共查询到20条相似文献,搜索用时 0 毫秒
1.
The inhibitor of apoptosis protein-binding domain of Smac is not essential for its proapoptotic activity 总被引:18,自引:0,他引:18
Smac/DIABLO, a recently identified inhibitor of apoptosis protein (IAP)-binding protein, is released from the mitochondria during apoptosis and reportedly potentiates apoptosis by relieving the inhibition of IAPs on caspases. We now describe the molecular characterization of Smac beta, an alternatively spliced form of Smac, which lacks the mitochondrial-targeting sequence found in Smac and has a cortical distribution in both human embryonic kidney 293 and breast epithelial tumor MCF-7 cells. Smac beta, which binds IAPs in vitro, does not bind IAPs in intact cells due to cellular processing and removal of its NH(2)-terminal IAP-binding domain. Despite its inability to interact with IAPs in cells, processed Smac beta is proapoptotic, as demonstrated by its ability to potentiate apoptosis induced by both death receptor and chemical stimuli. Furthermore, expression of a NH(2)-terminally truncated Smac mutant (Delta75), which lacks the entire IAP-interacting domain, potentiates apoptosis to the same extent as Smac and Smac beta. Our data support the hypothesis that the main proapoptotic function of Smac and Smac beta is due to a mechanism other than IAP binding. 相似文献
2.
IL-4 inhibits the costimulatory activity of IL-2 or picolinic acid but not of lipopolysaccharide on IFN-gamma-treated macrophages 总被引:1,自引:0,他引:1
G W Cox U Chattopadhyay J J Oppenheim L Varesio 《Journal of immunology (Baltimore, Md. : 1950)》1991,147(11):3809-3814
We reported previously that IL-2 induces tumoricidal activity in IFN-gamma-treated murine macrophages. The present study was performed to investigate the regulation of IL-2-dependent tumoricidal activity in murine macrophage cell lines. The v-raf/v-myc-immortalized murine macrophage cell lines ANA-1, GG2EE, and HEN-CV did not express constitutive levels of cytotoxic activity against P815 mastocytoma cells. Moreover, these macrophage cell lines did not become tumoricidal after exposure to IL-4, IFN-gamma, IL-2 or LPS. However, these macrophages developed cytotoxic capabilities after incubation with either IFN-gamma plus IL-2 or IFN-gamma plus LPS. IL-4 inhibited IFN-gamma plus IL-2- but not IFN-gamma plus LPS-induced tumoricidal activity. This effect of IL-4 was not restricted to v-raf/v-myc-immortalized macrophage cell lines because similar results were obtained by using a macrophage cell line that was established from a spontaneous histiocytic sarcoma. The suppressive activity of IL-4 on the ANA-1 macrophage cell line was dose-dependent (approximately 12-200 U/ml) and was neutralized by the addition of anti-IL-4 mAb. IL-4 decreased the IFN-gamma-induced expression of mRNA for the p55 (alpha) subunit of the IL-2R in ANA-1 macrophages. Therefore, at least one mechanism by which IL-4 may have inhibited IFN-gamma plus IL-2-induced tumoricidal activity was by reducing macrophage IL-2R alpha mRNA expression. We have previously reported that picolinic acid, a tryptophan metabolite, is a costimulator of macrophage tumoricidal activity. We now report that IL-4 also inhibited IFN-gamma plus picolinic acid-induced cytotoxicity in ANA-1 macrophages. We propose that IL-2 and picolinic acid may have a common mechanism of action that is susceptible to IL-4 suppression. 相似文献
3.
