首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
During growth on minimal medium, cells of Neurospora contain three pools of ornithine. Over 95% of the ornithine is in a metabolically inactive pool in vesicles, about 1% is in the cytosol, and about 3% is in the mitochondria. By using a ureaseless strain, we measured the rapid flux of ornithine across the membrane boundaries of these pools. High levels of ornithine and the catabolic enzyme ornithine aminotransferase coexist during growth on minimal medium but, due to the compartmentation of the ornithine, only 11% was catabolized. Most of the ornithine was used for the synthesis of arginine. Upon the addition of arginine to the medium, ornithine was produced catabolically via the enzyme arginasn early enzyme of ornithine synthesis. The biosynthesis of arginine itself, from ornithine and carbamyl phosphate, was halted after about three generations of growth on arginine via the repression of carbamyl phosphate synthetase A. The catabolism of arginine produced ornithine at a greater rate than it had been produced biosynthetically, but this ornithine was not stored; rather it was catabolized in turn to yield intermediates of the proline pathway. Thus, compartmentation, feedback inhibition, and genetic repression all play a role to minimize the simultaneous operation of anabolic and catabolic pathways for ornithine and arginine.  相似文献   

2.
Compartmental behavior of ornithine in Neurospora crassa.   总被引:4,自引:0,他引:4  
In Neurospora cells grown on minimal medium, most of the large ornithine pool is found in osmotically sensitive organelles, the "vesicles." In this paper kinetic studies on the compartmental behavior of ornithine and its derivatives are reported. Analysis of the metabolism of a 10(-7) M pulse of uniformly labeled L-[14C] ornithine supports the following conclusions: (a) Over 98% of the cellular ornithine is in the vesicles. (b) The amount of ornithine normally in the cytosol is about 0.3% of the cellular ornithine, as shown by the kinetics of incorporation of 14C into putrescine via the cytosolic enzyme, ornithine decarboxylase (EC 4.1.1.17). (c) Mitochondria, the site of ornithine synthesis, contain about 1% of the cellular ornithine, as demonstrated by the kinetics of incorporation of 14C into citrulline via the mitochondrial enzyme, ornithine transcarbamylase (EC 2.1.3.3). (d) Considerable ornithine exchange, and a net efflux of ornithine, takes place across the mitochondrial membrane. (e) Ornithine aminotransferase (EC 2.6.1.13), a catabolic enzyme, may have a special relation to the cell membrane in cells grown in minimal medium. This enzyme uses ornithine efficiently while it enters from the medium, but very poorly after all the [14C] ornithine is within the cell. (f) Citrulline and proline are not compartmented with respect to the enzymes using them. (g) In contrast, arginine is distributed such that over 99% is in vesicles. We suggest that the vesicles; with their ability to sequester ornithine and arginine, are potentially significant in regulation.  相似文献   

3.
The rates of oxidation of arginine and ornithine that occurred through a reaction pathway involving the enzyme ornithine aminotransferase (EC 2.6.1.13) were determined using (14)C-labeled amino acids in the isolated nonrecirculating perfused rat liver. At physiological concentrations of these amino acids, their catabolism is subject to chronic regulation by the level of protein consumed in the diet. (14)CO(2) production from [U-(14)C]ornithine (0.1 mM) and from [U-(14)C]arginine (0.2 mM) was increased about fourfold in livers from rats fed 60% casein diets for 3-4 days. The catabolism of arginine in the perfused rat liver, but not that of ornithine, is subject to acute regulation by glucagon (10(-7) M), which stimulated arginine catabolism by approximately 40%. Dibutyryl cAMP (0.1 mM) activated arginine catabolism to a similar extent. In retrograde perfusions, glucagon caused a twofold increase in the rate of arginine catabolism, suggesting an effect of glucagon on arginase in the perivenous cells.  相似文献   

