首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intrinsic tryptophans of CRABPI as probes of structure and folding.   总被引:2,自引:1,他引:1       下载免费PDF全文
The native state fluorescence and CD spectra of the predominantly beta-sheet cellular retinoic acid-binding protein I (CRABPI) include contributions from its three tryptophan residues and are influenced by the positions of these residues in the three-dimensional structure. Using a combination of spectroscopic approaches and single Trp-mutants of CRABPI, we have deconvoluted these spectra and uncovered several features that have aided in our analysis of the development of structure in the folding pathway of CRABPI. The emission spectrum of native CRABPI is dominated by Trp 7. Trp 109 is fluorescence-silent due to its interaction with the guanidino group of Arg 111. Although the far-UV CD spectrum of CRABPI is largely determined by the protein's secondary structure, aromatic clustering around Trp 87 and the aromatic-charge interaction between Arg 111 and Trp 109 give rise to a characteristic feature in the CD spectrum at 228 nm. The near-UV CD bands of CRABPI arise largely from additive contributions of the three tryptophan residues. Trp 7 and Trp 87 give a negative CD band at 275 nm. The near-UV CD band from Trp 109 is positive and shifted to longer wavelengths (to 302 nm) due to the charge-aromatic interaction between Arg 111 and Trp 109. Our deconvolution of the equilibrium spectra have been used to interpret kinetic folding experiments monitored by stopped-flow fluorescence. These dynamic experiments suggest the early evolution of a well-populated, hydrophobically collapsed intermediate, which undergoes global rearrangement to form the fully folded structure. The results presented here suggest several additional strategies for dissecting the folding pathway of CRABPI.  相似文献   

2.
Wallace LA  Dirr HW 《Biochemistry》1999,38(50):16686-16694
Glutathione transferases function as detoxification enzymes and ligand-binding proteins for many hydrophobic endogenous and xenobiotic compounds. The molecular mechanism of folding of urea-denatured homodimeric human glutathione transferase A1-1 (hGSTA1-1) was investigated. The kinetics of change were investigated using far-UV CD, Trp20 fluorescence, fluorescence-detected ANS binding, acrylamide quenching of Trp20 fluorescence, and catalytic reactivation. The very early stages of refolding (millisecond time range) involve the formation of structured monomers with native-like secondary structure and exposed hydrophobic surfaces that have a high binding capacity for the amphipathic dye ANS. Dimerization of the monomeric intermediates was detected using Trp fluorescence and occurs as fast and intermediate events. The intermediate event was distinguished from the fast event because it is limited by a preceding slow trans-to-cis isomerization reaction (optically silent in this study). At high concentrations of hFKBP, dimerization is not limited by the isomerization reaction, and only the fast event was detected. The fast (tau = 200 ms) and intermediate (tau = 2.5 s) events show similar urea-, temperature-, and ionic strength-dependent properties. The dimeric intermediate has a partially functional active site ( approximately 20%). Final reorganization to form the native tertiary and quaternary structures occurs during a slow, unimolecular, urea- and ionic strength-independent event. During this slow event (tau = 250 s), structural rearrangements at the domain interface occur at/near Trp20 and result in burial of Trp20. The slow event results in the regain of the fully functional dimer. The role of the C-terminus helix 9 (residues 210-221) as a structural determinant for this final event is proposed.  相似文献   