Blau H Klein K Shalit I Halperin D Fabian I 《American journal of physiology. Lung cellular and molecular physiology》2007,292(1):L343-L352
Cystic fibrosis (CF) is associated with severe neutrophilic airway inflammation. We showed that moxifloxacin (MXF) inhibits IL-8 and MAPK activation in monocytic and respiratory epithelial cells. Azithromycin (AZM) and ciprofloxacin (CIP) are used clinically in CF. Thus we now examined effects of MXF, CIP, and AZM directly on CF cells. IB3, a CF bronchial cell line, and corrected C38 cells were treated with TNF-alpha, IL-1beta, or LPS with or without 5-50 microg/ml MXF, CIP, or AZM. IL-6 and IL-8 secretion (ELISA), MAPKs ERK1/2, JNK, p38, and p65 NF-kappaB (Western blot) activation were measured. Baseline IL-6 was sixfold higher in IB3 than C38 cells but IL-8 was similar. TNF-alpha and IL-1beta increased IL-6 and IL-8 12- to 67-fold with higher levels in IB3 than C38 cells post-TNF-alpha (P < 0.05). Levels were unchanged following LPS. Baseline phosphorylated form of ERK1/2 (p-ERK1/2), JNK, and NF-kappaB p65 were higher in IB3 than C38 cells (5-, 1.4-, and 1.4-fold), and following TNF-alpha increased, as did the p-p38, by 1.6- to 2-fold. MXF (5-50 microg/ml) and CIP (50 microg/ml), but not AZM, suppressed IL-6 and IL-8 secretion by up to 69%. MXF inhibited TNF-alpha-stimulated MAPKs ERK1/2, 46-kDa JNK, and NF-kappaB up to 60%, 40%, and 40%, respectively. In contrast, MXF did not inhibit p38 activation, implying a highly selective pretranslational effect. In conclusion, TNF-alpha and IL-1beta induce an exaggerated inflammatory response in CF airway cells, inhibited by MXF more than by CIP or AZM. Clinical trials are recommended to assess efficacy in CF and other chronic lung diseases. 相似文献
4.
Mycophenolic acid inhibits IL-2-dependent T cell proliferation,but not IL-2-dependent survival and sensitization to apoptosis 总被引:2,自引:0,他引:2
Quéméneur L Flacher M Gerland LM Ffrench M Revillard JP Bonnefoy-Berard N 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(5):2747-2755
Mycophenolic acid (MPA), the active metabolite of the immunosuppressive drug mycophenolate mofetil, is a selective inhibitor of inosine 5'-monophosphate dehydrogenase type II, a de novo purine nucleotide synthesis enzyme expressed in T and B lymphocytes and up-regulated upon cell activation. In this study, we report that the blockade of guanosine nucleotide synthesis by MPA inhibits mitogen-induced proliferation of PBL, an effect fully reversed by addition of guanosine and shared with mizoribine, another inhibitor of inosine 5'-monophosphate dehydrogenase. Because MPA does not inhibit early TCR-mediated activation events, such as CD25 expression and IL-2 synthesis, we investigated how it interferes with cytokine-dependent proliferation and survival. In activated lymphoblasts that are dependent on IL-2 or IL-15 for their proliferation, MPA does not impair signaling events such as of the extracellular signal-regulated kinase 2 and Stat5 phosphorylation, but inhibits down-regulation of the cyclin-dependent kinase inhibitor p27(Kip1). Therefore, in activated lymphoblasts, MPA specifically interferes with cytokine-dependent signals that control cell cycle and blocks activated T cells in the mid-G(1) phase of the cell cycle. Although it blocks IL-2-mediated proliferation, MPA does not inhibit cell survival and Bcl-x(L) up-regulation by IL-2 or other cytokines whose receptors share the common gamma-chain (CD132). Finally, MPA does not interfere with IL-2-dependent acquisition of susceptibility to CD95-mediated apoptosis and degradation of cellular FLIP. Therefore, MPA has unique functional properties not shared by other immunosuppressive drugs interfering with IL-2R signaling events such as rapamycin and CD25 mAbs. 相似文献
5.
6.
Inhibition of JNK by overexpression of the JNL binding domain of JIP-1 prevents apoptosis in sympathetic neurons 总被引:7,自引:0,他引:7
Harding TC Xue L Bienemann A Haywood D Dickens M Tolkovsky AM Uney JB 《The Journal of biological chemistry》2001,276(7):4531-4534
Studies in non-neuronal cells show that c-Jun N-terminal kinases (JNK) play a key role in apoptotic cell death. In some neurons JNK is also thought to initiate cell death by the activation of c-Jun. JNK inhibition has been achieved pharmacologically by inhibiting upstream kinases, but there has been no direct demonstration that inhibition of JNK can prevent neuronal death. We have therefore examined whether the JNK binding domain (JBD) of JNK-interacting protein-1 (JIP-1, a scaffold protein and specific inhibitor of JNK) can inhibit c-Jun phosphorylation and support the survival of sympathetic neurons deprived of NGF. We show that expression of the JBD in >80% of neurons was sufficient to prevent the phosphorylation of c-Jun and its nuclear accumulation as well as abrogate neuronal cell death induced by NGF deprivation. JBD expression also preserved the capacity of mitochondria to reduce MTT. Interestingly, although the PTB domain of JIP was reported to interact with rhoGEF, expression of the JBD domain was sufficient to localize the protein to the membrane cortex and growth cones. Hence, JNK activation is a key event in apoptotic death induced by NGF withdrawal, where its point of action lies upstream of mitochondrial dysfunction. 相似文献
7.