4.
Arginine catabolism produces ammonia without transferring nitrogen to another compound, yet the only known pathway of arginine catabolism in Escherichia coli (through arginine decarboxylase) does not produce ammonia. Our aims were to find the ammonia-producing pathway of arginine catabolism in E. coli and to examine its function. We showed that the only previously described pathway of arginine catabolism, which does not produce ammonia, accounted for only 3% of the arginine consumed. A search for another arginine catabolic pathway led to discovery of the ammonia-producing arginine succinyltransferase (AST) pathway in E. coli. Nitrogen limitation induced this pathway in both E. coli and Klebsiella aerogenes, but the mechanisms of activation clearly differed in these two organisms. We identified the E. coli gene for succinylornithine aminotransferase, the third enzyme of the AST pathway, which appears to be the first of an astCADBE operon. Its disruption prevented arginine catabolism, impaired ornithine utilization, and affected the synthesis of all the enzymes of the AST pathway. Disruption of astB eliminated succinylarginine dihydrolase activity and prevented arginine utilization but did not impair ornithine catabolism. Overproduction of AST enzymes resulted in faster growth with arginine and aspartate. We conclude that the AST pathway is necessary for aerobic arginine catabolism in E. coli and that at least one enzyme of this pathway contributes to ornithine catabolism.  相似文献   

5.
The kinetic mechanism and specificity of the arginine-ornithine antiporter was investigated in membrane vesicles derived from Lactococcus lactis. Membrane vesicles loaded with ornithine, and diluted into an arginine-free medium, rapidly released a limited amount of ornithine during the first seconds of incubation. The amount of ornithine released was independent of the amount initially present on the inside and roughly matched the number of ornithine-binding sites in the membrane. Net flow of ornithine was only observed in membrane vesicles derived from induced cells and blocked by p-chloromercuribenzene sulfonic acid. These results suggest that net flow of ornithine is caused by a single turnover of the antiporter. With saturating concentrations of arginine in the external medium, efflux of ornithine was stoichiometrically coupled to uptake of arginine. Arginine-ornithine exchange and net flow of ornithine are electrically silent and not regulated by the electrical potential. The kinetics of the homologous exchange reactions indicate that the Vmax values for arginine and ornithine uptake are comparable, whereas the apparent Kt values differ. No major sidedness of the apparent Kt values are observed for both surfaces of the cytoplasmic membrane. Various basic amino acid analogues, including optical isomers, are transported as well, albeit with different efficiencies (Vmax/Kt). Evidence for a competitive character of arginine and ornithine interactions for binding sites on the antiporter are provided by transport and binding measurements. The Vmax and apparent Kt for arginine uptake increases with increasing internal ornithine, with little effect on the ratio of Vmax to apparent Kt. These results are discussed in terms of a simple carrier model in which the substrate-binding site is presented alternately to the two surfaces of the membrane as in a Ping Pong mechanism for enzyme kinetics.  相似文献   

6.
The flux into the arginine biosynthetic pathway of Neurospora crassa was investigated using a mutant strain lacking the ornithine-degrading enzyme ornithine aminotransferase (EC 2.6.1.13). Flux was measured by the increase in the sum of the radioactivity (derived from [14C]glutamic acid) in the ornithine pool, the arginine pool, and arginine incorporated into proteins. Complete cessation of flux occurred immediately upon the addition of arginine to the growth medium. This response occurred prior to expansion of the arginine pool. After short-term exposure to arginine (80 min), flux resumed quickly upon exhaustion of arginine from the medium. This took place despite the presence of an expanded arginine pool. Initiation of flux required approximately 80 min when the mycelia were grown in arginine-supplemented medium for several generations before exhaustion of the exogenous arginine. The arginine pool of such mycelia was similar to that found in mycelia exposed to exogenous arginine for only 80 min. The results are consistent with rapid onset and release of feedback inhibiton of arginine biosynthesis in response to brief exposure to exogenous arginine. The insensitivity of flux to the size of the arginine pool is consistent with a role for compartmentation in this regulatory process. The lag in initiation of flux after long-term growth in the presence of exogenous arginine suggests the existence of an additional regulatory mechanism(s). Several possibilities are discussed.  相似文献   