3.
A K Bhuyan  J B Udgaonkar 《Biochemistry》1999,38(28):9158-9168
The kinetics of the slow folding and unfolding reactions of barstar, a bacterial ribonuclease inhibitor protein, have been studied at 23(+/-1) degrees C, pH 8, by the use of tryptophan fluorescence, far-UV circular dichroism (CD), near-UV CD, and transient mixing (1)H nuclear magnetic resonance (NMR) spectroscopic measurements in the 0-4 M range of guanidine hydrochloride (GdnHCl) concentration. The denaturant dependences of the rates of folding and unfolding processes, and of the initial and final values of optical signals associated with these kinetic processes, have been determined for each of the four probes of measurement. Values determined for rates as well as amplitudes are shown to be very much probe dependent. Significant differences in the intensities and rates of appearance and disappearance of several resolved resonances in the real-time one-dimensional NMR spectra have been noted. The NMR spectra also show increasing dispersion of chemical shifts during the slow phase of refolding. The denaturant dependences of rates display characteristic folding chevrons with distinct rollovers under strongly native as well as strongly unfolding conditions. Analyses of the data and comparison of the results obtained with different probes of measurement appear to indicate the accumulation of a myriad of intermediates on parallel folding and unfolding pathways, and suggest the existence of an ensemble of transition states. The energetic stabilities of the intermediates estimated from kinetic data suggest that they are approximately half as stable as the fully folded protein. The slowness of the folding and unfolding processes (tau = 10-333 s) and values of 20.5 (+/-1.4) and 18 (+/-0.5) kcal mol(-)(1) for the activation energies of the slow refolding and unfolding reactions suggest that proline isomerization is involved in these reactions, and that the intermediates accumulate and are therefore detectable because the slow proline isomerization reaction serves as a kinetic trap during folding.  相似文献   

4.
The nanosecond dynamics of the single tryptophan, Trp10, of HPr from Streptomyces coelicolor, HPrsc, has been monitored at different pHs. Time-resolved fluorescence methods and DOSY measurements have been used to map the compactness of the protein. At low pHs, where a molten globule-like species has been described, the correlation times from fluorescence showed an abrupt change as the pH was increased. When the protein was folded (above pH 4), two correlation times were observed, which remained practically constant up to pH 9.5. The long correlation time, around 7.5 ns, corresponds to the global rotational motion of the protein, since this value is in agreement with that determined theoretically from hydrodynamic measurements. The short correlation time, around 1.4 ns, must report on fast movements of the protein segment containing the tryptophan residue. On the other hand, fluorescence lifetimes showed the same abrupt change as the correlation times at low pH, but, in addition, a sigmoidal change with a pKa approximately 4.3 was also observed. On the basis of the modeled structure of HPrsc, this last transition could be due to the proximity of Glu12 to Trp10. The changes monitored by the fluorescence lifetimes agree with those observed previously by steady-state fluorescence, CD, and ANS binding experiments. Taken together, these data suggest a multistate equilibrium during folding of HPrsc starting from low pHs.  相似文献   

5.
Sticholysin II (Stn II) is a cytolytic protein produced by the sea anemone Stichodactyla helianthus, its effect being related to pore formation. The conformation of the protein and its temperature-induced transitions, in the 1.5-12.0 pH range and in the 0-0.5 M NaCl concentration interval, have been studied by circular dichroism and fluorescence spectroscopy. At temperature < 35 degrees C, the protein maintains the same, high beta-structure content, folded conformation in the 1.5-11.0 pH range and ionic strength up to 0.5 M. In the 1.5-3.5 pH range and ionic strength > or = 0.1 M, Stn II shows a thermal transition, resulting in a partially folded state characterized by: (i) a native-like content of regular secondary structure, as detected by far-UV CD; (ii) a largely disordered tertiary structure, as detected by near-UV CD, with partially exposed tryptophan residues according to their fluorescence emission; and (iii) ability to bind the hydrophobic probe 2-anilinonaphthalene-6-sulfonic acid. In the pH range 4.0-10.5, thermally-induced protein aggregation occurs. The obtained results demonstrate the existence of partially folded state of Stn II, which may contribute to the pore formation ability of this cytolysin.  相似文献   