Retention of ligand binding activity by the extracellular domain of the IL-1 receptor 总被引:6,自引:0,他引:6
S K Dower J M Wignall K Schooley C J McMahan J L Jackson K S Prickett S Lupton D Cosman J E Sims 《Journal of immunology (Baltimore, Md. : 1950)》1989,142(12):4314-4320
The IL-1R on murine T cells is an 80-kDa cell surface glycoprotein which binds both IL-1 alpha and IL-1 beta. We have recently isolated a cDNA clone encoding this molecule. From the primary sequence mature receptor is predicted to be a 557 residue integral membrane protein with a 319 residue carbohydrate-rich extracellular region. We have constructed a cDNA clone encoding this region of the protein (residues 1 to 316). Expression of this cDNA in HeLa cells leads to secretion of a soluble IL-1 alpha binding protein into the culture medium. Quantitative binding experiments with the truncated receptor show that it possesses IL-1 binding properties which are indistinguishable from those of full length IL-1R. Gel filtration chromatography experiments show that a complex can be formed between a single truncated receptor molecule and a single IL-1 alpha molecule. 相似文献
8.
Human triacylglycerol hydrolase (hTGH) has been shown to play a role in hepatic lipid metabolism. Triacylglycerol hydrolase (TGH) hydrolyzes insoluble carboxylic esters at lipid/water interfaces, although the mechanism by which the enzyme adsorbs to lipid droplets is unclear. Three-dimensional modeling of hTGH predicts that catalytic residues are adjacent to an alpha-helix that may mediate TGH/lipid interaction. The helix contains a putative neutral lipid binding domain consisting of the octapeptide FLDLIADV (amino acid residues 417-424) with the consensus sequence FLXLXXXn (where n is a nonpolar residue and X is any amino acid except proline) identified in several other proteins that bind or metabolize neutral lipids. Deletion of this alpha-helix abolished the lipolytic activity of hTGH. Replacement of F417 with alanine reduced activity by 40% toward both insoluble and soluble esters, whereas replacement of L418 and L420 with alanine did not. Another potential mechanism of increasing TGH affinity for lipid is via reversible acylation. Molecular modeling predicts that C390 is available for covalent acylation. However, neither chemical modification of C390 nor mutation to alanine affected activity. Our findings indicate that F417 but not L418, L420, or C390 participates in substrate hydrolysis by hTGH. 相似文献
9.
Aifa S Frikha F Miled N Johansen K Lundström I Svensson SP 《Biochemical and biophysical research communications》2006,347(2):381-387
Calcium-calmodulin (CaM) binding to the epidermal growth factor receptor (EGFR) has been shown to both inhibit and stimulate receptor activity. CaM binds to the intracellular juxtamembrane (JM) domain (Met645-Phe688) of EGFR. Protein kinase C (PKC) mediated phosphorylation of Thr654 occurs within this domain. CaM binding to the JM domain inhibits PKC phosphorylation and conversely PKC mediated phosphorylation of Thr654 or Glu substitution of Thr654 inhibits CaM binding. A second threonine residue (Thr669) within the JM domain is phosphorylated by the mitogen-activated protein kinase (MAPK). Previous results have shown that CaM interferes with EGFR-induced MAPK activation. If and how phosphorylation of Thr669 affects CaM-EGFR interaction is however not known.In the present study we have used surface plasmon resonance (BIAcore) to study the influence of Thr669 phosphorylation on real time interactions between the intracellular juxtamembrane (JM) domain of EGFR and CaM. The EGFR-JM was expressed as GST fusion proteins in Escherichia coli and phosphorylation was mimicked by generating Glu substitutions of either Thr654 or Thr669. Purified proteins were coupled to immobilized anti-GST antibodies at the sensor surface and increasing concentration of CaM was applied. When mutating Thr654 to Glu654 no specific CaM binding could be detected. However, neither single substitutions of Thr669 (Gly669 or Glu669) nor double mutants Gly654/Gly669 or Gly654/Glu669 influenced the binding of CaM to the EGFR-JM. This clearly shows that PKC may regulate EGF-mediated CaM signalling through phosphorylation of Thr654 whereas phosphorylation of Thr669 seems to play a CaM independent regulatory role. The role of both residues in the EGFR-calmodulin interaction was also studied in silico. Our modelling work supports a scenario where Thr654 from the JM domain interacts with Glu120 in the calmodulin molecule. Phosphorylation of Thr654 or Glu654 substitution creates a repulsive electrostatic force that would diminish CaM binding to the JM domain. These results are in line with the Biacore experiments showing a weak binding of the CaM to the JM domain with Thr654 mutated to Glu. Furthermore, these results provide a hypothesis to how CaM binding to EGFR might both positively and negatively interfere with EGFR-activity. 相似文献
10.
