首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
生命体系历经40多亿年的自然进化,创造了无数丰富多彩的功能基因,保障了生命体系的传承与繁荣。然而生命体系的自然进化历程极其缓慢,新的功能基因产生需要数百万年时间,无法满足快速发展的工业生产需求。利用合成生物学技术,研究人员可以依据已知的酶催化机理和蛋白质结构进行全新的基因设计与合成,按照工业生产需求快速创造全新的蛋白质催化剂,实现各种自然界生物无法催化的生物化学反应。尽管新基因设计技术展现了激动人心的应用前景,但是目前该技术还存在设计成功率不高、酶催化活性较低、合成成本较高等科技挑战。未来随着合成生物学技术的快速发展,设计、改造、合成和筛选等技术将融合为一体,为新基因设计与创建带来全新的发展机遇。  相似文献   

2.
3.
4.
Thermophiles: A life at elevated temperatures   总被引:1,自引:0,他引:1  
Interest in the ecology, physiology and evolution of microorganisms adapted to growth at relatively high temperatures (up to 110°C) has increased enormously during the past two decades. This interest was stimulated by the discovery of marine hydrothermal vent ecosystems, and also by awareness of the potential of thermophilic microbes in biotechnological processes. Subsequent attempts to isolate new thermophilic organisms have been very successful. Moreover, these results, in combination with much-improved techniques for studying the phylogeny of microorganisms, have renewed interest in the evolution of microbes and the early development of life.  相似文献   

5.
Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.  相似文献   

6.
Bai XJ  Ding W 《生理科学进展》2010,41(5):323-328
继基因组学之后,针对各种代谢物的组学研究蓬勃兴起,鸟枪脂组学(shotgun lipidom ics)作为脂类研究的重要新兴手段,在创立和初期发展的过程中便已经展示出惊人的潜力,随着相关技术的进一步完善和发展,必将成为系统生物学的组成部分,在生物医学的研究和应用中发挥难以替代的重要作用。鸟枪脂组学利用质谱技术对全部或单一脂类及其相关分子进行系统分析,研究其改变对生物体所产生的作用并探讨其作用机制。传统脂类分析中的瓶颈问题在以电喷射离子质谱为基础的脂组学方法出现后获得了突破,使脂类分析进入高通量、高精度和高效能的时代。脂类在生物体内分布广泛、种类众多,并且与人类疾病密切相关。将脂组学分析方法运用于疾病相关的特异脂类标志物的发现并揭示其在疾病发生发展等复杂过程中的作用,可能为疾病的诊断治疗提供新的思路和策略。  相似文献   

7.
The expression of foreign DNA in Escherichia coli is important in biotechnological applications. However, the translation of genes from GC-rich organisms is inefficient in E. coli.To overcome this problem, we applied directed evolution to E. coli ribosomal protein S1. Two selected mutants enabled 12- and 8-fold higher expression levels from GC-rich DNA targets. General improvements in translation efficiency over a range of genes from Rhodopseudomonas palustris and E. coli was achieved using an S1 mutant selected against multiple genes from R. palustris. This method opens new opportunities for the expression of GC-rich genes in E. coli.  相似文献   

8.
9.
Disordered regions within proteins have increasingly been associated with various cellular functions. Identifying the specific roles played by disorder in these functions has proved difficult. However, the development of reliable prediction algorithms has expanded the study of disorder from a few anecdotal examples to a proteome-wide scale. Moreover, the recent omics revolution has provided the sequences of numerous organisms as well as thousands of genome-wide data sets including several types of interactomes. Here, we review the literature regarding genome-wide studies of disorder and examine how these studies give rise to new characterizations and categories of this elusive phenomenon.  相似文献   

10.
11.
Ellilä S  Jurvansuu JM  Iwaï H 《FEBS letters》2011,585(21):3471-3477
Protein splicing catalyzed by inteins has enabled various biotechnological applications such as protein ligation. Successful applications of inteins are often limited by splicing efficiency. Here, we report the comparison of protein splicing between 20 different inteins from various organisms in identical contexts to identify robust inteins with foreign exteins. We found that RadA intein from Pyrococcus horikoshii and an engineered DnaB intein from Nostoc punctiforme demonstrated an equally efficient splicing activity to the previously reported highly efficient DnaE intein from Nostoc punctiforme. The newly identified inteins with efficient cis-splicing activity can be good starting points for the further development of new protein engineering tools.  相似文献   