7.
Plant tumors induced by Agrobacterium tumefaciens synthesize a group of substances (opines) which can serve as sole source of carbon and nitrogen for the bacteria. We investigate Ti-plasmid-coded genes and enzymes involved in catabolism of the opine N2-(1,3-dicarboxypropyl)-L-arginine (nopaline) with a novel approach: expression and mapping of protein-coding regions in Escherichia coli minicells, followed by identification of enzyme functions in the heterologous E. coli background. The results show that a specific part of the nopaline catabolism (Noc) region of Ti plasmid C58 is packed with closely spaced protein-coding regions which can be expressed into polypeptides of distinct sizes in E. coli. We identify and map three enzyme activities: nopaline oxidase, arginase and ornithine cyclodeaminase, an unusual protein converting ornithine directly into proline. Nopaline oxidase requires two different Noc-gene-encoded proteins for function and the latter two enzymes are new discoveries in the Noc region. These three enzyme activities together constitute a catabolic pathway leading from nopaline through arginine and ornithine to proline.  相似文献   

8.
It has been found that, in Neurospora crassa, arginine synthesized from exogenous citrulline was not as effectively hydrolyzed as exogenous arginine. This was explained by the observed inhibition of arginase in vitro and in vivo by citrulline. The high arginine pool formed from exogenous citrulline feedback inhibits the arginine pathway. These two factors allow exogenous citrulline to be used adventitiously and efficiently as an arginine source. Finally, it was found that ornithine was a strong inhibitor of arginase. This suggests that the characteristically high ornithine pool of minimal cultures of Neurospora may act to control a potentially wasteful catabolism of endogenous arginine by arginase.  相似文献   

9.
Arginine catabolism in Agrobacterium strains: role of the Ti plasmid.   总被引:12,自引:6,他引:6  
We present a study of the enzymatic activities involved in the pathway for arginine catabolism by Agrobacterium tumefaciens. Nitrogen from arginine is recovered through the arginase-urease pathway; the genes for these two activities are probably chromosomally born. Arginase was found to be inducible during growth in the presence of arginine or ornithine. Urease was constitutively expressed. Ornithine, resulting from the action of arginase on arginine, could be used as a nitrogen source via transamination to delta 1-pyrroline-5-carboxylate and reduction of the latter compound to proline by a reductase (both enzymatic activities are probably chromosomally encoded). Ornithine could also be used as a carbon source. Thus, we identified an ornithine cyclase activity that was responsible for direct conversion of ornithine to proline. This activity was found to be Ti plasmid encoded and inducible by growth in medium containing octopine or nopaline. The same activity was also chromosomally encoded in some Agrobacterium strains. In such strains, this activity was inducible during growth in arginine-containing medium.  相似文献   

10.
The levels of enzymes and metabolites of arginine metabolism were determined in exponential cultures of Neurospora crassa grown on various carbon sources. The carbon sources decreased in effectiveness (as determined by generation times) in the following order: sucrose, acetate, glycerol, and ethanol. The basal and induced levels of the catabolic enzymes, arginase (EC 3.5.3.1) and ornithine transaminase (EC 2.6.1.13), were lower in mycelia grown on poor carbon sources. Arginase was more sensitive to variations in carbon source than was ornithine transaminase. Induction of both enzymes was sensitive to nitrogen metabolite control, but this sensitivity was reduced in mycelia grown on glycerol or ethanol. The pools of arginine and ornithine were reduced in mycelia grown in unsupplemented medium containing poor carbon sources, but the biosynthetic enzyme ornithine transcarbamylase (EC 2.1.3.3) was not derepressed. The arginine pools were similar, regardless of carbon source, in mycelia grown in arginine-supplemented medium. The ornithine pool was reduced by growth on poor carbon sources. The rate of arginine degradation was proportional to the level of arginase in both sucrose- and glycerol-grown mycelia. The distribution of arginine between cytosol and vesicles was only slightly altered by growth on glycerol instead of sucrose. The slightly smaller cytosolic arginine concentration did not appear to be sufficient to account for the alterations in basal and induced enzyme levels. The results suggest a possible carbon metabolite effect on the expression or turnover of a variety of genes for enzymes of arginine metabolism in Neurospora.  相似文献   