Grassi G Scaggiante B Farra R Dapas B Agostini F Baiz D Rosso N Tiribelli C 《Biochimie》2007,89(12):1544-1552
Despite the involvement of the elongation factors eEF1A (eEF1A1 and eEF1A2) in the development of different cancers no information is available on their possible contribution to the biology of hepatocellular carcinoma (HCC). We investigated the expression of both forms of eEF1A in HepG2 and JHH6 cell lines considered to be a good in vitro model of HCC at different stage of differentiation. Our data indicate that the mRNA amount of eEF1A1 is increased in both cell lines as compared to normal liver tissue, but eEF1A2 mRNA level is markedly increased only in JHH6. Moreover, the less differentiated cell line JHH6 displays higher EEF1A1 and EEF1A2 mRNAs levels and an higher nuclear-enriched/cytoplasm ratio of EEF1A protein compared to the better differentiated HepG2 cell line. Over-expression depends only partially on gene amplification. The more abundant mRNA levels and the higher nuclear-enriched/cytoplasm ratio of eEF1A in JHH6 neither correlate with apoptosis resistance nor with proliferation rate in sub-confluent cells. However, in confluent cells, a clear tendency to maintain JHH6 into the cell cycle was observed. In conclusion, we document the increased mRNA levels of EEF1A genes in HCC cell lines compared to normal liver. Additionally, we show the increased nuclear-enriched/cytoplasmic protein ratio of eEF1A and the marked raise of the expression of both eEF1A forms in JHH6 compared to HepG2, suggesting the possibility that eEF1A forms might become a relevant markers related to HCC tumor phenotype. 相似文献
11.
12.
13.
Although an increased expression level of XIAP is associated with cancer cell metastasis, the underlying molecular mechanisms remain largely unexplored. To verify the specific structural basis of XIAP for regulation of cancer cell migration, we introduced different XIAP domains into XIAP(-/-) HCT116 cells, and found that reconstitutive expression of full length HA-XIAP and HA-XIAP ΔBIR, both of which have intact RING domain, restored β-Actin expression, actin polymerization and cancer cell motility. Whereas introduction of HA-XIAP ΔRING or H467A mutant, which abolished its E3 ligase function, did not show obvious restoration, demonstrating that E3 ligase activity of XIAP RING domain played a crucial role of XIAP in regulation of cancer cell motility. Moreover, RING domain rather than BIR domain was required for interaction with RhoGDI independent on its E3 ligase activity. To sum up, our present studies found that role of XIAP in regulating cellular motility was uncoupled from its caspase-inhibitory properties, but related to physical interaction between RhoGDI and its RING domain. Although E3 ligase activity of RING domain contributed to cell migration, it was not involved in RhoGDI binding nor its ubiquitinational modification. 相似文献
14.