6.
The thermodynamic stability and temperature induced structural changes of oxidized thioredoxin h from Chlamydomonas reinhardtii have been studied using differential scanning calorimetry (DSC), near- and far-UV circular dichroism (CD), and fluorescence spectroscopies. At neutral pH, the heat induced unfolding of thioredoxin h is irreversible. The irreversibly unfolded protein is unable to refold due to the formation of soluble high-order oligomers. In contrast, at acidic pH the heat induced unfolding of thioredoxin h is fully reversible and thus allows the thermodynamic stability of this protein to be characterized. Analysis of the heat induced unfolding at acidic pH using calorimetric and spectroscopic methods shows that the heat induced denaturation of thioredoxin h can be well approximated by a two-state transition. The unfolding of thioredoxin h is accompanied by a large heat capacity change [6.0 +/- 1.0 kJ/(mol.K)], suggesting that at low pH a cold denaturation should be observed at the above-freezing temperatures for this protein. All used methods (DSC, near-UV CD, far-UV CD, Trp fluorescence) do indeed show that thioredoxin h undergoes cold denaturation at pH <2.5. The cold denaturation of thioredoxin h cannot, however, be fitted to a two-state model of unfolding. Furthermore, according to the far-UV CD, thioredoxin h is fully unfolded at pH 2.0 and 0 degrees C, whereas the other three methods (near-UV CD, fluorescence, and DSC) indicate that under these conditions 20-30% of the protein molecules are still in the native state. Several alternative mechanisms explaining these results such as structural differences in the heat and cold denatured state ensembles and the two-domain structure of thioredoxin h are discussed.  相似文献   

7.
The equilibrium and kinetics studies of an 82 kDa large monomeric Escherichia coli protein Malate Synthase G (MSG) was investigated by far and near-UV CD, intrinsic tryptophan fluorescence and extrinsic fluorescence spectroscopy. We find that despite of its large size, folding is reversible, in vitro. Equilibrium unfolding process of MSG exhibited three-state transition thus, indicating the presence of at least a stable equilibrium intermediate. Thermodynamic parameters suggest this intermediate resembles the unfolded state. However, the equilibrium intermediate exhibits pronounced secondary structure as measured by far-UV CD, partial tertiary structure as delineated by near-UV CD, compactness (m value) and exposed hydrophobic surface area as assessed by ANS binding, typically depicting a molten globule state. The stopped-flow kinetic data provide clear evidence for the presence of a burst phase during the refolding pathway due to the formation of an early Intermediate, within the dead time of the instrument. Refolding from 4 M to various lower concentrations until 0.4 M of GdnHCl follow biphasic kinetics at lower concentrations of GdnHCl (<0.8 M), whereas monophasic kinetics at concentrations above 1.5 M. Also, rollover in the refolding and unfolding limbs of chevron plot verifies the presence of a fast kinetic intermediate at lower concentration of GdnHCl. Based upon the above observations we hereby propose the folding pathway of a large multi-domain protein Malate Synthase G.  相似文献   

8.
Kamen DE  Woody RW 《Biochemistry》2002,41(14):4713-4723
Pectate lyase C (pelC) is a member of the class of proteins that possess a parallel beta-helix folding motif. A study of the kinetic folding mechanism is presented in this report. Kinetic circular dichroism (CD) and fluorescence have been used to observe changes in the structure of pelC as a function of time upon folding and unfolding. Three folding phases are observed with far-UV CD and four phases are observed with near-UV CD. The two slowest phases have relaxation times on the order of 21 and 46 s in aqueous buffer. Double-jump refolding assays and the measured activation enthalpies (16.0 and 21.2 kcal/mol for the respective slow phases) suggest that these two phases are the result of the slow cis-trans isomerization of prolyl-peptide bonds. We have determined that the earliest observed folding phase involves the formation of most, if not all, of the secondary structure with a relaxation time of 0.25 s. We also observed a phase by near-UV CD on the order of 0.25 s. This suggests that along with the appearance of secondary structure, some tertiary contacts are made. There is one kinetic phase observed in the near-UV CD and fluorescence that has no corresponding far-UV CD phase. This occurs with a relaxation time of 1.1 s. The temperature dependence of the natural log of the folding rate constant suggests that folding occurs via a sequential mechanism in which an on-pathway intermediate in rapid equilibrium with the unfolded protein is present. Semiempirical CD calculations support the idea that the beta-helix region of pelC forms in the fast kinetic phase, yielding near-native secondary and tertiary structures in that region. This is followed by the slower formation of the loop regions connecting individual strands of the beta-helix.  相似文献   