12.
13.
Bacterial alkaline proteases: molecular approaches and industrial applications   总被引:29,自引:5,他引:29  
Proteolytic enzymes are ubiquitous in occurrence, being found in all living organisms, and are essential for cell growth and differentiation. The extracellular proteases are of commercial value and find multiple applications in various industrial sectors. Although there are many microbial sources available for producing proteases, only a few are recognized as commercial producers. A good number of bacterial alkaline proteases are commercially available, such as subtilisin Carlsberg, subtilisin BPN' and Savinase, with their major application as detergent enzymes. However, mutations have led to newer protease preparations with improved catalytic efficiency and better stability towards temperature, oxidizing agents and changing wash conditions. Many newer preparations, such as Durazym, Maxapem and Purafect, have been produced, using techniques of site-directed mutagenesis and/or random mutagenesis. Directed evolution has also paved the way to a great variety of subtilisin variants with better specificities and stability. Molecular imprinting through conditional lyophilization is coming up to match molecular approaches in protein engineering. There are many possibilities for modifying biocatalysts through molecular approaches. However, the search for microbial sources of novel alkaline proteases in natural diversity through the "metagenome" approach is targeting a hitherto undiscovered wealth of molecular diversity. This fascinating development will allow the biotechnological exploitation of uncultured microorganisms, which by far outnumber the species accessible by cultivation, regardless of the habitat. In this review, we discuss the types and sources of proteases, protease yield-improvement methods, the use of new methods for developing novel proteases and applications of alkaline proteases in industrial sectors, with an overview on the use of alkaline proteases in the detergent industry.  相似文献   

14.
The environment plays instructive roles in development and selective roles in evolution. This essay reviews several of the instructive roles whereby the organism has evolved to receive cues from the environment in order to modulate its developmental trajectory. The environmental cues can be abiotic (such as temperature or photoperiod) or biotic (such as those emanating from predators, conspecifics, or food), and the “alteration” produces a normal, not a pathological, phenotype, that is appropriate for the environment. In addition, symbiotic organisms can produce important signals during normal development. Environmental cues can be obligatory, such that the organism cannot develop without the environmental cue. These cues often permit and instruct the organism to proceed from one developmental stage to another, as when larvae receive cues to settle and undergo metamorphosis from substrates. Such obligatory cues can also be given by symbionts, as when Wolbachia bacteria prevent apoptosis in developing ovaries of some wasps. Other environmental cues can be used facultatively, allowing organisms to follow different developmental trajectories depending on whether the cue is present or not. This can be seen in the temperature‐dependent determination of sex in many reptiles and in the determination of thermotolerance in aphids by their symbiotic bacteria. Signaling from the environment is essential in development, and co‐development appears to be normative between symbionts and their hosts. Here, one sees the reciprocal induction of gene expression, just as within the embryonic organism. The ability of organisms to respond to environmental cues by producing different phenotypes may be critically important in evolution, and it may be an essential feature that can facilitate or limit evolution.  相似文献   

15.
Archaeal lipids     
The major archaeal membrane glycerolipids are distinguished from those of bacteria and eukaryotes by the contrasting stereochemistry of their glycerol backbones, and by the use of ether-linked isoprenoid-based alkyl chains rather than ester-linked fatty acyl chains for their hydrophobic moieties. These fascinating compounds play important roles in the extremophile lifestyles of many species, but are also present in the growing numbers of recently discovered mesophilic archaea. The past decade has witnessed significant advances in our understanding of archaea in general and their lipids in particular. Much of the new information has come from the ability to screen large microbial populations via environmental metagenomics, which has revolutionised our understanding of the extent of archaeal biodiversity that is coupled with a strict conservation of their membrane lipid compositions. Significant additional progress has come from new culturing and analytical techniques that are gradually enabling archaeal physiology and biochemistry to be studied in real time. These studies are beginning to shed light on the much-discussed and still-controversial process of eukaryogenesis, which probably involved both bacterial and archaeal progenitors. Puzzlingly, although eukaryotes retain many attributes of their putative archaeal ancestors, their lipid compositions only reflect their bacterial progenitors. Finally, elucidation of archaeal lipids and their metabolic pathways have revealed potentially interesting applications that have opened up new frontiers for biotechnological exploitation of these organisms. This review is concerned with the analysis, structure, function, evolution and biotechnology of archaeal lipids and their associated metabolic pathways.  相似文献   

16.
Subtilases (SBTs) constitute a large family of serine peptidases. They are commonly found in Archaea, Bacteria and Eukarya, with many more SBTs in plants as compared to other organisms. The expansion of the SBT family in plants was accompanied by functional diversification, and novel, plant-specific physiological roles were acquired in the course of evolution. In addition to their contribution to general protein turnover, plant SBTs are involved in the development of seeds and fruits, the manipulation of the cell wall, the processing of peptide growth factors, epidermal development and pattern formation, plant responses to their biotic and abiotic environment, and in programmed cell death. Plant SBTs share many properties with their bacterial and mammalian homologs, but the adoption of specific roles in plant physiology is also reflected in the acquisition of unique biochemical and structural features that distinguish SBTs in plants from those in other organisms. In this article we provide an overview of the earlier literature on the discovery of the first SBTs in plants, and highlight recent findings with respect to their physiological relevance, structure and function.  相似文献   