Yuxuan Xi Véronique Chalvon André Padilla Stella Cesari Thomas Kroj 《Molecular Plant Pathology》2022,23(9):1320-1330
The rice nucleotide-binding (NB) and leucine-rich repeat (LRR) domain immune receptors (NLRs) RGA4 and RGA5 form a helper NLR/sensor NLR (hNLR/sNLR) pair that specifically recognizes the effectors AVR-Pia and AVR1-CO39 from the blast fungus Magnaporthe oryzae. While RGA4 contains only canonical NLR domains, RGA5 has an additional unconventional heavy metal-associated (HMA) domain integrated after its LRR domain. This RGA5HMA domain binds the effectors and is crucial for their recognition. Investigation of the three-dimensional structure of the AVR1-CO39/RGA5HMA complex by X-ray crystallography identified a candidate surface for effector binding in the HMA domain and showed that the HMA domain self-interacts in the absence of effector through the same surface. Here, we investigated the relevance of this HMA homodimerization for RGA5 function and the role of the RGA5HMA effector-binding and self-interaction surface in effector recognition. By analysing structure-informed point mutations in the RGA5HMA-binding surface in protein interaction studies and in Nicotiana benthamiana cell death assays, we found that HMA self-interaction does not contribute to RGA5 function. However, the effector-binding surface of RGA5HMA identified by X-ray crystallography is crucial for both in vitro and in vivo effector binding as well as effector recognition. These results support the current hypothesis that noncanonical integrated domains of NLRs act primarily as effector traps and deepen our understanding of the sNLRs' function within NLR pairs. 相似文献
15.
16.
Walther M Anton M Wiedmann M Fletterick R Kuhn H 《The Journal of biological chemistry》2002,277(30):27360-27366
The rabbit reticulocyte-type 15-lipoxygenase is capable of oxygenating biomembranes and lipoproteins without the preceding action of ester lipid cleaving enzymes. This reaction requires an efficient membrane binding, and the N-terminal beta-barrel domain of the enzyme has been implicated in this process. To obtain detailed information on the structural requirements for membrane oxygenation, we expressed the rabbit wild-type 15-lipoxygenase, its beta-barrel deletion mutant (catalytic domain), and several lipoxygenase point mutations as His-tagged fusion proteins in Escherichia coli and tested their membrane binding characteristics. We found that: (i) the beta-barrel deletion mutant was catalytically active and its enzymatic properties (K(M), V(max), pH optimum, substrate specificity) were similar to those of the wild-type enzyme; (ii) when compared with the wild-type lipoxygenase, the membrane binding properties of the N-terminal truncation mutant were impaired but not abolished, suggesting a role of the catalytic domain in membrane binding; and (iii) Phe-70 and Leu-71 (constituents of the beta-barrel domain) but also Trp-181, which is located in the catalytic domain, were identified as sequence determinants for membrane binding. Mutation of these amino acids to more polar residues (F70H, L71K, W181E) impaired the membrane binding capacity of the recombinant enzyme. These data indicate that the C-terminal catalytic domain of the rabbit 15-lipoxygenase is enzymatically active and that the membrane binding properties of the enzyme are determined by a concerted action of the N-terminal beta-barrel and the C-terminal catalytic domain. 相似文献
17.
Factors V(a) and X(a) (FV(a) and FX(a), respectively) assemble on phosphatidylserine (PS)-containing platelet membranes to form the essential "prothrombinase" complex of blood coagulation. The C-terminal domain (C2) of FV(a) (residues 2037-2196 in human FV(a)) contains a soluble phosphatidylserine (C6PS) binding pocket flanked by a pair of tryptophan residues, Trp(2063) and Trp(2064). Mutating these tryptophans abolishes FV(a) membrane binding. To address both the roles of these tryptophans in C6PS or membrane binding and the role of the C2 domain lipid binding site in regulation of FV(a) cofactor activity, we expressed W(2063,2064)A mutants of the recombinant C2 domain (rFV(a2)-C2) and of a B domain-deleted factor V light isoform (rFV(a2)) in Hi-5 and COS cells, respectively. Intrinsic fluorescence showed that wild-type rFV(a2)-C2 binds to C6PS and to 20% PS/PC membranes with apparent K(d) values of 2.8 microM and 9 nM, respectively, while mutant rFV(a2)-C2 does not. Equilibrium dialysis confirmed that mutant rFV(a2)-C2 does not bind to C6PS. Mutant rFV(a2) binds to C6PS (K(d) approximately 37 microM) with an affinity comparable to that of wild-type rFV(a2) (K(d) approximately 20 microM), although it does not bind to PS/PC membranes to which wild-type rFV(a2) binds with native affinity (K(d) approximately 3 nM). Both wild-type and mutant rFV(a2) bind to active site-labeled FX(a) (DEGR-X(a)) in the presence of 400 microM C6PS with native affinity (K(d) approximately 3-4 nM) to produce a solution rFV(a2)-FX(a) complex of native activity. We conclude that (1) the C2 domain PS site provides all but approximately 1 kT of the free energy of FV(a) membrane binding, (2) tryptophans lining the C2 lipid binding pocket are critical to C6PS and membrane binding and insert into the bilayer interface during membrane binding, (3) occupancy of the C2 lipid binding pocket is not necessary for C6PS-induced formation of the FX(a)-FV(a) complex or its activity, but (4) another PS site on FV(a) does have a regulatory role. 相似文献
18.