9.
Using far and near-UV CD, ANS fluorescence and 2D NMR spectroscopy, an acid-induced partly folded state (A state) at extremely low pH for hUBF HMG Box1 was identified and characterized. As compared to the native state (N), the A state has similar secondary structure, less compact pack with larger amounts of exposed hydrophobic surface, and narrower chemical shift dispersion in (1)H-(15)N HSQC spectrum, which implies that it is a molten globule (MG)-like species. On the other hand, substantial tertiary contacts and cooperative thermal denaturing transition indicate that the A state is closer-relative to the classic MG-to the native folded state. In addition, when the solution pH is adjusted to neutrality, the protein in the A state refolds to the native state easily. All these data suggest that the A state of hUBF HMG Box1 could represent a potential folding intermediate on protein folding pathway.  相似文献   

10.
The folding of apo-pseudoazurin, a 123-residue, predominantly beta-sheet protein with a complex Greek key topology, has been investigated using several biophysical techniques. Kinetic analysis of refolding using far- and near-ultraviolet circular dichroism (UV CD) shows that the protein folds slowly to the native state with rate constants of 0.04 and 0.03 min(-1), respectively, at pH 7.0 and at 15 degrees C. This process has an activation enthalpy of approximately 90 kJ/mole and is catalyzed by cyclophilin A, indicating that folding is limited by trans-cis proline isomerization, presumably around the Xaa-Pro 20 bond that is in the cis isomer in the native state. Before proline isomerization, an intermediate accumulates during folding. This species has a substantial signal in the far-UV CD, a nonnative signal in the near-UV CD, exposed hydrophobic surfaces (judged by 1-anilino naphthalenesulphonate binding), a noncooperative denaturation transition, and a dynamic structure (revealed by line broadening on the nuclear magnetic resonance time scale). We compare the properties of this intermediate with partially folded states of other proteins and discuss its role in folding of this complex Greek key protein.  相似文献   

11.
The contribution to the circular dichroism (CD) spectrum made by each of the four Trp residues in the extracellular domain of human tissue factor, sTF (s designates soluble), was determined from difference CD spectra. The individual Trp CD spectra showed that all four residues contributed to the CD spectrum in almost the entire wavelength region investigated (180-305 nm). The sum of the individual spectra of each Trp residue in the near-UV region was qualitatively identical to the wild-type spectrum, clearly demonstrating that the Trp residues are the major contributors to the spectrum in this wavelength region. Trp CD bands interfere with the peptide bands in the far-UV region, leading to uncertainty in the predictions of the amounts of various types of secondary structure. Accordingly, the best prediction of secondary sTF structure content was achieved using a hypothetical Trp-free CD spectrum obtained after subtraction of all individual Trp spectra from the wild-type spectrum. The mutated Trp residues were also exploited as intrinsic probes to monitor the formation of local native-like tertiary structure by kinetic near-UV CD measurements. The global folding reaction was followed in parallel with a novel functional assay that registered the recovery of cofactor activity, i.e. stimulation of the amidolytic activity of Factor VIIa. From these measurements, it was found that sTF appears to regain FVIIa cofactor activity before the final side-chain packing of the Trp residues. The combined kinetic refolding results suggest that the compact asymmetric environments of the individual Trp residues in sTF are formed simultaneously, leading to the conclusion that the native tertiary structure of the whole protein is formed in a cooperative manner.  相似文献   

12.
We have carried out guanidinium chloride (GdmCl) and urea denaturations of bovine beta-lactoglobulin A (beta-lgA) at pH 2.0 and 25 degrees C, using far-UV and near-UV circular dichroism, near-UV absorption and tryptophan fluorescence spectroscopies. The stable intermediate state that occurs during GdmCl denaturation has been characterized by the far- and near-UV circular dichroism, tryptophan difference absorption, tryptophan fluorescence and 8-anilino-1-naphthalene sulphonic acid binding measurements. Following conclusions have been reached. (a) Urea-induced denaturation is not a two-state process. (b) GdmCl-induced denaturation is composed of two distinct two-state processes. (c) alpha-Helical content, burial of tryptophan residues and burial of hydrophobic surface area are more in the GdmCl-induced stable intermediate than those originally present in the native protein.  相似文献   