11.
Most Pseudomonas aeruginosa PAO mutants which were unable to utilize l-arginine as the sole carbon and nitrogen source (aru mutants) under aerobic conditions were also affected in l-ornithine utilization. These aru mutants were impaired in one or several enzymes involved in the conversion of N2-succinylornithine to glutamate and succinate, indicating that the latter steps of the arginine succinyltransferase pathway can be used for ornithine catabolism. Addition of aminooxyacetate, an inhibitor of the N2-succinylornithine 5-aminotransferase, to resting cells of P. aeruginosa in ornithine medium led to the accumulation of N2-succinylornithine. In crude extracts of P. aeruginosa an ornithine succinyltransferase (l-ornithine:succinyl-CoA N2-succinyltransferase) activity could be detected. An aru mutant having reduced arginine succinyltransferase activity also had correspondingly low levels of ornithine succinyltransferase. Thus, in P. aeruginosa, these two activities might be due to the same enzyme, which initiates aerobic arginine and ornithine catabolism.Abbreviations OAT ornithine 5-aminotransferase - SOAT N2-succinylornithine 5-aminotransferase - Oru ornithine utilization - Aru arginine utilization  相似文献   

12.
A rapid biochemical method for the determination of arginine decarboxylase (EC 4.1.1.19) activity has been developed for use in the routine clinical microbiology laboratory and correlated with similar procedures for ornithine and lysine decarboxylase (EC 4.1.1.18) systems. It is based on the detection of agmatine, the amine end product formed during growth on a synthetic medium containing arginine as the key amino acid. A modified diacetyl reagent is used to detect this amine after a differential butanol extraction of the cultures. This procedure can be used to detect this amine after a 1- to 4-hr incubation period (with the use of an initial concentrated inoculum) or with an overnight culture. Thus, both an indirect measurement based on the alkalinization of the medium and a lengthy incubation period were avoided. Parameters for optimal enzyme activity and the pertinent enzyme systems involved in arginine and agmatine catabolism are discussed in detail.  相似文献   

13.
Summary A Neurospora mutant (aga) lacking arginase was selected by virtue of its inability to utilize arginine as a source of ornithine, using a strain in which ornithine was needed to satisfy a proline requirement. It mapped in linkage group VII (right arm), close to wc. The most important characteristic of the mutant was its extreme sensitivity to arginine. Inclusion of 1 mM arginine in the medium lead to a 40-fold increase in the arginine pool and a 90% inhibition of growth. This inhibition was relieved by the addition of ornithine or proline. The high arginine pool was associated with only a slight repression of two biosynthetic enzymes examined and with a five-fold induction of ornthine transaminase, the second enzyme of arginine catabolism. It is expected that the aga mutant will be of value in further work on the regulation of arginine biosynthesis in Neurospora.  相似文献   

14.
Mutations in Bacillus subtilis 168 have been isolated that confer resistance to arginine hydroxamate in the presence, but not absence, of ornithine. Seven such Ahor mutants have been studied in detail. In common with certain classes of Ahr mutant (resistant to arginine hydroxamate in the absence of arginine precursors) described previously, these Ahor mutants showed little or no inducibility of enzymes of arginine catabolism. Mutants that showed no inducibility were unable to utilize arginine or ornithine as sole nitrogen source. The only biosynthetic enzyme to show any consistent differences in activity from the parent was ornithine carbamoyltransferase, whose level was slightly elevated in cells grown in the presence of ornithine or citrulline. PBS1 transduction crosses showed that two of the ahor mutations map at the ahrA locus, while a third (unique in its resistance to arginine hydroxamate in the presence of citrulline) mapped at a hitherto undescribed locus closely linked to metC, designated ahrD.  相似文献   

