping single nucleotide polymorphisms (SNPs) using multiplex, four-color fluorescent minisequencing in a microarray format. Forty-five SNPs were genotyped and the WGA methods were evaluated with respect to genotyping success, signal-to-noise ratios, power of genotype discrimination, yield and imbalanced amplification of alleles in the MDA product. Both PEP and MDA products provided genotyping results with a high concordance to genomic DNA. For PEP products the power of genotype discrimination was lower than for MDA due to a 2-fold lower signal-to-noise ratio. MDA products were indistinguishable from genomic DNA in all aspects studied. To obtain faithful representation of the SNP alleles at least 0.3 ng DNA should be used per MDA reaction. We conclude that the use of WGA, and MDA in particular, is a highly promising procedure for producing DNA in sufficient amounts even for genome wide SNP mapping studies.  相似文献   

11.
We have investigated the possibility of genotyping single nucleotide polymorphisms (SNPs) by primer extension and high performance liquid chromatography (HPLC). Using three polymorphisms of current interest to our group (an A/G polymorphism in the proneurotensin gene and A/G and T/C polymorphisms in the 5HT2a receptor gene), we show that robust signal is obtained using this simple analytic method which has the added advantages that sample loading and analysis are essentially automated, analytic time is brief, and no further purification step after primer extension is required. We also show that all stages of the HPLC-primer extension genotyping can be multiplexed which, together with automation, suggests that this system may be suitable for linkage studies based upon emerging SNP maps. Received: 27 April 1998 / Accepted: 26 November 1998  相似文献   

12.
Millions of single nucleotide polymorphisms (SNPs) have been identified in recent years. This provides a great opportunity for large-scale association and population studies. However, many high-throughput SNP typing techniques require expensive and dedicated instruments, which render them out of reach for many laboratories. To meet the need of these laboratories, we here report a method that uses widely available DNA sequencer for SNP typing. This method uses a type II restriction enzyme to create extendable ends at target polymorphic sites and uses single-base extension (SBE) to discriminate alleles. In this design, a restriction site is engineered in one of the two polymerase chain reaction (PCR) primers so that the restriction endonuclease cuts immediately upstream of the targeted SNP site. The digestion of the PCR products generates a 5'-overhang structure at the targeted polymorphic site. This 5'-overhang structure then serves as a template for SBE reaction to generate allele-specific products using fluorescent dye-terminator nucleotides. Following the SBE, the allele-specific products with different sizes can be resolved by DNA sequencers. Through primer design, we can create a series of PCR products that vary in size and contain only one restriction enzyme recognition site. This allows us to load many PCR products in a single capillary/lane. This method, restriction-enzyme-mediated single-base extension, is demonstrated by typing multiple SNPs simultaneously for 44 DNA samples. By multiplexing PCR and pooling multiplexed reactions together, this method has the potential to score 50-100 SNPs/capillary/run if the sizes of PCR products are arranged at every 5-10 bases from 100 to 600 base range.  相似文献   

13.
We describe a simple protocol to genotype single nucleotide polymorphisms (SNPs), which combines allele‐specific polymerase chain reaction (PCR) with fragment‐length analysis. Three primers are used in the PCR: two allele‐specific forward primers with a length‐difference and one reverse primer. The forward primers induce a length‐difference between the SNP‐variants, which can be assessed with standard fragment‐length analyses. We designed primers for 21 SNPs, and codominance was achieved for 76% of these SNPs. An inexpensive and flexible laser‐detection scoring protocol can be achieved with multiplex scoring and by incorporating the M13(‐21) genotyping method.  相似文献   