13.
Li L  Singh BR 《Biochemistry》2000,39(21):6466-6474
Clostridial botulinum neurotoxins (BoNTs) cause neuroparalysis by blocking neurotransmitter release at the neuromuscular junctions. While the toxin's heavy chain (HC) is involved in binding and internalization, the light chain (LC) acts as a unique Zn(2+)-endopeptidase against a target protein in the exocytotic docking/fusion machinery. During the translocation of the LC to the cytosol, it is exposed to the endosomal low pH. Low pH showed a dramatic change in the BoNT/A LC polypeptide folding as indicated by differential heat denaturation. Furthermore, binding of 1-anilinonaphthalenesulfonate (ANS) revealed exposure of hydrophobic domains of BoNT/A LC at low pH. Low-pH-induced structural (and by implication the endopeptidase activity) changes were completely reversible. Exposure of BoNT/A LC to low pH (4.7) did not, however, evoke the loss of Zn(2+) bound to its active site. Implications of these observations to the delivery of active BoNT/A LC to the nerve cell are discussed. We further analyzed the nature of low-pH-induced change in the polypeptide folding of BoNT/A LC by Trp fluorescence measurements. The Trp fluorescence peak was observed at 322 nm, and the two fluorescence lifetime components estimated at 2.1 ns (88%) and 0.6 ns (12%) did not change much at low pH. These observations suggested that the two Trp residues are buried and constrained in a hydrophobic environment, and it is likely that the core of the BoNT/A LC protein matrix does not participate in the low-pH-induced structural alteration. This conclusion was further supported by the near-UV circular dichroism spectra under two pH conditions.  相似文献   

14.
Steady-state and time-resolved intrinsic fluorescence, fluorescence quenching by acrylamide, and surface testing by hydrophobic label ANS were used to study the structure of inactivated alpha-actin. The results are discussed together with that of earlier experiments on sedimentation, anisotropy of fluorescence, and CD spectrum in the near- and far-UV regions. A dramatic increase in ANS binding to inactivated actin in comparison with native and unfolded protein indicates that the inactivated actin has solvent-exposed hydrophobic clusters on the surface. It results in specific association of actin macromolecules (sedimentation constants for native and inactivated actin are 3 and 20 S, respectively) and, consequently, in irreversibility of native-inactivated actin transition. It was found that, though the fluorescence spectrum of inactivated actin is red-shifted, the efficiency of the acrylamide collision quenching is even lower than that of the intact protein. It suggests that tryptophan residues of inactivated actin are located in the inner region of protein formed by polar groups, which are highly packed. It correlates with the pronounced near-UV CD spectrum of inactivated actin. The experimentally found tryptophan fluorescence lifetimes allowed evaluation rotational correlation times on the basis of Perrin plots. It is found that oscillations of tryptophan residues in inactivated actin are restricted in comparison with native one. The inactivated actin properties were invariant with experimental conditions (ionic strength, the presence of reducing agents), the way of inactivation (Ca2+ and/or ATP removal, heating, 3-5 M urea or 1.5 M GdmCl treatment), and protein concentration (within the limits 0.005-1.0 mg/mL). The same state of actin appears on the refolding from the completely unfolded state. Thermodynamic stability, pronounced secondary structure, and the existing hydrophobic clusters, tested by ANS fluorescence and reversibility of transition inactivated-unfolded forms, allowed us to suggest that inactivated actin can be intermediate in the folding-unfolding pathway.  相似文献   