15.
Utilization of Exogenous and Endogenous Ornithine by Neurospora crassa   总被引:12,自引:9,他引:3  
Through the use of a mutant deficient in ornithine-δ-transaminase (OTA), it is shown that this enzyme normally has no obligate or even major biosynthetic role in Neurospora. The pathways of ornithine and proline synthesis proceed wholly independently of each other in OTA-less strains. It is probable that OTA functions as an enzyme of arginine catabolism. With mutants affected in OTA, ornithine transcarbamylase, and the synthesis of ornithine, it was demonstrated that exogenous and endogenous ornithine are utilized in different ways. Exogenous ornithine is destined mainly for catabolism, whereas endogenous ornithine is destined mainly for biosynthesis. It is suggested that this distinction depends upon differences in the intracellular location or origin of the two sources of ornithine.  相似文献   

16.
Approximate rates of some in vivo ornithine metabolisms in rats were calculated by pulse-labeling data, on the assumption that hepatic metabolite levels are constant during a given 3-min period. The rate of ornithine catabolism was 70–110 nmol/min/g liver; that of urea output was 3–6 μmol/min/g liver; the rotary rate of the “ornithine flux” was 10–12 rpm. A change from a 25 to a 70% casein diet resulted in a 1.5-fold augmentation in the rate of ornithine catabolism and a 1.6-fold increase in the rate of urea output; however, the rate of the “ornithine flux” remained nearly constant These findings suggest that stimulation of the urea cycle is accompanied not by acceleration of the cycle rotation, but rather by increased mass of the metabolite flux.  相似文献   

17.
Tetrahymena thermophila cells grown in a synthetic nutrient medium for 9 h removed 97% of the free L-arginine but less than 50% of any of the other essential amino acids. The major portion of the arginine was degraded rapidly (76-92%) whereas 5-15% was conserved as intact and only 2.5-10% were incorporated into protein. However, if bovine serum albumin (BSA) was present in the medium as a macromolecular arginine source the incorporation of free arginine into protein was reduced to less than 1% but the degraded fraction was increased. Apparently, the uptake mode of arginine determines its fate: arginine taken up by phagocytosis is bound for protein biosynthesis, arginine taken up by membrane receptors is chanelled to degradation. Media without arginine did not support growth of Tetrahymena. Citrulline and ornithine, the precursors of arginine biosynthesis in yeast and vertebrates, were not able to substitute for arginine. Pronounced morphological changes, e.g. greatly reduced ribosome content, were observed in Tetrahymena cells after 24 h of arginine starvation in otherwise complete medium, but not in cells starved in water, salt solution, or buffer. Thus, arginine is an essential nutrient component for Tetrahymena and the rapid degradation of this compound involving the enzymes arginine deiminase (ADI) and citrulline hydrolase (CH) might be of regulatory importance for the unicellular, as it is the case with acetylcholine and catecholamines in mammalian organisms. Since the product of these enzymes, L-ornithine, is the substrate for the regulatory key enzyme of polyamine biosynthesis, ornithine decarboxylase (ODC), the effects of the presence of absence of arginine on the activities of each particular enzyme of the pathway were studied, including ODC and the enzyme ornithine-oxo-acid aminotransferase (O delta T), which is a competitor of ODC for the common substrate. The arginine-degradative pathway was stimulated by extracellular free but not by peptide-bound arginine and was modulated by extracellular protein which induced phagocytosis; O delta T was stimulated with a time lag. The stimulation of ODC was in a reciprocal relation to the arginine concentration and enhanced by phagocytosis and previous arginine starvation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The main goal of the current study was to elucidate the role of mitochondrial arginine metabolism in the regulation of N-acetylglutamate and urea synthesis. We hypothesized that arginine catabolism via mitochondrially bound arginase augments ureagenesis by supplying ornithine for net synthesis of citrulline, glutamate, N-acetylglutamate, and aspartate. [U-(15)N(4)]arginine was used as precursor and isolated mitochondria or liver perfusion as a model system to monitor arginine catabolism and the incorporation of (15)N into various intermediate metabolites of the urea cycle. The results indicate that approximately 8% of total mitochondrial arginase activity is located in the matrix, and 90% is located in the outer membrane. Experiments with isolated mitochondria showed that approximately 60-70% of external [U-(15)N(4)]arginine catabolism was recovered as (15)N-labeled ornithine, glutamate, N-acetylglutamate, citrulline, and aspartate. The production of (15)N-labeled metabolites was time- and dose-dependent. During liver perfusion, urea containing one (U(m+1)) or two (U(m+2)) (15)N was generated from perfusate [U-(15)N(4)]arginine. The output of U(m+2) was between 3 and 8% of total urea, consistent with the percentage of activity of matrix arginase. U(m+1) was formed following mitochondrial production of [(15)N]glutamate from [alpha,delta-(15)N(2)]ornithine and transamination of [(15)N]glutamate to [(15)N]aspartate. The latter is transported to cytosol and incorporated into argininosuccinate. Approximately 70, 75, 7, and 5% of hepatic ornithine, citrulline, N-acetylglutamate, and aspartate, respectively, were derived from perfusate [U-(15)N(4)]arginine. The results substantiate the hypothesis that intramitochondrial arginase, presumably the arginase-II isozyme, may play an important role in the regulation of hepatic ureagenesis by furnishing ornithine for net synthesis of N-acetylglutamate, citrulline, and aspartate.  相似文献   