Wang M Markel T Crisostomo P Herring C Meldrum KK Lillemoe KD Meldrum DR 《American journal of physiology. Heart and circulatory physiology》2007,292(4):H1694-H1699
Tumor necrosis factor-alpha (TNF-alpha) plays an important role in the development of heart failure. There is a direct correlation between myocardial function and myocardial TNF levels in humans. TNF may induce local inflammation to exert tissue injury. On the other hand, suppressors of cytokine signaling (SOCS) proteins have been shown to inhibit proinflammatory signaling. However, it is unknown whether TNF mediates myocardial inflammation via STAT3/SOCS3 signaling in the heart and, if so, whether this effect is through the type 1 55-kDa TNF receptor (TNFR1). We hypothesized that TNFR1 deficiency protects myocardial function and decreases myocardial IL-6 production via the STAT3/SOCS3 pathway in response to TNF. Isolated male mouse hearts (n = 4/group) from wild-type (WT) and TNFR1 knockout (TNFR1KO) were subjected to direct TNF infusion (500 pg.ml(-1).min(-1) x 30 min) while left ventricular developed pressure and maximal positive and negative values of the first derivative of pressure were continuously recorded. Heart tissue was analyzed for active forms of STAT3, p38, SOCS3 and SOCS1 (Western blot analysis), as well as IL-1beta and IL-6 (ELISA). Coronary effluent was analyzed for lactate dehydrogenase (LDH) activity. As a result, TNFR1KO had significantly better myocardial function, less myocardial LDH release, and greater expression of SOCS3 (percentage of SOCS3/GAPDH: 45 +/- 4.5% vs. WT 22 +/- 6.5%) after TNF infusion. TNFR1 deficiency decreased STAT3 activation (percentage of phospho-STAT3/STAT3: 29 +/- 6.4% vs. WT 45 +/- 8.8%). IL-6 was decreased in TNFR1KO (150.2 +/- 3.65 pg/mg protein) versus WT (211.4 +/- 26.08) mice. TNFR1 deficiency did not change expression of p38 and IL-1beta following TNF infusion. These results suggest that deficiency of TNFR1 protects myocardium through SOCS3 and IL-6 but not p38 MAPK or IL-1beta. 相似文献
19.
Mildner M Eckhart L Lengauer B Tschachler E 《The Journal of biological chemistry》2002,277(16):14146-14152
Acute irreparable UV-induced DNA damage leads to apoptosis of epidermal keratinocytes (KC) and the formation of sunburn cells, whereas less severely damaged cells survive but harbor the potential of tumor formation. Here we report that hepatocyte growth factor/scatter factor (HGF/SF) prevents UVB-induced apoptosis in primary KC cultured in vitro. When we analyzed the signaling pathways initiated by the HGF/SF receptor c-met, we found that the phosphatidylinositol (PI) 3-kinase and its downstream-element AKT and the mitogen-activated protein (MAP) kinase were activated. Inhibition of PI 3-kinase led to a complete abrogation of the anti-apoptotic effect of HGF/SF, whereas blockade of the MAP kinase pathway had no effect. In contrast to the observation with primary KC, HGF/SF could not enhance survival after UVB irradiation of HaCaT and A431 cell lines, despite the fact that in these cells the PI 3-kinase and MAP kinase pathways were also activated by HGF/SF. Cell cycle analysis of KC revealed a G(2)/M arrest after UVB irradiation and a complete loss of proliferating cells. Because HGF/SF in the skin is produced by dermal fibroblasts, our findings suggest that the HGF/SF-mediated rescue of KC from apoptosis represents an important paracrine loop by which UVB-damaged KC can be kept alive to maintain the epidermal barrier function but cannot further proliferate, thereby preventing the induction of epithelial skin tumors. 相似文献