15.
Ahmed S  Guptasarma P 《Biochimie》2008,90(6):957-967
In an attempt to fashion a globular protein out of two conjoined beta hairpin structural motif(s), we created a gene encoding, in tandem, two copies of the 40 residues-long transmembrane beta hairpin tongue (BHT) motif of the pore-forming toxin, alpha-hemolysin, of Staphylococcus aureus. Seven selected hydrophobic residues on each copy of the BHT motif's lipid-facing surface were mutated to hydrophilic residues, to prevent or reduce any non-specific aggregation based on hydrophobic interactions. Tandem BHT turned out to be expressed as a soluble polypeptide which could be raised to concentrations of approximately 2mg/ml. It displayed several characteristics of a folded mini-protein, although not the characteristics of a typical well-folded globular protein. These characteristics include (i) far-UV CD and FTIR spectra indicative of the presence of sheet structure mixed with polyproline type II secondary structure, (ii) a near-UV CD spectrum, indicating some formation of tertiary structure, (iii) evidence of unfolding and dissociation transitions in the presence of denaturants, accompanied by increase in random coil content, and (iv) the ability to transform from sheet to helical structure through a biphasic structural transition in the presence of the cosolvent, trifluorethanol. Importantly, however, tandem BHT displayed no cooperativity during unfolding; taken together with the poor structural content revealed in the far-UV CD spectrum and some non-canonical gel filtration behavior seen in the presence of denaturants, this suggests a partially unsuccessful instance of protein design.  相似文献   

16.
Characterization of conformational transition and folding intermediates is central to the study of protein folding. We studied the effect of various alcohols (trifluoroethanol (TFE), butanol, propanol, ethanol and methanol) and salts (K(3)FeCN(6), Na(2)SO(4), KClO(4) and KCl) on the acid-induced state of alpha-chymotrypsinogen A, a predominantly beta-sheet protein, at pH 2.0 by near-UV circular dichroism (CD), far-UV CD and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence measurements. Addition of alcohols led to an increase in ellipticity value at 222 nm indicating the formation of alpha-helical structure. The order of effectiveness of alcohols was shown to be TFE>butanol>propanol>ethanol>methanol. ANS fluorescence data showed a decrease in fluorescence intensity on alcohol addition, suggesting burial of hydrophobic patches. The near-UV CD spectra showed disruption of tertiary structure on alcohol addition. No change in ellipticity was observed on addition of salts at pH 2.0, whereas in the presence of 2 M urea, salts were found to induce a molten globule-like state as evident from the increases in ellipticity at 222 nm and ANS fluorescence indicating exposure of hydrophobic regions of the protein. The effectiveness in inducing the molten globule-like state, i.e. both increase in ellipticity at 222 nm and increase in ANS fluorescence, followed the order K(3)FeCN(6)>Na(2)SO(4)>KClO(4)>KCl. The loss of signal in the near-UV CD spectrum on addition of alcohols indicating disordering of tertiary structure results suggested that the decrease in ANS fluorescence intensity may be attributed to the unfolding of the ANS binding sites. The results imply that the alcohol-induced state had characteristics of an unfolded structure and lies between the molten globule and the unfolded state. Characterization of such partially folded states has important implications for protein folding.  相似文献   

17.
Conformational analyses of a recombinant mouse tooth enamel amelogenin (rM179) were performed using circular dichroism (CD), fluorescence, differential scanning calorimetry, and sedimentation equilibrium studies. The results show that the far-UV CD spectra of rM179 at acidic pH and 10 degrees C are different from the spectra of random coil in 6 M GdnHCl. A near-UV CD spectrum of rM179 at 10 degrees C is similar to that of rM179 in 6 M GdnHCl, which indicates that aromatic residues of native structure are exposed to solvent and rotate freely. Far-UV CD values of rM179 at 80 degrees C are different from that of random-coil structure in 6 M GdnHCl, which suggests that rM179 at 80 degrees C has specific secondary structures. A gradual thermal transition was observed by far-UV CD, which is interpreted as a weak cooperative transition from specific secondary structures to other specific secondary structures. The fluorescence emission maximum for the spectrum due to Trp residues in rM179 at 10 degrees C shows the same fluorescence emission maximum as rM179 in 6 M GdnHCl and amino acid Trp, which indicates that the three Trp in rM179 are exposed to solvent. Deconvolution of differential scanning calorimetry curve gives the population of three states (A, I, and C states). These results indicate that three states (A, I, and C) have specific secondary structures, in which hydrophobic and Trp residues are exposed to the solvent. The thermodynamic characteristics of rM179 are unique and different from a typical globular protein, proline-rich peptides, and a molten globule state.  相似文献   