19.
In Pseudomonas aeruginosa the synthesis of only two out of eight arginine biosynthetic enzymes tested was regulated. Comparisons were made between the specific activities of these enzymes in bacteria grown on arginine or on its precursor, glutamate. N2-Acetylornithine 5-aminotransferase (ACOAT), an enzyme involved in both the biosynthesis and catabolism of arginine, was induced about 14-fold during growth of the organism on arginine as the only carbon and nitrogen source, and the anabolic ornithine carbamoyltransferase (aOTC), a strictly biosynthetic enzyme, was repressed 18-fold. Addition of various carbon sources to the arginine medium led to repression of ACOAT and to derepression of aOTC. Fructose, which supported only slow growth of P. aeruginosa, had a weak regulatory effect on the synthesis of the two arginine enzymes while citrate, a good carbon source for this organism, had a strong effect. The repression of ACOAT by citrate was not relieved by adding cyclic AMP to the medium. Under a variety of growth conditions leading to different enzyme activities, a linear relationship between the reciprocal of the specific activity of ACOAT and the specific activity of aOTC was observed. This inverse regulation of the formation of the two enzymes suggested that a single regulatory system governs their synthesis. Such a view was supported by the isolation of citrate-resistant regulatory mutants which constitutively formed ACOAT at the induced level and aOTC at the repressed level.  相似文献   

20.
Citrulline is synthesized in mitochondria of Neurospora crassa from ornithine and carbamoyl phosphate. In mycelia grown in minimal medium, carbamoyl phosphate limits citrulline (and arginine) synthesis. Addition of arginine to such cultures reduces the availability of intramitochondrial ornithine, and ornithine then limits citrulline synthesis. We have found that for some time after addition of excess arginine, carbamoyl phosphate synthesis continued. Very little of this carbamoyl phosphate escaped the mitochondrion to be used in the pyrimidine pathway in the nucleus. Instead, mitochondrial carbamoyl phosphate accumulated over 40-fold and turned over rapidly. This was true in ornithine- or ornithine carbamoyltransferase-deficient mutants and in normal mycelia during feedback inhibition of ornithine synthesis. The data suggest that the rate of carbamoyl phosphate synthesis is dependent to a large extent upon the specific activity of the slowly and incompletely repressible synthetic enzyme, carbamoyl-phosphate synthetase A. In keeping with this conclusion, we found that when carbamoyl-phosphate synthetase A was repressed 2-10-fold by growth of mycelia in arginine, carbamoyl phosphate was still synthesized in excess of that used for residual citrulline synthesis. Again, only a small fraction of the excess carbamoyl phosphate could be accounted for by diversion to the pyrimidine pathway. The continued synthesis and turnover of carbamoyl phosphate in mitochondria of arginine-grown cells may allow rapid resumption of citrulline formation after external arginine disappears and no longer exerts negative control on ornithine biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号