17.
由于研究环境变化和微生物群落的需要,近年来高通量组学技术得到了迅猛开发和应用.其中,基于测序和芯片技术的宏基因组学是一个关键的、最成熟的组学技术,为大多数的其它组学技术提供了支撑.相比较而言,宏转录组学、宏蛋白质组学和宏代谢组学也取得了少数的有限成功,但已经显示出可喜的潜力.所有的组学技术都有赖于生物信息学,使得后者成为组学技术应用的一个主要的技术瓶颈.这些新的组学技术对环境微生物学领域产生了革命性的影响,极大地丰富了我们对于环境微生物基因资源和功能活性的了解.  相似文献   

18.
Cyanobacteria are among the most abundant organisms present on earth and are considered to be one of the oldest known clades. Cyanobacteria are oxygenic photosynthetic bacteria and are well known as promising renewable sources of energy; therefore, it is important to understand aspects of their genomes in detail across species. Advances in sequencing technology and the availability of several cyanobacterial genomes have provided an excellent opportunity to understand the diversity and evolution of the cyanobacterial genome. Here, we compared the genomes of 62 different phototrophic cyanobacteria. Evaluation of genetic diversity of all the cyanobacteria species studied revealed that evolution from their common ancestors was polyphyletic. In addition, the genomes were very diverse and varied among species, and significant genomic diversity was observed at the species and strain level. Overall, we identified 56 different protein families of cyanobacteria species/strains and found that they varied significantly among strains of a species. The circadian clock proteins KaiA, KaiB and KaiC (KaiABC complex proteins) of cyanobacteria were found to be present and consistent in the majority of cyanobacterial species while absent in a few others. Evolutionary analysis of the KaiABC protein complex showed that the KaiA protein has a high frequency of polymorphism, and multiple alleles were found to be present at high frequency. These results demonstrated that evolution of phosphorylation events occurred via KaiA in the KaiABC complex. Furthermore, multiple sequence alignment showed that KaiA, KaiB and KaiC proteins are highly conserved in nature. Our results provide direct information regarding the presence of different protein or protein families in cyanobacteria. The information presented here will serve as a starting point to explore the genetic diversity of cyanobacteria with the potential to play important roles in biotechnological applications.  相似文献   

19.
Ammonium is an excellent nitrogen source, and ammonium transfer is a fundamental process in most organisms. Membrane transport of ammonium is the key component of nitrogen metabolism mediated by Ammonium Transporter/Methylamine Permease/Rhesus (AMT/MEP/Rh) protein family. Ammonium transporters play different physiological roles in various organisms. Here, we looked at the protein characteristics of ammonium transporters in different organisms to create a link between protein characteristics and the organism. In order to increase the accuracy and precision of the employed models, for the first time, an attempt was made to cover all structural aspects of ammonium transporters in animals, bacteria, fungi, plants, and human by extracting and calculating 874 protein attributes of primary, secondary, and tertiary structures for each ammonium transporter. Then, various weighting and modeling algorithms were applied to determine how structural protein features change between organisms. Considering a large number of protein attributes made it possible to detect key protein characteristics in the structure of ammonium transporters. The results, for the first time, indicated that His-based features including count/frequency of His and frequency/count of Ile-His were the most significant features generating different types of ammonium transporters within organisms. Within different tested models, the C5.0 model was the most efficient and precise model for discrimination of organism type, based on ammonium transporter sequence, with the precision of 94.85%. The determination of protein characteristics of ammonium transporters in different organisms provides a new vista for understanding the evolution of transporters based on the modulation of protein characteristics and facilitates engineering of new transporters. In our point of view, dissecting a large number of structural protein characteristics through data mining algorithms provides a novel functional strategy for studying evolution and phylogeny. This research will serve as a basis for future studies on engineering novel ammonium transporters.  相似文献   

20.
Marine microorganisms play key roles in every marine ecological process, hence the growing interest in studying their populations and functions. Microbial communities on algae remain underexplored, however, despite their huge biodiversity and the fact that they differ markedly from those living freely in seawater. The study of this microbiota and of its relationships with algal hosts should provide crucial information for ecological investigations on algae and aquatic ecosystems. Furthermore, because these microorganisms interact with algae in multiple, complex ways, they constitute an interesting source of novel bioactive compounds with biotechnological potential, such as dehalogenases, antimicrobials, and alga-specific polysaccharidases (e.g., agarases, carrageenases, and alginate lyases). Here, to demonstrate the huge potential of alga-associated organisms and their metabolites in developing future biotechnological applications, we first describe the immense diversity and density of these microbial biofilms. We further describe their complex interactions with algae, leading to the production of specific bioactive compounds and hydrolytic enzymes of biotechnological interest. We end with a glance at their potential use in medical and industrial applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号