18.
The colicin E1 immunity protein (ImmE1), a 13.2-kDa hydrophobic integral membrane protein localized in the Escherichia coli cytoplasmic membrane, protects the cell from the lethal, channel-forming activity of the bacteriocin, colicin E1. Utilizing its solubility in organic solvents, ImmE1 was purified by 1-butanol extraction of isolated membranes, followed by gel filtration and ion-exchange chromatography in a chloroform/methanol/H(2)O (4:4:1) solvent system. Circular dichroism analysis indicated that the alpha-helical content of ImmE1 is approximately 80% in 1-butanol or 2,2,2-trifluoroethanol, consistent with a previous membrane-folding model with three extended hydrophobic transmembrane helical domains, H1-H3. Each of these extended hydrophobic domains contains a centrally located single Cys residue that could be used as a probe of protein structure. The presence of tertiary structure of purified ImmE1 in a solvent of mixed polarity, chloroform/methanol/H(2)O (4:4:1) was demonstrated by (i) the constraints on Tyr residues shown by the amplitude of near-UV circular dichroism spectra in the wavelength interval, 270-285 nm; (ii) the correlation between the near-UV Tyr CD spectrum of single and double Cys-to-X mutants of the Imm protein and their in vivo activity; (iii) the upfield shift of methyl groups in a 1D NMR spectrum, a 2D- HSQC NMR spectrum of ImmE1 in the mixed polarity solvent mixture, and a broadening and disappearance of the indole (1)H proton resonance from Trp94 in H3 by a spin label attached to Cys16 in the H2 hydrophobic domain; (iv) near-UV circular dichroism spectra with a prominent ellipticity band centered at 290 nm from a single Trp inserted into the extended hydrophobic domains. It was concluded that the colicin E1 immunity protein adopts a folded conformation in chloroform/methanol/H(2)O (4:4:1) that is stabilized by helix-helix interactions. Analysis of the probable membrane folding topology indicated that several Tyr residues in the bilayer region of the three transmembrane helices could contribute to the near-UV CD spectrum through helix-helix interactions.  相似文献   

19.
The conformation and dynamics of a protein are essential in characterizing the protein folding/unfolding intermediate state. They are closely involved in the packing and site-specific interactions of peptide elements to build and stabilize the tertiary structure of the protein. In this study, it was confirmed that trypsin inhibitor obtained from seeds of bitter gourd (BGTI) adopted a peculiar but plausible conformation and dynamics in the unfolding intermediate state. The fluorescence spectrum of one of two tryptophan residues of BGTI, Trp9, shifted to the blue side in the presence of 2-3 M guanidine hydrochloride, although the other, Trp54, did not show this spectral shift. At the same time, the motional freedom of Trp9 revealed by a time-resolved fluorescence study decreased, suggesting that the segmental motion of this residue was more restricted. These results indicate that BGTI takes such a conformation state that the hydrophobic core and loop domains arranging Trp9 and Trp54 respectively are heterogeneously packed in the unfolding intermediate state.  相似文献   

20.
The structures and stabilities of recombinant chicken muscle troponin I (TnI) and T (TnT) were investigated by a combination of bis-ANS binding and equilibrium unfolding studies. Unlike most folded proteins, isolated TnI and TnT bind the hydrophobic fluorescent probe bis-ANS, indicating the existence of solvent-exposed hydrophobic domains in their structures. Bis-ANS binding to binary or ternary mixtures of TnI, TnT and troponin C (TnC) in solution is significantly lower than binding to the isolated subunits, which can be explained by burial of previously exposed hydrophobic domains upon association of the subunits to form the native troponin complex. Equilibrium unfolding studies of TnT and TnI by guanidine hydrochloride and urea monitored by changes in far-UV CD and bis-ANS fluorescence revealed noncooperative folding transitions for both proteins and the existence of partially folded intermediate states. Taken together, these results indicate that isolated TnI and TnT are partially unstructured proteins, and suggest that conformational plasticity of the isolated subunits may play an important role in macromolecular recognition for the assembly of the troponin complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号