14.
Single nucleotide polymorphisms (SNPs) are now widely used for many DNA analysis applications such as linkage disequilibrium mapping, pharmacogenomics and traceability. Many methods for SNP genotyping exist with diverse strategies for allele-distinction. Mass spectrometers are used most commonly in conjunction with primer extension procedures with allele-specific termination. Here we present a novel concept for allele-preparation for SNP genotyping. Primer extension is carried out with an extension primer positioned immediately upstream of the SNP that is to be genotyped, a complete set of four ribonucleotides and a ribonucleotide incorporating DNA polymerase. The allele-extension products are then treated with alkali, which results in the cleavage immediately after the first added ribonucleotide. In addition, to obtain fragments easily detectable by mass spectrometry, we have included a ribonucleotide in the primer usually at the fourth nucleotide from the 3′ terminus. The method was tested on four SNPs each with a different combination of nucleotides. The advantage over other mass spectrometry-based SNP genotyping assays is that this one only requires a PCR, a primer extension reaction with a universal extension mix and an inexpensive facile cleavage reaction, which makes it overall very cost effective and easy in handling.  相似文献   

15.
Individual genotyping of single nucleotide polymorphisms (SNPs) remains expensive, especially for linkage disequilibrium mapping strategies involving high-throughput SNP genotyping. On one hand, current methods may suit scientific and laboratory needs in regard to accuracy, reproducibility/robustness, and large-scale application. On the other hand, a cheaper and less time-consuming alternative to individual genotyping is the use of SNP allelefrequencies determined in DNA pools. We have developed an accurate and reproducible protocol for allele frequency determination using Pyrosequencing technology in large genomic DNA pools (374 individuals). The measured correlation (R2) in large DNA pools was 0.980. In the context of disease-associated SNPs studies, we compared the allele frequencies between the disease (e.g., type 2 diabetes and obesity) and control groups detected by either individual genotyping or Pyrosequencing of DNA pools. In large pools, the variation between the two methods was 1.5 +/- 0.9%. It may be concluded that the allele frequency determination protocol could reliably detect over 4% differences between populations. The method is economical in regard to amounts of DNA, PCR, and primer extension reagents required. Furthermore, it allows the rapid determination of allelefrequency differences in case/control groups for association studies and susceptibility gene discovery in complex diseases.  相似文献   

16.
Due to the surge in interest in using single nucleotide polymorphisms (SNPs) for genotyping a facile and affordable method for this is an absolute necessity. Here we introduce a procedure that combines an easily automatable single tube sample preparation with an efficient high throughput mass spectrometric analysis technique. Known point mutations or single nucleotide polymorphisms are easily analysed by this procedure. It starts with PCR amplification of a short stretch of genomic DNA, for example an exon of a gene containing a SNP. By shrimp alkaline phosphatase digest residual dNTPs are destroyed. Allele-specific products are generated using a special primer, a conditioned set of α-S-dNTPs and α-S-ddNTPs and a fresh DNA polymerase in a primer extension reaction. Unmodified DNA is removed by 5′-phosphodiesterase digestion and the modified products are alkylated to increase the detection sensitivity in the mass spectrometric analysis. All steps of the preparation are simple additions of solutions and incubations. The procedure operates at the lowest practical sample volumes and in contrast to other genotyping protocols with mass spectrometric detection requires no purification. This reduces the cost and makes it easy to implement. Here it is demonstrated in a version using positive ion detection on described mutations in exon 17 of the amyloid precursor protein gene and in a version using negative ion detection on three SNPs of the granulocyte-macrophage colony stimulating factor gene. Preparation and analysis of SNPs is shown separately and simultaneously, thus demonstrating the multiplexibility of this genotyping procedure. The preparation protocol for genotyping is adapted to the conditions used for the SNP discovery method by denaturing HPLC, thus demonstrating a facile link between protocols for SNP discovery and SNP genotyping. Results corresponded unanimously with the control sequencing. The procedure is useful for high throughput genotyping as it is required for gene identification and pharmacogenomics where large numbers of DNA samples have to be analysed. We have named this procedure the ‘GOOD Assay’ for SNP analysis.  相似文献   

17.
A new approach to SNP genotyping with fluorescently labeled mononucleotides   总被引:4,自引:1,他引:3  
Fluorescence resonance energy transfer (FRET) is one of the most powerful and promising tools for single nucleotide polymorphism (SNP) genotyping. However, the present methods using FRET require expensive reagents such as fluorescently labeled oligonucleotides. Here, we describe a novel and cost-effective method for SNP genotyping using FRET. The technique is based on allele-specific primer extension using mononucleotides labeled with a green dye and a red dye. When the target DNA contains the sequence complementary to the primer, extension of the primer incorporates the green and red dye-labeled nucleotides into the strand, and red fluorescence is emitted by FRET. In contrast, when the 3′ end nucleotide of the primer is not complementary to the target DNA, there is no extension of the primer, or FRET signal. Therefore, discrimination among genotypes is achieved by measuring the intensity of red fluorescence after the extension reaction. We have validated this method with 11 SNPs, which were successfully determined by end-point measurements of fluorescence intensity. The new strategy is simple and cost-effective, because all steps of the preparation consist of simple additions of solutions and incubation, and the dye-labeled mononucleotides are applicable to all SNP analyses. This method will be suitable for large-scale genotyping.  相似文献   

18.
Royo JL  Hidalgo M  Ruiz A 《Nature protocols》2007,2(7):1734-1739
DNA sequencing has markedly changed the nature of biomedical research, identifying millions of polymorphisms along the human genome that now require further analysis to study the genetic basis of human diseases. Among the DNA-sequencing platforms available, Pyrosequencing has become a useful tool for medium-throughput single nucleotide polymorphism (SNP) genotyping, mutation detection, copy-number studies and DNA methylation analysis. Its 96-well genotyping format allows reliable results to be obtained at reasonable costs in a few minutes. However, a specific biotinylated primer is usually required for each SNP under study to allow the capture of single-stranded DNA template for the Pyrosequencing assay. Here, we present an alternative to the standard labeling of PCR products for analysis by Pyrosequencing that circumvents the requirement of specific biotinylated primers for each SNP of interest. This protocol uses a single biotinylated primer that is simultaneously incorporated into all M13-tagged PCR products during the amplification reaction. The protocol covers all steps from the PCR amplification and capture of single-stranded template, its preparation, and the Pyrosequencing assay itself. Once the correct primer stoichiometry has been determined, the assay takes around 2 h for PCR amplification, followed by 15-20 min (per plate) to obtain the genotypes.  相似文献   

19.
High-throughput procedures are an important requirement for future large-scale genetic studies such as genotyping of single nucleotide polymorphisms (SNPs). Matrix-assisted laser desorption/ ionisation mass spectrometry (MALDI-MS) has revolutionised the analysis of biomolecules and, in particular, provides a very attractive solution for the rapid typing of DNA. The analysis of DNA by MALDI can be significantly facilitated by a procedure termed ‘charge-tagging’. We show here a novel approach for the generation of charge-tagged DNA using a photocleavable linker and its implementation in a molecular biological procedure for SNP genotyping consisting of PCR, primer extension, photocleavage and a chemical reaction prior to MALDI target preparation and analysis. The reaction sequence is amenable to liquid handling automation and requires no stringent purification procedures. We demonstrate this new method on SNPs in two genes involved in complex traits.  相似文献   

20.
为了考察飞行时间质谱基因分型方法 (MALDI-TOF) 的位点分型成功率和分型结果质量的关系,分析了 96 个 SNPs 位点的近 10 000 个基因分型数据 (用 MALDI-TOF “4 重”实验方法检测 ). 结果显示,位点分型成功率和分型结果的质量显著正相关 . 分型成功率低于 82% 的 SNP 位点,其高质量结果占的比例开始逐渐降低 . 提示 82% 的分型成功率可以作为衡量分型结果质量的数据点 . 为了进一步提高通量并降低成本,在 MALDI-TOF “ 4 重”实验方法的基础上,发展了两种“准 8 重”实验方法 . 用新的实验方法检测了 95 个样本的 32 个 SNPs 位点 . 结果显示“混合准 8 重”实验方法与“ 4 重”实验方法相比无显著差异,而“复点准 8 重”的结果差于“ 4 重”分型方法 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号